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Multiphysics modelling of immune processes
using distributed parameter systems
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Abstract — The immune system is a complex distributed system consisting of cells, which circulate
through the body, communicate and turnover in response to antigenic perturbations. We discuss new
approaches to modelling the functioning of the immune system of humans and experimental animals
with a focus on its ‘complexity’. Emerging mathematical and computer models are reviewed to de-
scribe the immune system diversity, the cell/cytokine network communication structures, hierarchical
regulation, and evolutionary dynamics of immune repertoires.
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1. Diversity as a key feature of the immune system
The immune system of humans and animals is a hierarchically organized, spa-
tially structured, and pleiotropically regulated ensemble of recirculating cells and
humoral factors that function to control the antigenic homeostasis of a host organ-
ism [36]. To unravel the mechanisms of clinically relevant immune-mediated pro-
cesses, a broad spectrum of analytical tools are in use based on the latest advances
in physics, chemistry, biology, and computer science. These include multi-color
flow cytometry, high-dimensional immune-profiling, immunohistochemistry, mul-
tiplex assays, in vivo imaging, metabolome, proteomic and transcriptomic analysis,
single-cell RNA sequencing, etc. However, until today, all these data types summar-
ized in Fig. 1 have not been integrated into a holistic multi-physics description of
the immune system functioning. Rather, only qualitative general immunology rules
and schemes were established to characterize the behaviour of the immune system
[27, 63, 67]. To go beyond, it would be necessary to apply information and math-
ematical technologies and combine that with fundamental and translational research
[62].
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Figure 1. Diversity features of the immune system. A: Spatial distribution of the lymphatic system
and the patrolled organs/tissues. B: Major immune cells populations (CD4 T cells, CD8 T cells, Nat-
ural killer cells, B cells, Monocytes, Dendritic cells, Granulocytes). C: Organ/tissue specific functional
diversity of immune cells. D: Immune cell/cytokine interaction network (left), and T-cell receptor
(TCR) or B-cell receptor (BCR) networks for different similarity index values (right). E: Fitness land-
scape (viral protein sequences) determining the evolution trajectories of immune clones. F: Dynamics
of clonotypes (left) and public/private clones (right) during acure/chronic LCMV infection. Abstracted
from [8, 37, 43, 51, 55, 58].

Lack of a complete mechanistic understanding of the pathogenesis and cause-
effect relationships of many immune-related diseases, like COVID-19, hepatitis
B, and AIDS, as well as the inability to predict the outcome of novel therapies
(e.g. checkpoint inhibitors, chimeric antigen receptor (CAR) T cells, genome edit-
ing, bioengineering of lymphoid tissues), calls for the development of quantitative
systems immunology approaches that combine various ‘omics-’ technologies with
multi-physics type of mathematical modelling. The mainstream research in math-
ematical immunology is associated with the construction and study of mathematical
models of low dimensions within a single level of detail of processes for the study of
infectious diseases (influenza, viral hepatitis, HIV). Typical examples are provided
by the recent work on the modelling of various aspects of infections with hepatitis
B viruses [22], HIV [7], and SARS-CoV-2 [21, 33]. The respective mathematical
models are characterized by a mono-scale approach both in the nature of the reg-
ulation principles (e.g., systems of the ‘predator–prey’ type), the clonal repertoire
of adaptive immune receptors, and in the type of mathematical descriptions used to
represent the system dynamics [29]. The models do not consider the system level
of regulation of the immune processes and further developments based on hybrid
multi-scale approaches [44] combining data-driven and mechanistic modelling [62]
are necessary for proper holistic consideration [56] of numerous regulatory pro-
cesses and motifs in the cells of the immune system and in cellular networks, which
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determine the homeostasis of the immune repertoire and its change in response to
various antigenic perturbations [49].

In the present study, we aim to review a novel class of mathematical models for
a multiphysics description and analysis of functioning of the immune system under
normal conditions and in the course of infectious diseases. To build mathematical
models that meet the requirements of the current depth of research in immunology,
the distributed parameters systems in physical, genotypic and phenotypic spaces
(e.g., affinity/avidity of B-cell receptor (BCR) or T-cell receptor (TCR)), the net-
work representation of interacting cellular ensembles, and structural modules of
intracellular regulation are increasingly utilized. Fundamentally new elements of
modelling and analysis seem to be (1) the use of methods of evolutionary dynamics
on adaptive landscapes to describe the connectivity of immune cell populations and
the immune system clonal repertoire under the influence of fluctuating antigenic for-
cing, (2) the consideration of fitness landscapes to assess the information-entropy
characteristics of the immune system and predict the changes in its complexity and
efficiency, and (3) the description of a hierarchical organization of regulatory pro-
cesses.

