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Computational analysis of the impact of aortic bifurcation
geometry to AAA haemodynamics
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Abstract — Abdominal aortic aneurysm is a widespread disease of cardiovascular system. Predicting
a moment of its rupture is an important task for modern vascular surgery. At the same time, little
attention is paid to the comorbidities, which are often the causes of severe postoperative complications
or even death. This work is devoted to a numerical study of the haemodynamics of the model geometry
for possible localizations of abdominal aortic aneurysm: on the aortic trunk or on its bifurcation. Both
rigid and FSI numerical simulations are considered and compared with the model aortic configuration
without aneurysm. It is shown that in the case of localization of the aneurysm on the bifurcation, the
pressure in aorta increases upstream. Moreover, only in the case of a special geometry, when the radii
of the iliac arteries are equal (r1 = r2), and the angle between them is 60 degrees, there is a linear
relationship between the pressure in the aorta above the aneurysm and the size of the aneurysm itself:
the slope of the straight line is in the interval a∈ (0.003;0.857), and the coefficient of determination is
R2 > 0.75. The area bounded by the curve of the ‘pressure–velocity’ diagram for the values of velocity
and pressure upstream in the presence of an aneurysm decreases compared to a healthy case (a vessel
without an aneurysm). The simulation results in the rigid and FSI formulations agree qualitatively
with each other. The obtained results provide a better understanding of the relationship between the
geometrical parameters of the aneurysm and the changing of haemodynamics in the aortic bifurcation
and its effect on the cardiovascular system upstream of the aneurysm.
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The aorta is the largest blood vessel in the body and has a complex geometry: the
ascending segment that exits from the heart, then the arch, following by the des-
cending segment, consisting of thoracic and abdominal compartments, a long trunk
with small but vital branches, and a branching (bifurcation) of the aorta into the
iliac arteries in the abdominal compartment (see Fig. 1a). Almost every segment
of the aorta is studied and operated on by separate medical stuff. In biomechanics,
all these sections of the aorta are studied, but most of the work is devoted to its
thoracic and abdominal segments. The thoracic aorta with an aneurysm is a long
tube with a bulge, the parameters of which can be varied and various hydrodynamic

∗Novosibirsk State University, Novosibirsk 630090, Russia
†Meshalkin National Medical Research Center, Novosibirsk 630055, Russia

E-mails: d.tikhvinskii@g.nsu.ru, l.merzhoeva@g.nsu.ru, parshin@hydro.nsc.ru
This work was supported by a grant from Russian Science Foundation, project No. 21-15-00091.



2 D. V. Tikhvinskii et al.

 

  
 

 

a)       0 b)           0 c)        0 d)      0 
    

 

Figure 1. Schematic representation of (a) healthy aorta, (b) aorta with an abdominal aneurysm on the
trunk, (c) aorta with an abdominal aneurysm on the bifurcation, (d) aneurysm of the abdominal aortic
trunk after resection in section. Thrombotic masses are visible, which are almost completely blocking
the lumen of the vessel. The blood flow was carried out through the exfoliated wall of the aorta.

quantities (pressure wave propagation velocity, phase shift in pulsating flows, etc.)
can be considered (see, e.g., [3, 5]). In its abdominal segment, the aorta is directly
adjacent to the spine, which is rigid and limits the pulsations of the aortic walls,
which affects the blood flow in it. An aneurysm of the abdominal aorta (see Figs. 1b
and 1c) can be located both directly on the aortic bifurcation when it branches to
the iliac arteries, and at a distance of 5–10 cm above the bifurcation. This vascular
pathology is quite common [60] and dangerous, since aneurysm rupture often leads
to death even in a hospital setting. In addition, this pathology introduces significant
deviations in the blood supply to the proximal (upstream) sections of the aorta and
the organs that feed from its branches: the kidneys, intestines, and others. The blood
flow in the aneurysm generates eddies that lead to the formation of blood clots in
it. Separation of blood clots from the walls can lead to embolism (occlusion) of the
vessels of the lower extremities. Partial embolism (partial occlusion of the vessel
lumen by blood clots) is one of the markers in the diagnosis of abdominal aortic
aneurysm (see Fig. 1d).