2. Models of immune system as a set of clones with adaptive receptor
repertoire

The immune system is composed of about 1013 cells differing in their spatial loc-
ation x in the system and functional properties. The immune system controls the
antigenic homeostasis of the host. This occurs via specific molecular-based recog-
nition of antigens expressed by pathogens achieved through B-cell receptors and T-
cell receptors. The adaptive immune repertoire is a characteristic of the individual’s
immune system. It is supposed that there are at about 108 different lymphocyte re-
ceptor specificities in an individual human at any time [48]. The lymphocytes are
continually undergoing a process similar to natural selection. The immune repertoire
is evolving within the immune receptor sequence space r. The repertoire dynamics
reflects the evolution of immune homeostasis, which is defined by multi-scale and
multi-physics set of processes taking place over the time scale from days (acute
responses) to years (chronic infections, autoimmune diseases) and engaging mo-
lecular (biochemical) and cellular (biological) levels of regulation [43].

The advent of high-throughput adaptive immune receptor repertoire (AIRR) se-
quencing about a decade ago provided the opportunity to analyze and model the
high-dimensional immune receptor sequence landscape. The so far developed com-
putational approaches provide the means for quantifying the specificity, complexity,
and evolution of AIRR [43].

Various options exist for mapping the biochemical structure of antigens and
lymphocyte receptors. One of them is the concept of a ‘shape space’ [60]. It is
defined via a ‘generalized shape’ of an antigen a or lymphocyte receptor which is
represented as a set of coordinates in a real-valued d-dimensional Euclidian space.
The second option is representation of the antigenic- or antigen binding receptor
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structures as a sequence of amino acids of certain length using specific symbols, thus
following a Hamming shape space framework. For example, BCRs and antigens
were represented by strings of 20 symbols in the computational model developed
for studying the dynamics of B-cell receptor repertoire [59]. Various approaches
are used to reduce the dimensionality of the space representing the antigen and
receptors. One of them is known as antigenic cartography [61]. It is based on linking
the antigenic distance to the immunoglobulin-type receptor in the shape space to
the logarithm of the hemagglutination inhibition (HI) assay. The HI binding assay
quantifies the ability of viruses (influenza in the cited work) to agglutinate red blood
cells and the ability of antibodies to block this.

2.1. Models of immune system as a set of distinct clones

One of the first models of immune repertoire dynamics was proposed in [1]. The
repertoire of lymphocytes is described by a final set of n clones with abundances
ci, i = 1, . . . ,n. The total population of lymphocytes is C(t) = ∑

n
i=1 ci. The popula-

tion dynamics of the clones and the total immune cell population are described by
the following equations

dci

dt
(t) = c∗i (t)+ma∗i (t)+ ci(t) [S(C)+ f −d] , i = 1, . . . ,n (2.1)

and
dC
dt

(t) = c∗n+amn+C(t) [S(C)+ f −d] (2.2)

respectively. The equations consider the following processes:

• Random input of lymphocytes with receptors produced by V(D)J recombin-
ation followed by further positive/negative selection at rate c∗i (t) with expo-
nentially distributed waiting times between inputs;

• Antigen-driven stimulation modelled by a so called fluctuating antigenic
landscape [15] (e.g., the stimulation of clone i occurs by a randomly in-
troduced specific antigen a∗i (t) with exponentially distributed waiting times
between stimulations) or deterministically with a constant antigen abundance
a = E[ai(t)];

• Cross-reactive stimulation as averaged constant forcing f ;

• Homeostatic proliferation S(C);

• Natural death of cell d.

The model was used to study the parameters affecting the longevity of immune
memory and the repertoire dynamics.
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2.2. Stochastic and continuum-type models for immune repertoire dynamics

Further development of the above class of quasi-deterministic models was based on
considering (i) stochastic processes to represent the fluctuating antigenic landscape
and (ii) a continuum-type description of the abundance of lymphocyte clones. A
representative example is the Stochastic Differential Equations (SDE)-type model
describing the clone dynamics in a fluctuation antigenic landscape [15]. The system
of equations described the dynamics of cell clones Ci(t) comprising the immune
system

dCi

dt
(t) =

(
ν +∑

j
Ki ja j(t)−µ

)
Ci(t)+Bξi(t), i, j = 1, . . . ,n. (2.3)

Here the antigenic forcing is a time-dependent exponentially decaying function
a j(t) = a j,0e−λ (t−t j), which describes its introduction at random times tk. The matrix
Ki j specifies the cross-reactivity function, ξi(t) is a unit Gaussian white noise. The
model was used to understand the emergence of a power-law in lymphocyte clone
size distribution. To this end, model (2.3) was reformulated as a system of SDEs
for the dynamics of individual clones Ci(t) and the SDEs (Ornstein–Uhlenbeck
processes) for the fluctuations of the net growth rate of the ith clone fi(t) due to
stochastic dynamics of the clone-specific antigens as follows:

dCi

dt
(t) = ( f0 + fi(t))Ci(t)+Bξi(t), i = 1, . . . ,n (2.4)

and
d fi

dt
(t) =−λ fi(t)+

√
2γνi(t), i = 1, . . . ,n (2.5)

where γ represents the amplitude of variability in the antigenic forcing. The col-
lective population dynamics of the clones can be characterized in terms of the dis-
tribution function for the clone sizes ρ(x, f , t), where x = log(C). The respective
Fokker–Planck equation for the distribution ρ of a clone abundance x and the aver-
age antigen-induced growth rate (referred to as fitness) f is

∂ρ

∂ t
(x, f , t) =−( f0+ f )

∂ρ

∂x
(x, f , t)+λ

∂ρ

∂ f
(x, f , t)+γ

2 ∂ 2ρ

∂ f 2 (x, f , t)+s(x, f ). (2.6)

Here, the last term describes the export of new clone from the primary lymphoid
organs with fitness f normally distributed. Under certain simplifying assumptions,
the steady-state solution gives a power law clone size distribution ρ(C)∼C−α .

The above considered models and their modifications do not take into account
the antigen-regulated processes of functional exhaustion and activation-induced cell
death by apoptosis, which are considered to play a key role for the long-term persist-
ence of lymphocytes clones [42, 52], and hence, the dynamics of immune repertoire.
The parameterization of antigen-induced exhaustion of lymphocytes can be repres-
ented by a bell-shaped function increasing for small antigen loads and decreasing
for high loads (see an example in [4]).
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3. Generic model for immune system dynamics under antigenic forcing
3.1. Processes algebra

The construction of mathematical models of the human immune system, adequate in
terms of the description detail to the level of understanding of its structure and func-
tional components achieved at the present time, due to the intensive development
and application of methods of multiplex analysis, visualization, ‘omics’ and bioin-
formation technologies of research, as well as the evolution of adaptive immune
receptor repertoire, remains to be a great challenge [14, 31, 46]. At the same time,
it is necessary to develop a computational technology for constructing meaningful
mathematical models that allow one to quantitatively describe as a single hierarch-
ical system a set of multiscale, multilevel multiphysics processes taking into account
a large number of regulatory relationships that determine the functioning of the im-
mune system [12, 53].

One of the computational approaches to formulate complex models of the im-
mune systems can be developed following the process algebra framework. The al-
gebra of processes was originally viewed as an approach of how to compose com-
plex processes of simpler components [3], i.e., to bridge different scales. Nowadays,
many process algebra techniques have been developed to establish a theory of all
parallel and distributed systems in computer science [2].

The state of individual lymphocytes is regulated by a spectrum of signals com-
ing through the binding of respective receptors. Understanding of how the signals
add together is considered to be crucial for predicting the immune cell behaviour
response to antigen and cytokine perturbations. To this end, a framework for signal
integration within a cell called cellular calculus was proposed [19]. The framework
provided a computational modeling method to identify qualitative rules of lympho-
cyte fate decision ranging from cell expansion to loss [30, 32, 40]. The availability
of the rules of how individual immune cells behave and interact provide an oppor-
tunity to derive the cell populations level model directly from the individual level
description [41]. The authors used the processes algebra Weighted Synchronous
Calculus of Communicating Systems (WSCCS) to develop a predator-prey model
of immune response allowing to derive the functional form immune cell activation
for clonal expansion by pathogen. The same tool was used in a recent study on mod-
elling immune cell–tumour cell interactions [64]. However, the available works on
using process algebra tools for modelling in immunology since the pioneer study of
[45] still remain at the level of proof of concept and further research is needed.

The generic mathematical model linking the population dynamics of antigens
and immune cells to the level of system description needs to consider the following
set of processes:

• Homeostasis of lymphocyte clones resulting from generation in primary lymph-
oid organs (LO), migration to peripheral LOs and natural death;

• Antigen-induced clonal expansion taking into account cross-reactivity;

• Antigen-induced induction of anergy (functional exhaustion) and apoptosis;
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Table 1. Definition of model parameters.

Parameter meaning Notation

Spatial coordinate x ∈ΩX
Antigenic space coordinate a ∈ΩA
Lymphocyte receptor space coordinate r ∈ΩR
Pathogen density in time, physical- and antigenic space V (t,x,a)
Lymphocyte density in time, physical- and immune receptor sequence space C(t,x,r)
Influx of antigen-specific lymphocytes following V(D)J-genes rearrangement S(t,x,r)
Diffusion coefficient of virions in physical space DxV
Diffusion coefficient of virions in antigenic space (mutations) DaV
Diffusion coefficient of immune cells in physical space DxC
Diffusion coefficient of immune cells in antigenic receptor sequence space DrC
Chemotactic coefficient for immune cell migration χC
Exponential growth rate constant of virions bV (a)
Carrying capacity of the tissue for virisons KV
Natural degradation of virions dV
Immune-mediated elimination of virions dIC
Kernel representing the binding strength (affinity or avidity) I(a− r)
between antigen a and receptor r , e.g., e(−ρ(a−r)/ρ0)

q
[9]

Noise intensity in viral dynamics σV
Gaussian space-time white noise (a standard Wiener process) ξV (WV (t),t>0)
Immune cell division rate bC(r)
Carrying capacity of lymphoid tissues KC
Natural death rate of immune cells dC
Bell-shaped activation/exhaustion function of immune cells ϕ(V (t,x,a),C(t,x.r))
Activation-induced immune cell death process ψ(V (t,x,a))
Apoptosis death rate constant dAC
Kernel representing avidity-dependent induction of apoptosis A(a− r)
Noise intensity in immune cell dynamics σC
Gaussian space-time white noise (a standard Wiener process) ξC (WC(t),t>0)
Kernel characterizing chemokine gradient h(a)

• Spatial migration (diffusion, transport, and active motility via chemo- or
haptotaxis);

• Diffusion in antigen receptor space (e.g., B-cell receptor variation via somatic
hypermutation);

• Evolution in antigenic- and lymphocyte receptor spaces;

• Random fluctuations in antigenic load (e.g., white noise in time-space);

• Infection spreading and immune-mediated elimination.