In the presence of an aneurysm on the affected walls of the aorta and iliac arter-
ies, degenerative processes associated with remodelling of healthy tissue develop, its
remodelling (increase in collagen content and loss of smooth muscle cells, restruc-
turing of the ensemble of collagen and elastin fibers) [35]. A characteristic process
is the formation of inclusions of calcifications of various scales [10], which entails
an even greater change in both the strength properties of the vessel walls and the
haemodynamics of the aorta. The task of studying an aneurysm of the abdominal
aorta is complex, including both the hydrodynamic component and the problem of
strength mechanics, as well as physiological aspects associated with the processes
of thrombus formation and abnormalities of vascular tissues [45]. An important
stage in the study of the complex system ‘bifurcation-aneurysm’ is mathematical
and computer modelling, which allows to estimate the hydrodynamic quantities for
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various values of the system parameters. There is a large number of works devoted
to this topic in various formulations [47, 51], as well as fundamental works on the
principles of applying multiscale modelling for such pathologies [14]. Many studies
are devoted to the use of personalized 3D modelling to find triggers for the risk of
aneurysm rupture [15] and to develop a methodology for determining the location
of the rupture [4]. However, due to the high variability of clinical data, when using
personalized configurations, it can be difficult to separate the influence of specific
geometric features of the vascular bed from the general effects arising due to more
general geometric characteristics (aneurysm size, location relative to the bifurca-
tion, iliac artery opening angle, etc.). We noted a similar trend while working with
cerebral aneurysms [57], so we consider it useful to evaluate the effect of such para-
meters on the haemodynamics of aortic bifurcation with an aneurysm in idealized
(model) configurations.

The work numerically simulates the influence and interaction of aortic bifurc-
ation and its aneurysm on the hydrodynamics of blood flow in this system, and
investigates the role that this interaction plays in the cardiovascular system of the
upper aorta. The clinical value of the work is that its results can be used to develop
new and modify existing criteria for assessing the risk of rupture. The point is that
an aneurysm, even in a state that is not prone to rupture, can have an extremely
negative effect on the haemodynamics of the aorta upstream to the heart, which can
lead to severe and sometimes even critical complications during treatment.

1. Research methods
1.1. Construction of geometry

The first stage of work is digitalization, restoration of the 3D geometry of the ab-
dominal aorta and iliac arteries. For this, computer tomography (CT) images in the
DICOM format (angiography mode) of healthy patients without pathology and pa-
tients with an anomaly such as aortic aneurysm were used.

Based on the geometry of the vessels of the reconstructed models, basic config-
urations were constructed that simulate the bifurcation of the abdominal aorta in a
healthy state—without aneurysm and with an aneurysm. The diameter of the aorta
(parent vessel) was assumed to be 2 cm, which agrees with known physiological
data [49]. Let us call the vessels emerging from the bifurcation ‘the child vessels’.

The aneurysm is modelled by a sphere located either at some distance from the
bifurcation or directly at its node. The aneurysm radius varies in the range from
2.5 to 5 cm, which is also consistent with clinical studies of the detection limits
and the maximum size of observation of this pathology [58]. Such a configuration,
as mentioned above, makes it possible to exclude the features of the geometry of
specific patients in the study of general hydrodynamic effects.

The first of those considered was the configuration in which the aneurysm is
located at a distance of 5 cm above the bifurcation.

Several options for the ratio of the radii of the child vessels in the bifurcation
were considered: two equal vessels; the radius of one of the vessels is 50% larger
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Figure 2. A series of real geometries of the aorta with and without aneurysm based on data of patients
of Meshalkin National Medical Research Center of Ministry of Healthcare of The Russian Federation.
The reconstruction was performed using the commercial software package Radiant DICOM Viewer
(Poland). A total of 30 configurations restored.

𝑟2 = r1 r2 = 0.5r1 r2 = 0.75r1 
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Figure 3. Idealized model configurations for the cases of a healthy aorta (top) and an aneurysm on
the aortic trunk (bottom).

Figure 4. Idealized model configurations for the case of bifurcation aneurysm of the abdominal aorta:
r2 = r1 on the left, r2 = 0.75r1 in the center, r2 = 0.5r1 on the right. Bifurcation opening angle 60,
90, and 120 degrees (from left to right).
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Figure 5. Top row: scaled on the interval [0,1] velocity profile of a real patient (left), pressure profile
of a real patient (right). Bottom row: scheme of the boundary condition of the Inlet type (left), scheme
of the boundary condition of the Opening type [1] (right).

r2 = r1 r2 = 0.75r1 r2 = 0.5r1

r0 1 1 1
r1 0.8 0.96 0.89
r2 0.8 0.48 0.67

ϑ1 37 13 25.5
ϑ2 37 64.6 50

Table 1. Estimated deviation angles based
on Murray’s law and equation (1.1).

than the other (significant difference in diameter); the difference in the diameters
of the child vessels is 25% (not a significant difference in diameter). To calculate
the angle between the child vessels, Murray’s law was used, based on a simplified
condition for minimizing the total work of the flow when passing through a bifurc-
ation [41, 42]. According to this law, the radii of the parent vessel and the child
branches of the bifurcation follow a power law: rγ

1 = rγ

2 + rγ

3, where γ is a branching
index, also called bifurcation parameter. Usually γ ≈ 3 is accepted (see [53, 61, 63]).
Based on considerations of minimizing the energy loss of the flow at the bifurcation,
a formula is derived for the angle ϑi between the child and parent vessels [52]:

cosϑi =
r0

4 + ri
4− (r0

3− ri
3)4/3

2r02ri
2 , i = 1,2. (1.1)

By default, we further calculate r1 > r2. The calculated values of the cross sec-
tions of the vessels according to the assumptions made and formula (1.1) are given
in Table 3.
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The second model configuration of those considered was the configuration with
an aneurysm located directly on the aortic bifurcation (see Fig. 4).

Thus, we studied haemodynamics for two types of geometric configurations:
with localization of the aneurysm on the aorta trunk (three configurations without
aneurysm and three configurations with aneurysms) and on bifurcation (nine con-
figurations without aneurysm and nine configurations with aneurysms). In each of
these types, individual configurations differ in the ratio of the radii of the aorta and
iliac arteries and the angles between them.

1.2. Mathematical model and boundary conditions

In a healthy and calm state, the blood flow velocity in the human abdominal aorta
during the cardiac cycle varies from 0.2 to 1.8 m/s. Therefore, in the numerical sim-
ulation of the flow through the aortic bifurcation model in the steady case, a uniform
blood velocity profile of 0.5 m/s was specified at the inlet to the aortic model. This
condition for 1 s provides a volume of uniform blood flow comparable to the regime
of pulsating blood pumping. At the outlet, both in steady and unsteady cases, a zero
pressure value was set (the Opening condition). In the unsteady case, the input was
a patient-specific velocity profile in the aorta, measured at the diagnostic stage using
an ultrasound measurement unit (B-mode). The initial velocity and pressure profiles,
as well as the marked time points for which the solution was analyzed, are shown in
Fig. 5. The pathway for using patient-specific profiles in unsteady calculation was
as follows: a patient-specific velocity profile was set at the inlet and, based on the
results of the calculation, a pressure graph was plotted in the selected section. This
graph was compared with the data obtained during intraoperative measurement, and
the scaling factor for the velocity graph was calculated in this way to minimize the
difference between clinical pressure and calculated pressure using the least squares
method (LSM). Blood pressure in the aorta was measured as follows: using the
Seldiner method under X-ray control, a puncture of the common femoral artery was
performed, a 6 Fr Avanti introducer (Cordis, Ireland) was inserted retrogradely; A 6
Fr Ranway jr4 guiding catheter (Boston scientific, USA) was inserted into the area
of the ascending aorta using a Radiofocus Guide Ware 0.35 (Terumo, Japan). The
measurement was carried out on an Intellie Veu device (Phillips, Germany).

The Navier–Stokes equations for the flow of a viscous incompressible fluid have
the following form [59]:

N

∑
j=1

∂u j

∂x j
= 0

∂ui

∂ t
+

N

∑
j=1

∂uiu j

∂x j
+

∂ p̂
∂xi

=
N

∑
j=1

∂

∂x j
µ

(
∂ui

∂x j
+

∂u j

∂xi

)
.

(1.2)

System (1.2) can be rewritten as

Rt ∂U
∂ t

+
∂F1

∂x1
+

∂F2

∂x2
+

∂F3

∂x3
= 0 (1.3)
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where Rt = diag
(
0,1,1,1

)
,

U =

 p
u1
u2
u3

 , F1 =

 u1
u1

2 + p̂− τ11
u1u2− τ12
u1u3− τ13

 , F2 =

 u2
u1u2− τ12

u2
2 + p̂− τ22

u1u3− τ23



F3 =

 u3
u1u3− τ13
u2u3− τ23

u3
2 + p̂− τ33

 , τi j = µ

(
∂ui

∂x j
+

∂u j

∂xi

) (1.4)

and p̂ = p/ρ , ρ = const = 997 kg/m3 is the liquid density, p is pressure, F denotes
the external forces acting on the system, u = (u1,u2,u3) are the velocity vector
components, µ = 0.004 Pa is the dynamic viscosity of blood [2]. The aorta is the
largest vessel of the body and, without loss of generality, the rheology of the blood
flowing through it can be considered Newtonian [2].