The mathematical structure of such an immune system level model is presented
below. Note that it can be expanded, reduced, or tuned in various ways depending
on the specific immune-dependent phenomenon or feature under consideration.
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3.2. Governing equations

The specific notation of the variables and parameters is listed in Table 1. The gov-
erning equations are the following:

∂

∂ t
V (t,x,a) =∇ · (DxV ∇V (t,x,a))︸ ︷︷ ︸

spatial diffusion

+∇ · (DaV ∇V (t,x,a))︸ ︷︷ ︸
diffuion in antigenic space

+bV (a)V (t,x,a)(KV − J(V ))︸ ︷︷ ︸
infection growth

−dVV (t,x,a)︸ ︷︷ ︸
natural death

−dICV (t,x,a)
∫

ΩR

I(a− r)C(t,x,r)dr︸ ︷︷ ︸
immune−mediated elimination

+σV ξV (t,x,a)︸ ︷︷ ︸
random forcing

in ΩX ×ΩA×ΩR for t > 0; J(V )≡
∫

ΩX×ΩA

V (t,x,a)dxda

V (t,x,a) =V∂Ω(t,x,a) on ∂ΩX ×∂ΩA, for t > 0;
V (0,x,a) =V0(x,a) in ΩX ×ΩA

(3.1)

∂

∂ t
C(t,x,r) = S(t,x,r)︸ ︷︷ ︸

primary LO source

+∇ · (DxC∇C(t,x,r))︸ ︷︷ ︸
spatial diffusion

+ ∇ · (DrC∇C(t,x,r))︸ ︷︷ ︸
diffusion in receptor space

+bC(r)ϕ(V (t,x,a))C(t,x,r)(KC− J(C))︸ ︷︷ ︸
bell−shaped clonal growth

−dCC(t,x,r)︸ ︷︷ ︸
natural death

−dACC(t,x,r)
∫

ΩA

ψ(V (t,x,a))A(a− r)da︸ ︷︷ ︸
activation−induced apoptosis

+σCξC(t,x,r)︸ ︷︷ ︸
random forcing

−∇ ·
(

χCC(t,x,r)∇
∫

ΩA

h(a)V(t,x,a)da
)

︸ ︷︷ ︸
chemotaxis

in ΩX ×ΩA×ΩR for t > 0; J(C)≡
∫

ΩX×ΩR

C(t,x,r)dxdr

C(t,x,r) =C∂Ω(t,x,r) on ∂ΩX ×∂ΩR, for t > 0;
C(0,x,r) =C0(x,r) in ΩX ×ΩR.

(3.2)

Another type of boundary conditions can be prescribed (e.g., Robin or Neumann
type). The above stochastic PDEs are formulated to represent the physical (immuno-
biological) sense of the driving processes. The mathematical setting for the respect-
ive function spaces and probabilistic interpretations of the equations, as well as the
specific functional forms, which can be used to parameterize the processes, are out-
side the focus of this study. The following two partial examples of the generic model
shed some light on its direct relation to real-life models.



Mathematical modelling in immunology 9

3.3. Example 1: acute LCMV infection with spatial diffusion

As a first example of the implementation of the above general model, we formulate
a spatially extended model of LCMV infection based on the calibrated descrip-
tion developed for a 0D case in [5]. The model describes the population dynamics
of viruses and immune cells (CD8+ T lymphocytes) determined by the interaction
between virus replication, immune activation, anergy, and apoptosis in a spatial 1D
setting, x ∈ [0,L]. The system of reaction–diffusion type model reads:

∂V
∂ t

(t,x) = bVV (t,x)
(

1− V (t,x)
Vmvc

)
− γC(t,x)V (t,x)+DxV

∂ 2

∂x2V (t,x)

∂C
∂ t

(t,x) = S∗C +bC
V (t,x)C(t,x)

(1+
∫ t

0 σV (s,x)e−µm(t−s) ds)2

− dCC(t,x)−dACV (t− τA,x)V (t,x)C(t,x)+DxC
∂ 2

∂x2C(t,x)

∂V
∂x

(t,0) =
∂V
∂x

(t,L) = 0,
∂C
∂x

(t,0) =
∂C
∂x

(t,L) = 0

V (0,x) = V0(x), C(0,x) =C0.

(3.3)

The spatio-temporal dynamics of viral load and CTL abundance is shown in
Fig. 2. The infection starts at the center of the spatial domain and spreads as two
waves in opposite directions until the clonal expansion of CTLs reaches a threshold
required for an overall elimination of the virus population. The solution corresponds
to an acute infection. Note that a reduction in diffusion constants of viruses and
lymphocytes results in a chronic infection (data not shown).

3.4. Example 2: chronic HBV infection under random fluctuations in CTL im-
munity

To study the phenomenon of spontaneous recovery from the chronic hepatitis B
virus (HBV) infections, we have previously developed a SDE type model to examine
the random forcing effect on HBV kinetics [38]. Here we consider an extended
version of the model in which the random fluctuations both in the immune response
and viral load are considered. The model represents a simplified case of the above
general model for a single CTL clone with no spatial considerations and a bounded
rate activation function for lymphocytes.

dV (t) = bVV (t)(KV −V (t))dt−dICV (t)C(t)dt +σV dWV (t), t > 0 (3.4)

dC(t) = S∗C dt +bC
V (t)

θ +V (t)
C(t)dt−dCC(t)dt +σC dWC(t), t > 0. (3.5)

An ensemble of ten single runs of the model is presented in Fig. 3. The set of
parameters corresponds to acute HBV infection. One can see that after clearance
of infection, the HBV-specific clones continue to fluctuate around the homeostatic
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Figure 2. Numerical solution of the reaction–diffusion model of LCMV infection in 1D, x ∈ [0,L],
L = 10. The viral load V , CTL density C and cumulative viral load factor W are shown. The initial
conditions are V0(x)=V ∗ exp(−(1−(x−5)2)−1) for x∈ (4,6) and V0(x)= 0 otherwise,

∫ L
0 V0(x)dx=

100; C0 = 110. The parameters are DxV = 0.01; DxC = 0.024; bC = 2×10−5 and σ = 1.7×10−6 and
the other parameters are adapted from [5]. The model was numerically solved in a weak sense using
variational formulation with the second-order finite element spatial discretization on a uniform grid
and the Crank–Nicolson scheme in time using the DUNE-FEM Python package.

level due to random forcing generated by a combination of multi-physics impacts in-
cluding bystander stimulation, low-level antigen persistence, etc. The level of HBV-
specific CTL cells at the eclipse phase of infection results in a variability of duration
of acute infection.

For a set of parameters corresponding to chronic HBV infection, the random
forcing acting on viral and CTL populations can result in a spectrum of behaviours
including a spontaneous recovery as shown in Fig. 4. The HBV-specific CTL clone
can either completely disappear or persist at a low level similar to the post acute
HBV infection described above. The model can be extended by expanding the virus
population from a wild type to a quasi-species consideration as well as by detail-
ing the composition of the immune response and multi-clonal dynamics should the
empirical data for calibration be available.

4. Functional performance vs fitness
The functional performance of an immune system is related to its ability to effect-
ively control the antigenic homeostasis of the host organism. Various characteristics
are used to quantify it, including the completeness of antigen-specific lymphocyte
receptor repertoire [10, 13, 35], the responsiveness of immune cells [26, 66], the
diversity of immune cell types [18, 36], etc.
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Figure 3. Numerical solutions of the SDE model of acute hepatitis B virus infection dynamics with
parameters σV = 3×104, σC = 5, and the other parameters adapted from [38]. The initial conditions
are V (0) = 2× 106, C(0) = 7. The model was numerically solved using the stability-optimized ad-
aptive strong order 1.5 stochastic Runge–Kutta method implemented in DifferentialEquations.jl Julia
package.

The immune TCR/BCR repertoires of an individual are considered to consist
of two parts, the public ones (core groups of highly related receptor sequences
present in many individuals) and private repertoire (unique receptors observed in
a few individuals) [11]. The receptor repertoires are dynamically determined by a
combination of the following processes: V(D)J gene rearrangement (a random pro-
cess, which can generate from 1015 to 1061 clonotypes, i.e., unique V(D)J nucle-
otide sequences), selection in primary lymphoid organs, homeostatic proliferation,
and antigen-driven expansion [11, 43]. For dynamically changing AIRR, a quantit-
ative descriptive framework is considered to be the evolution of AIRR on fluctuat-
ing antigenic landscape. The evolution is inherently linked to the notions of fitness,
clonotype, and selection. At the molecular level, the fitness of a receptor can be de-
termined by TCR/BCR affinity. However, already at the single cell level, the fitness
for survival and clonal expansion is determined by multiple factors such as avidity,
co-receptors expression and co-stimulatory receptor signalling [11]. At the immune
system level, the link between its fitness (functional capacity) and TCR/BCR di-
versity is considered to be obscure as autoimmune disorders and infection-triggered
T-cell-mediated tissue damage can be caused by the presence of public and private
antigenic repertoires. Another quantitative way to represent the global performance
of the immune system, e.g., the immune repertoire structure, could be the Shan-
non entropy or other diversity indices. It allows one to characterize the diversity of
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Figure 4. Numerical solutions of the SDE model of chronic hepatitis B virus infection dynamics with
parameters σV = 3×104, σC = 5, and the other parameters adapted from [38]. The initial conditions
are V (0) = 2× 106, C(0) = 256. The model was numerically solved using the stability-optimized
adaptive strong order 1.5 stochastic Runge–Kutta method implemented in DifferentialEquations.jl
Julia package.