In the case of an unsteady flow of an incompressible fluid, derivatives with re-
spect to fictitious time t ′ are added to system (1.3):

∂U
∂ t ′

+Rt ∂U
∂ t

+
∂F1

∂x1
+

∂F2

∂x2
+

∂F3

∂x3
= 0 (1.5)

where Rt = diag
(
0,1,1,1

)
.

The standard [30, 31, 57] scheme implemented in the ANSYS CFX 2020R2 [1]
package was used for the solution, the number of nodes varied in the range from
22000 to 44000 with a mesh element size of 1 mm and an unstructured tetrahedral
mesh , which is the gold standard for calculating the hydrodynamics of flow regions
with circulation [1]. The variation of the grid cell sizes showed good convergence
of the method in all cases, except for the case of an aneurysm with a radius of 5
cm, when, as we believe, there are geometric features of the grid generation that
affect the solution. To correctly implement the no-slip conditions in the numerical
formulation, we used a prismatic layer of cells along the walls of the vessel, 5 cells
thick with a cell thickness step equal to 2 when approaching the wall. Such a formu-
lation is recommended for describing the flow of a viscous incompressible fluid [1].
We carried out several calculations with a variation of these parameters (the num-
ber of layers of the prismatic layer and the ratio of their thickness), which showed
the possibility of changing the main haemodynamic quantities (velocities, pressure,
shear stresses) in the flow region up to≈ 20%. The formulation of the problem with
rigid walls has the right to be considered in view of the physiological aspects of
the abdominal aneurysm. The fact is that the structure of the aortic aneurysm wall
and its bifurcation contains a large amount of fibrous tissue making the structure
much more rigid in vivo, which was confirmed in situ [35], compared to a healthy
vessel. This corresponds to the general concept of the need to take into account the
fluid-structure interaction (FSI) effects depending on the problem statement [36].
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In contrast to the calculation with rigid walls, in the FSI calculation it is neces-
sary to specify the elasticity parameters of this wall (see Table 2). These values were
obtained in experiments with aorta and aneurysm samples from real patients [35].

The interaction between the vessel wall and the liquid volume for the entire
configuration in the FSI approach is described by the equations

v = u̇, σ ·nw + τ ·n f = 0 (1.6)

where v is the blood flow velocity, u̇ is the wall motion velocity, σ is the wall stress
tensor, τ is the tensor of shear stresses on the wall, nw and n f are the normals of the
wall and fluid, respectively. These equations determine the kinematic and dynamic
conditions at the wall–fluid interface, respectively.

The mechanics of the wall as a result of the action of the blood flow on it is
modelled using the finite element method.

An adaptive prismatic mesh is used to model the vessel wall. The number of
nodes varies from 6300 to 7500 depending on the presence and size of the aneurysm.

At the entrance of the aorta in FSI steady calculation, a blood flow is supplied
at a speed of 0.5 m/s. At the exits from the iliac arteries, the Opening condition
is set for the correct modelling of possible eddies near the exits. The principle of
operation of conditions at the input (Inlet) and outputs (Outlet) is shown in Fig.5.

2. Results
2.1. Steady calculation. Viscous dissipation

Performing a steady calculation is useful for investigating the underlying patterns
of the flow. It was carried out with the following boundary conditions: a fixed ve-
locity value was set at the inlet, and zero pressure was set at the outlet of the child
vessels. The speed varied from 0.3 m/s to 2.0 m/s, which corresponds to physiolo-
gical parameters. Despite the fact that the process of blood flow in the abdominal
aorta is unsteady, the processes that occur in the wall of this vessel, as well as in
its cavity, have a scale of several months - years, and therefore, on the scale of the
cardiac cycle, one should not expect those patterns that are not showed themselves
in a steady calculation. In addition, in the paper [16] it is shown that to assess the
integral flow characteristics in the haemodynamics of large vessels, there is no need
to consider an unsteady flow.

In papers [30, 43] the importance of such quantity as viscous dissipation has
already been shown. For rigid structures, this value is the only marker for assess-
ing energy losses. In this regard, the study of this quantity seems to be extremely
important for the problem under consideration.

The dissipative function (scattering function, viscous energy dissipation func-
tion) is introduced to take into account the transition of the energy of ordered mo-
tion into the energy of disordered motion [40]. The power that develops in this case
per unit of time is calculated by the formula:

D = 4µ

∫
Ω

|~ω|2 dV (2.1)
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Figure 6. Streamlines in idealized model configurations: a case of an aneurysm on the bifurcation
(on the left), an aneurysm on the aortic trunk (on the right).

where ~ω is the velocity vortex vector, µ is the fluid viscosity, Ω is the flow region,
V is the volume of region Ω. This value significantly depends on the volume of the
integration domain, while the size of the vortex in the aneurysmal sac is directly
related to its volume (see Fig. 6). Therefore, along with the absolute values of the
vortex |~ω|, it is natural to consider its specific:

Dunit =
D
V

(2.2)

value (in relation to the calculated volume).

2.2. Unsteady calculation. Pressure surge

During the cardiac cycle, aortic pressure changes significantly (see Fig. 5). There-
fore, it seems natural to evaluate the change in pressure in the system during the
occurrence and growth of an aneurysm in an unsteady calculation. To study the in-
fluence of the aneurysm size on the pressure value in the vessel, we introduce the
value Pvar rel, which is defined by the formula:

Pvar rel =
Pa−Pn

Pn
(2.3)

where Pa is the pressure in configuration with an aneurysm, Pn is the pressure in
configuration without an aneurysm.

This value was calculated for 9 configurations and 16 intermediate bifurcation
aneurysm radii. At the entrance to the aorta, a blood flow was supplied with velocity
values v(ti) corresponding to the time points t1, t2, t3, and t4 in Fig. 5.

In the case of equality of the radii of the child vessels (r1 = r2), it was numer-
ically obtained that the increase in the radius of the aneurysm is statistically asso-
ciated with an increase in pressure in the vessels (p < 0.05) and can be described
using a linear regression model. This effect is shown in Fig. 9. The values of slope,
shift, and coefficient of determination are given in Table 4. In other cases, it was
not possible to identify a statistically justified linear increase or decrease in pressure
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Figure 7. Dependence of the specific dissipation power Dunit on the size of the aneurysm in the case
of localization of the aneurysm on the aortic trunk at different values of velocity in the aorta: (a) 0.5
m/s; (b) 1.0 m/s; (c) 1.5 m/s; (d) 2.0 m/s.

with increasing aneurysm radius, since the linear regression model did not provide
a satisfactory description of the data (R2 < 0.3).

As a result of comparing the values of Pvar rel calculated in the models of rigid
and elastic vessels, it was found that when passing from the calculation with rigid
walls to the FSI calculation, with a difference in absolute and relative values, the
trend persists at all considered time points and for all angles of the solution of the
iliac arteries. The results obtained are shown in Fig. 11. More detailed results are
shown in Fig. 19.

2.3. PV diagrams

Pressure–velocity diagrams (PV diagrams, pressure–velocity loops) are a powerful
tool for qualitative analysis in haemodynamics [25, 26, 34]. They make it possible
to evaluate the integral characteristics of the entire haemodynamic circuit. In this
case, it was of interest to evaluate the integral characteristics of the haemodynamic
system ‘blood flow–rigid wall’ with and without an aneurysm in different parts of
this circuit: distal (downstream) and proximal (upstream) of the aneurysm.

To calculate the integral characteristic of such a circuit, the area occupied by
the PV diagram was calculated. The numerical implementation of this process con-
tained the quadrature formula of trapezoids. Then the ratio of the area of the limited
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Figure 8. Dependence of the specific dissipation power Dunit on the size of the aneurysm in the case
of aneurysm localization on the aortic bifurcation at a fixed inlet flow velocity. The opening angle of
the iliac arteries: 60◦ (top left), 90◦ (top right), and 120◦ (bottom).

Figure 9. Dependence of Pvar rel on aneurysm size for different time points during the cardiac cycle.
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Figure 10. Diagrams of Pvar rel values for all considered aneurysm radii.

Figure 11. On the left — comparison of the value of Pvar rel in FSI and rigid calculations at an opening
angle of 60◦, on the right — distribution of deformations of the aneurysm wall obtained in the FSI
formulation.

  

2 

1 1 

2 

Figure 12. Control sections for model configurations: on the left — an aneurysm on the aortic trunk,
on the right — a bifurcation aortic aneurysm.

diagram in the presence of an aneurysm to the same area in the configuration without
an aneurysm was found. Let us denote by

CW = SPVaneurysm/SPVhealthy (2.4)

a value that characterizes the ratio of the area in the presence of an aneurysm to
the area without it at the same values of the radii and angles of the configuration.
Value (2.4) was calculated in the sections shown in Fig. 12. The data obtained for
the bifurcation aneurysm are shown in Fig. 13.