TCR/BCR receptors in sequence space and was implemented in [37, 47] under the
maximum entropy inference approach [20].

Mathematical models developed for the analysis of the dynamics of adaptive im-
mune repertoires [15, 16] define the clone fitness as an effective growth rate (quan-
tified as a difference between lymphocyte division and death rate constants). The
fluctuating antigenic environment is taken into account in the dynamics of clones
as described by equations (2.4)–(2.5). The effect of inter-clonal competition is de-
scribed via a parameter entering the cumulative antigenic stimuli function, which
in turn defines the antigen-specific intensity of clone stimulation. In addition, the
intra-clonal competition was considered in the form of carrying capacity. The mod-
els were used to understand the factors responsible for the heavy-tailed clone size
distributions, e.g., to show that antigenic fluctuations affecting the lymphocytes fit-
ness are responsible for the heavy tail clone size distributions [15]. Later on, the
need to take into account the impact of self-antigens was highlighted [16]. To this
end, a conceptual view of the role of subthreshold interactions in the immune system
developed by Grossman and Paul [24, 25, 26] can be applied.

Further development of the models for evolutionary dynamics of immune cell
repertoires was related to explicit modelling of the viral dynamics [9, 39]. The viral
strain is described in a d-dimensional antigenic space via a discrete random walk
model at+1 = at +σV νt+1, where νt is a normally distributed d-dimensional vari-
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able [9]. The change in the number of lymphocytes of clonotype nx,t follows a bi-
nomial distribution with an exponential-type cross-reactivity kernel (see Table 1)
and their receptors drawn randomly according to normally distributed process ξ (•):
x j = at +σξ j. By introducing a function that takes into account the cumulative cost
of protection against infection, the parameters for an optimal balance between long-
term immune coverage and metabolic requirements for affinity maturation were ex-
amined.

An implicit description of the viral evolution in population of infected hosts was
modelled in [39] using SDE-type of equation:

∂n
∂ t

(t,x) = f (t,x)n(t,x)+D
∂ 2

∂x2 n(t,x)+
√

n(t,x)ξ (t,x). (4.1)

Here, the virus strain effective growth rate is put identical to its fitness f (t,x), which
is in turn parameterized via the basic reproduction number and the coverage of strain
x by immune memories of the population (see [39] for further details). The model
was used to examine the shape and speed of the viral evolution wave in a finite-
dimensional antigenic space in relation to mounted immune response memories.

The stochastic evolutionary modelling for studying the lymphocyte clonal dy-
namics has been recently used to analyze the longitudinal repertoire sequencing
data from healthy individuals in the absence of strong antigenic perturbations [34].
The calibration of the inherent experimental noise was key to the overall inference
procedure. The research question was the estimation of parameters of T cell clono-
type persistence, characterizing a typical lifetime of individual clones and amplitude
of fluctuations of clonal sizes. Following a maximum likelihood approach, the au-
thors estimated the typical clonal decay rates (lifetimes ranging from a few years
up to 50 years) and fluctuation amplitude (up to several orders of magnitude) from
adult healthy donors’ data and showed that geometric Brownian motion consist-
ently describes the clonal dynamics and predicts a steady state, which agrees with
the observed power-law distribution of the clone sizes.

5. Network-type organization
The complex, high-dimensional nature of the immune system with many organs,
cell populations and humoral factors requires a fine-tuned communication and co-
ordination of their activity. A system-wide view of the immune processes requires
the application of network analyses to describe and assess its performance. Indeed,
the network-type mathematical methods provide powerful analytical tools for char-
acterizing interactions among cells, molecules, and genes. However, the respective
studies are still rare. One of the first application of system-wide network-type ana-
lysis of the communication structures and connections between immune cells was
presented in [51]. The authors identified network structures, which integrate the
cellular- and molecular (receptor and ligand gene) levels of communications using
the sender-receiver view for cell-type and context-dependent communication struc-
tures.
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Network analysis of the immune state of mice was developed in [17]. The au-
thors used previously published data set of the immune state of hundreds of wild and
laboratory mice characterizing serum proteins, cytokines, and cellular populations
and sub-populations, totalling 120 immune measures. By constructing correlation
networks from the data, the community structure of the immune networks was ana-
lyzed, resulting in a number of revealed immunological functional units.

A mechanistic wiring diagram for the human immune system was construc-
ted in [57]. Using a high-throughput surface receptor screening tools, the authors
systematically mapped the direct immune cell surface protein interactions and pro-
duced a network-type description of receptor wiring that connects the cells in the
human immune system [57]. A comprehensive set of cell-surface proteins (more
than 600 different protein or protein complexes) was analyzed. The study provides
fundamental details on how the linking of cells through physical and biochemical
interactions organizes the immune system into dynamically interconnected cellu-
lar communities. Using the Law of Mass Action, the authors developed a proof-of
concept mathematical model of the contacts made between human immune cells
that combines the cell proteins interaction network with a data set of absolute pro-
teomics quantification of the cell-surface proteins expressed on different immune
cell types, thus exhaustively modeling all the binding events between cell popula-
tions. Importantly, an interactive atlas of immune cell connections across the human
body was developed [57].