As a result of the calculations, it was found that with an increase in the radius
of the aneurysm, the area of the area bounded by PV diagrams proximal to the
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Figure 13. Examples of PV diagrams in the considered configurations.

Figure 14. Dependence of the value of CW on the radius of the aneurysm. Plane 1 (top left), plane 2
(top right), and plane 3 (bottom).

aneurysm decreases, and in the iliac arteries (distal to the aneurysm) does not change
in all considered configurations. For configurations in which the aneurysm is located
on the aortic trunk, PV diagrams and the distribution of CW are shown in Figs. 15
and 16, respectively.

Analysis of the values of CW in the presence of an aneurysm on the aortic trunk
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Figure 15. On the left: PV diagrams for a configuration with an aneurysm on the aortic trunk. Con-
figurations with aneurysm are marked in red, without aneurysm in green. On the right: the statistics of
the distribution of the CW value for various considered values of the iliac artery radii and the radius
of the aneurysm. The first and the second lines are, respectively, the sections above and below the
aneurysm along the flow.

Table 2. Wall material parameters.

Thickness Density Young’s modulus Poisson’s ratio

2 mm 1100 kg/m3 80000 Pa 0.45

shows that proximal to the aneurysm, with its growth, the area of the region bounded
by the diagram decreases, and distally it does not change significantly. In addition,
one can notice a qualitative difference between the diagrams for the configuration
with a bifurcation aneurysm and an aneurysm on the trunk. In the first case, a phase
shift is present in the PV diagram (bumps in the lower part of the graph), which
corresponds to the ‘plateau’ section on the patient-specific velocity profile graph
(the flattest section between points T3 and T4 (see Fig.5).

A study of the evolution of the slope of the PV diagram for the configuration
with an aneurysm on the trunk shows that with its growth distal to the aneurysm,
no changes in the slope with the growth of the aneurysm are observed. Proximal
to the aneurysm, the ratio of the tangents of the inclination angles tends to 0 with
the growth of the aneurysm, which means that the influence of the aneurysm on
the ‘working’ characteristics of the haemodynamic complex vessel–bifurcation–
aneurysm is vanished.
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Figure 16. Top: PV diagrams with tangents to them for a configuration with an aneurysm on the aortic
trunk: a section before the aneurysm (on the left), a section after the aneurysm (on the right). (Cases
with aneurysms are in red, those without aneurysms are in green). Bottom: change in the tangent of
the tangent to the PV diagram when the flow passes through the aneurysm.
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Figure 17. Change in the tangent of the slope of the tangent to the PV diagram: the values for the
section before the aneurysm are shown in blue, the values for the section after the aneurysm are shown
in orange.
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Figure 18. Shear stresses on the vessel wall in model configurations. Top: a case of aneurysm on the
aortic trunk, bottom: an aneurysm on the aortic bifurcation.
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Figure 19. Graphs of the Pvar rel value in rigid and FSI calculations. Top row: velocity corresponds
to t1 (left), velocity corresponds to t2 (right). Bottom row: velocity corresponds to t3 (left), velocity
corresponds to t4 (right).

Table 3. PV diagrams combined by configurations with aneurysm on the aortic trunk (red) and
without (green), the aneurysm radius equals 4 cm.

Sections
r2 = r1 r2 = 0,75r1 r2 = 0,5r1

Before the aneurysm

After the aneurysm

3. Discussion
Vessel bifurcation is a common element of hydrodynamic systems of both natural
and engineering origin. This is the branching of blood vessels, and the branching of
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Table 4. Configuration linear regression coefficients r1 = r2.