The network analysis is considered to be a powerful approach to examine the
similarity of architecture of T-cell and B-cell repertoires. Whereas immune reper-
toire diversity characterizes the frequency distribution of immune clones, the se-
quence similarity provides an insight into frequency-independent clonal immune
receptors’ similarity that directly influences the antigen recognition breadth [43].
The network-type analysis was used to identify the architecture of the antibody se-
quence space [23]. For construction of networks, a sparse triangle matrix of pairwise
Levenshtein distances (LD) between complementarity determining region 3 (CD3)
nodes was used. The networks represent antibody repertoires of similar CDR3 nodes
connected by edges when amino acid CDR3 sequences differ by a predetermined
LD. The subset of repertoire clones connected at a given LD was considered as a
similarity layer (see Fig. 1D, right). Various topological characteristics of networks
were quantified including the degree distribution, diameter, density, clustering, as-
sortativity. It was discovered that the architecture of antibody repertoire networks is
robust with respect to removal of 50–90% of private clones but fragile to removal
of public clones.

6. Conclusions

The immune system is a complex distributed parameter system consisting of cells,
which circulate through the body, communicate and turnover in response to an-
tigenic perturbations [57]. It has been stated in [17] that despite the complexity
of the immune system, it is often analyzed following a low-dimensional approach
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with a restricted set of immunological parameters. In this study, we tried to identify
new approaches to modelling the functioning of the immune system of humans and
experimental animals and methods for analyzing its ‘complexity’. New classes of
mathematical and computer models are presented, which are used to describe the
network- and repertoire structures, hierarchical regulation, and evolutionary dynam-
ics of immune responses under normal conditions and in infectious diseases.

These approaches capture various aspects of the immune system complexity.
However, a methodology for their computational integration into a holistic frame-
work is missing. Distinctive features of the emerging mathematical description
of the immune system can be delineated as follows: (a) integrative multi-physics
consideration of immune reactions (including physical, molecular-biological and
cellular-population processes), (b) consideration of a wide range of reactions of in-
nate and adaptive immunity to changes in antigenic homeostasis, taking into account
the heterogeneity of cellular ensembles and variability of the immune repertoire re-
flecting past and current antigenic forcing using methods of evolutionary dynamics
and the notions of fitness and adaptive fitness landscape, (c) identification of the
topological structure of cellular and molecular regulation networks in healthy in-
dividuals and infectious diseases, (d) use of distributed parameters systems in the
space of genotypic, phenotypic and physical traits, (e) development of parametric
computational models of immune and lymphatic systems, and (e) identification of
the regulation laws of immune processes as elements of a hierarchical distributed
decentralized system of automatic control. To be properly implemented, a special
attention needs to be given to topics ranging from conceptual issues of modelling the
evolution of mutating populations characterized by fitness diversity [6, 54] to com-
putational methods for hybrid stochastic-deterministic models [50], and the novel
tools for dimensionality reduction, e.g., tensor train-based decomposition [65], of
the immune systems state space (antigenic-, lymphocyte receptor space). Overall,
mathematical models are expected to provide analytical tools for assimilation and
analyses of big-data on structure and function of the immune system character-
ized by various diversities. They should take an instructive role in driving the field
towards a predictive understanding of an individual’s immune system response to
various perturbations ranging from environmental factors to vaccination and com-
bination immune therapies [28, 49].
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References
1. R. Antia, S. S. Pilyugin, and R. Ahmed, Models of immune memory: on the role of cross-

reactive stimulation, competition, and homeostasis in maintaining immune memory. Proc. Natl.
Acad. Sci. USA 95 (1999), 14926–14931.

2. J. C. M. Baeten, A brief history of process algebra, Theoretical Computer Science 335 (2005),
131–146.

3. H. Bekic, Towards a Mathematical Theory of Processes. Springer, Berlin–Heidelberg, 1984.



16 G. A. Bocharov, D. S. Grebennikov, and R. S. Savinkov

4. G. Bocharov, A. Meyerhans, N. Bessonov, S. Trofimchuk, and V. Volpert, Modelling the dynam-
ics of virus infection and immune response in space and time. Int. J. Parallel Emergent Distrib.
Syst. 34 (2019), 341–355.

5. G. A. Bocharov, Modelling the dynamics of LCMV infection in mice: conventional and exhaust-
ive CTL responses. J. Theor. Biol. 192 (1998), 283–308.

6. A. S. Bratus, Y. S. Semenov, and A. S. Novozhilov, Adaptive fitness landscape for replicator
systems: to maximize or not to maximize. Math. Model. Nat. Phenom. 13 (2018), 25.

7. E. F. Cardozo-Ojeda and A. S. Perelson, Modeling HIV-1 within-host dynamics after passive
infusion of the broadly neutralizing antibody VRC01. Frontiers in Immunology 12 (2021).