Angles Slope Shear Coefficient of determination

Step 203 60 −0.015 0.217 0.726
90 0.008 0.642 0.153

120 −0.01 0.686 0.399
Step 225 60 0.0308 −0.144 0.882

90 −0.004 1.288 0.052
120 −0.004 1.288 0.280

Step 236 60 0.02 0.131 0.593
90 −0.0007 1.11 0.002

120 −0.002 0.6 0.015
Step 270 60 0.017 −0.169 0.775

90 −0.009 0.84 0.166
120 −0.005 4.224 0.009

river beds in the delta, and the branching crown of a tree. A characteristic feature of
these systems is the bifurcation: the branching of the parent channel into two child
branches. The energy of a wave that has passed a branch node in a linear approx-
imation is inversely proportional to the number of child branches, so the general
principle of the minimum of lost, reflected energy leads precisely to a bifurcation. It
is of interest that bifurcation is characteristic even for branching of vessels in their
abnormal development such as arteriovenous malformation [44]. At the same time,
one of the anomalies of the blood vessels of the ascending aortic arch is the branch-
ing of the vessels into more than two child branches, the so-called ‘bull vessel’ [22].
When designing pipelines for various purposes, engineering formulas are used for
calculating the interfaces of pipes of various diameters at various angles [21]. In
modern theoretical hydrodynamics, the problem of flow in a bifurcation, channel
branching has not been fully resolved. The variable parameters of such a system
are the sections of the parent and child pipes, the opening angle of the child pipes,
the flow parameters — the speed and pressure at the inlet, the Reynolds number
for the flow of a viscous fluid. There is a large number of works devoted to the
numerical simulation of flow in bifurcation and blood vessel models [33, 50, 55].
Calculations and experiments demonstrate the presence of an extremely complex
flow pattern with eddies and secondary flows, the possibility of blocking the child
channel. There is a very limited number of exact results such as effects, general
patterns of flow in such systems, for example, Dean vortices [13]. Generally, there
are also no theorems that consider the correctness of the formulation of the corres-
ponding initial-boundary value problem, even in the formulation with rigid walls,
not to mention the most realistic for applications FSI formulation. For the percola-
tion problem, such a formulation was studied in the papers [7, 46]. This is a source
of questions and discussions when setting the boundary conditions at the inlet to
the parent tube and the outlets of the child tubes in computer simulation and com-
parison with experimental, clinical data. The quantities that could be measured by
medical devices are velocity (volume flow) and pressure. At the same time, it is clear
that these are not the values which control the flow through the bifurcation directly.
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There is only one integral conservation law — the principle of mass conservation,
i.e., fluid flow in the parent and child pipes. Its implementation for a steady flow
is beyond doubt, but even for a pulsating flow, the question of the ratio of the peri-
ods of the flow at the inlet and outlet (phase shift) arises. Even more questions and
discussions are caused by the formulation of the principle of energy conservation,
which certainly depends on the properties of the modelled system and the effects of
energy dissipation. It seems that the flow energy losses due to viscous dissipation
caused by the vortex formation mechanism play a significant role here [23, 30, 31].
An important role is played by the assessment of the contribution of various com-
ponents to the total energy of the system. For a model of a cerebral vessel with a
fusiform aneurysm with a bleb developing on it, such an approach that considers
FSI formulation was presented in [37, 38].

At the same time, there is a need for relatively simple models and laws that, at
least approximately, but describe the patterns of flow through the bifurcation. Mur-
ray’s laws [41, 42], which relate the parameters of a tee: cross-sections of channels,
the opening angle of child branches, are widespread and generally accepted. These
relations are obtained from very simplified considerations of minimizing the energy
loss of the flow during the passage of the branch node (assuming an irrotational
Poiseuille flow). Although these assumptions are not satisfied in the bifurcation
problem, Murray’s laws are used in modern works as some simple relations, which
are a kind of zero approximation for more complex models [32]. As mentioned
above, the question of the form of the energy relation in the bifurcation problem is
a subject of discussion in the literature.

The main purpose of modelling is to find dimensionless parameters that con-
trol the behavior of such a complex system, switching it from one mode to another.
Examples of building such maps for specific configurations are available in [9]. It
seems that a dynamical system which describes such a configuration in a broad
sense has mathematical bifurcation points and unstable modes for certain values of
[54] parameters. As mentioned above, the quantities actually measured in the clinic
are pressure and velocity. There are various techniques for obtaining such data. The
relationship of these quantities in blood vessels of various types is an important
characteristic of the local circulation. Pressure–velocity diagrams [25, 26, 34], also
called PV loops, are used to characterize different modes of the heart [20] cir-
culation. The PV diagram apparatus has been developed and effectively used in
neurosurgical blood flow monitoring [26, 39] to detect and visualize abnormalities
such as cerebral aneurysms and arteriovenous malformations. It allowed to evaluate
the effectiveness of neurosurgical operations. The application of such diagrams to
the analysis of various haemodynamic indices are shown in [8, 56]. Despite the fact
that the authors of these works are skeptical about the analysis of the area of such
diagrams, we believe that it still correlates with the work of the haemodynamic cir-
cuit, since we observe a monotonic behavior of this value with aneurysm growth,
and we also observe a monotonic change in this value in the case of cerebral hae-
modynamics in the treatment of cerebral aneurysm, in the analysis of intravascular
measurements [25]. From the point of view of continuum mechanics, these dia-
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grams demonstrate a kind of equations of state for a complex system ‘blood flow,
vessel wall, and its environment’. The results of numerical analysis of the above
monitoring data were described in [38]. For cerebral vessels, these diagrams in-
formatively describe the different impact of the anomaly on the flow both upstream
and downstream of it. It seems that the apparatus of PV diagrams is a promising tool
for describing the control of a complex system with a bifurcation and the relation of
clinical data with a computational experiment.

Note that in our work there are a number of limitations, the removal of which
is a substantial non-trivial work. So, for example, we used a spherical shape of the
aneurysm, while from the clinical data it follows that the abdominal aortic aneurysm
is more like an ellipsoid in shape. In addition to the complexity of constructing such
a model geometry, the question arises of interpreting the results obtained. The fact
is that the clinically accepted characteristic of an aortic aneurysm is its diameter in
the widest part [29]. For a sphere, we can uniquely relate this value to its radius,
while in the case of an ellipsoid, the situation becomes much more complicated,
since two more parameters appear that control the geometry of the model abdom-
inal aneurysm. At the same time, taking into account the results obtained in [48], it
becomes obvious that the use of an ellipsoid or ovoid shape of a model aneurysm
provide dramatically different results. Another limitation of our work is that we do
not consider the interaction between the thrombus and the vessel wall (see Fig. 1).
The cross section of the flow area in our case is the vessel lumen. At the same time,
a thrombus in an abdominal aneurysm can be at different stages of maturation and
growth, and this does not directly correlate with its size. In the course of rheomet-
ric tests on the Anton Paar unit (Austria), we found that the material of such blood
clots has viscoelastic properties ten times different for blood clots with different
stages of maturation. The study of the process of thrombus formation is a separ-
ate problem that is difficult both from the experimental and mathematical points of
view [6, 18, 19]. For one of the stages of thrombus development, the characterist-
ics (elastic modulus and loss modulus) are close to those of the aortic aneurysm
wall. Thus, we believe that the thrombus and the wall represent a single complex,
which is considered ‘simply’ as a wall in our numerical calculations. Meanwhile,
the consideration of the vessel wall as a multilayer coating [11, 12] bear a ‘zoo’ of
problems in modelling aortic aneurysms of both the abdominal and thoracic seg-
ments, both in the experimental aspect and in the sense of mathematical modelling.
The mechanical properties of such coatings can be investigated, for example, by the
methods used in [27, 28]. The novelty of our approaches compared to the modelling
approaches described, for example, in [51] is in the study of the influence of bifurc-
ation, as well as in the assessment of pressure growth proximal to the aneurysm in
the presence of aortic bifurcation. It not only significantly complicates the solution,
but also raises many questions about the formulation of correct boundary condi-
tions that would make the model formulation close to the clinical one. Separately,
we would like to note the use in this work of the laminar flow model in the formu-
lation of the problem. The fact is that for the blood flow in the abdominal segment
of the aorta, both with an aneurysm and without it, it is difficult to unequivocally
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state that there are only areas of laminar flow, or formed areas with a turbulent flow.
There are studies in this direction [62], and in the future this aspect will be given
special attention.

4. Conclusion
Three model configurations of the abdominal aorta were studied: a healthy aorta,
an aorta with an aneurysm on the trunk, and an aorta with a bifurcation aneurysm.
For each of these configurations, variations in the opening angle of the iliac ar-
teries and their diameters, as well as variation in the size of the aneurysm, were
considered. The basic haemodynamic parameters were calculated both in steady (in
rigid and FSI) and in unsteady formulations. A function of viscous dissipation and
PV (pressure–velocity)-diagrams were calculated and analyzed. In one of the refer-
ence configurations, a linear increase in pressure proximal to the aneurysm relative
to the growth of the aneurysm was detected and statistically confirmed (p < 0.05).
Such dependence may characterize the effect of abdominal aneurysm upstream on
the cardiac activity of the myocardium known in the literature, which is confirmed
by statistics [17]. This influence is still not unequivocally recognized by the medical
community due to the small number of studies in this area. The evidence of such an
effect will make it possible to identify patients in the early stages of the develop-
ment of aortic pathology who have the greatest predisposition to the development of
anomalies of cardiac function. In addition, it was found that both for an aneurysm
on the trunk and for a bifurcation aneurysm, a proximal decrease in the area of the
area limited by PV diagrams with aneurysm growth is characteristic, which is a new
and interesting result that motivates for further investigations in this area.
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