8. Y. M. Chang, A. Wieland, Z. R. Li, S. J. Im, D. J. McGuire, H. T. Kissick, R. Antia, and R.
Ahmed, T Cell receptor diversity and lineage relationship between virus-specific CD8 T Cell
subsets during chronic lymphocytic choriomeningitis virus infection. J. Virology 94 (2020),
10.1128/jvi.00935–20.

9. V. Chards, M. Vergassola, A. M. Walczak, and T. Mora, Affinity maturation for an optimal
balance between long-term immune coverage and short-term resource constraints. Proc. Natl.
Acad. Sci. 119 (2022), No. 8, e2113512119.

10. M. Cohn and R. E. Langman, The protection: the unit of humoral immunity selected by evolu-
tion. Immunological Reviews 115 (1990).

11. P. Dash and P. G. Thomas, The Public Face and Private Lives of T Cell Receptor Repertoires.
Springer Int. Publishing, Cham, 2021, pp. 171–202.

12. M. P. Davenport, N. L. Smith, and B. D. Rudd, Building a T cell compartment: how immune cell
development shapes function. Nat. Rev. Immunol. 20 (2020), No. 8, 499–506.

13. R. J. De Boer and A. S. Perelson, How diverse should the immune system be? Proc. Royal Soc.
Lond. Ser. B: Biol. Sci. 252 (1993), No. 1335, 171–175.

14. M. W. Deem and P. Hejazi, Theoretical aspects of immunity. Annual Review of Chemical and
Biomolecular Engineering 1 (2010), 247–276.

15. J. Desponds, T. Mora, and A. M. Walczak, Fluctuating fitness shapes the clone-size distribution
of immune repertoires. Proc. Natl. Acad. Sci. USA 113 (2016), 274–279.

16. J. Desponds, A. Mayer, T. Mora, and A. M. Walczak, Population Dynamics of Immune Reper-
toires. Springer Int. Publishing, Cham, 2021, pp. 203–221.

17. E. F. dos Reis, M. Viney, and N. Masuda, Network analysis of the immune state of mice. Sci.
Rep. 11 (2021), 4306.

18. G. Faraci, H. Y. Lee, S. Y. Park, and S. Ter-Saakyan, Immune cell identifier and classifier (Im-
munIC) for single cell transcriptomic readouts. Sci. Reports 13 (2023), 12093.

19. A. V. Gett and P. D. Hodgkin, A cellular calculus for signal integration by T cells. Nat. Immunol.
1 (2000), 239–244.

20. A. Golan and J. Harte, Information theory: a foundation for complexity science. Proc. Natl.
Acad. Sci. 119 (2022), e2119089119.

21. A. Gonalves, J. Bertrand, R. Ke, E. Comets, X. de Lamballerie, D. Malvy, A. Pizzorno, O. Ter-
rier, M. R. Calatrava, F. Mentr, P. Smith, A. S. Perelson, and J. Guedj, Timing of antiviral treat-
ment initiation is critical to reduce SARS-CoV-2 viral load. CPT: Pharmacometrics & Systems
Pharmacology 9 (2020), 509–514.

22. A. Goyal, L. E. Liao, and A. S. Perelson, Within-host mathematical models of hepatitis B virus
infection: past, present, and future. Current Opinion in Systems Biology 18 (2019), 27–35.

23. V. Greiff, S. T. Reddy, E. Miho, and R. Rokar, Large-scale network analysis reveals the sequence
space architecture of antibody repertoires. Nat. Commun. 10 (2019), 1321.



Mathematical modelling in immunology 17

24. Z. Grossman and W. E. Paul, Self-tolerance: context dependent tuning of T cell antigen recogni-
tion. Seminars in Immunology 12 (2000), 197–203.

25. Z. Grossman and W. E. Paul, Autoreactivity, dynamic tuning and selectivity. Current Opinion in
Immunology 13 (2001), 687–698.

26. Z. Grossman and W. E. Paul, Dynamic tuning of lymphocytes: physiological basis, mechanisms,
and function. Annual Review of Immunology 33 (2015), 677–713.

27. Z. Grossman, Immunological paradigms, mechanisms, and models: conceptual understanding is
a prerequisite to effective modeling. Front. Immunol. 10 (2019), 1–18.

28. Z. Grossman, A. Meyerhans, and G. Bocharov, An integrative systems biology view of host-
pathogen interactions: the regulation of immunity and homeostasis is concomitant, flexible, and
smart. Front. Immunol. 13 (2023).

29. A. Handel, N. L. La Gruta, and P. G. Thomas, Simulation modelling for immunologists. Nat.
Rev. Immunol. 20 (2020), 186195.

30. R. J. Hennessy, K. Pham, R. Delconte, J. Rautela, P. D. Hodgkin, and N. D. Huntington, Quan-
tifying NK cell growth and survival changes in response to cytokines and regulatory checkpoint
blockade helps identify optimal culture and expansion conditions. J. Leukocyte Biol. 105 (2019),
1341–1354.
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