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Algorithms and methodological challenges in the develop-
ment and application of quantitative systems pharmacology
models: a case study in type 2 diabetes

V. Sokolov∗

Abstract — Quantitative systems pharmacology (QSP) is a relatively new modelling discipline,
formed within the ever-growing domain of model-informed drug development and actively evolving
throughout the last decade. This modelling technique is based on the systems analysis and is used to
get a quantitative rather than qualitative understanding of systems dynamics and explore the mech-
anisms of action of a drug. However, there is no well-defined methodology for the QSP model de-
velopment, which significantly complicates the practical application of these models. In the current
work, we overview the existing mathematical models of antidiabetic therapies and propose a mod-
elling method, which overcomes common limitations and is able to produce a physiologically based
mechanistic model describing gliflozin action in type 2 diabetes mellitus. From the practical stand-
point, sensitivity analysis preformed in this work helped to reveal subpopulation of patients with better
response to gliflozin therapy.
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Until the beginning of the XX century, biology and pharmacology were associ-
ated primarily with the empirical knowledge accumulation through the meticulous
planning and execution of in vitro and in vivo experiments. Exploding growth of
the computer engineering and the quantities of the available scientific information,
coupled with the lack of theoretical basis necessary to transform data into know-
ledge gave birth to a new type of modelling discipline pharmacometrics, or quantit-
ative pharmacology [7]. In 1969, Lewis Sheiner published the first work describing a
computer program for IBM360/50, which was able to predict an optimal daily dose
of warfarin, an anti-coagulant, based on the current values of the clotting factors,
previous warfarin dose, and physicians guidelines [49]. The model consists of two
equations: analytical expression representing pharmacokinetics (PK), or how the
body affects a drug and an ordinary differential equation reflecting pharmacody-
namics (PD) of clotting factor, or how a drug affects the body.

Through their subsequent works, Sheiner and colleagues formed a modelling
approach called ‘population PK/PD modelling’ and developed a computer software
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called NONMEM able to implement nonlinear mixed effects modelling approach
for the quantitative analysis of PK and PD data [51]. Nowadays, this modelling
technique is an integral part of the development of new medicines [42]. In Shein-
ers ‘Learn and confirm’ paradigm, drug development process should be viewed as
two sequential cycles of induction (learning) and deduction (confirming), drawing
inference from the former primarily on the basis of statistical and mechanistic mod-
els [50]. Application of such models to the inverse (i.e., parameter estimation) and
direct (e.g., clinical trial simulations) modelling problems significantly accelerated
drug development process and transformed regulatory decision-making [30, 34].

Application of the systems analysis theory to the biological problems provided
the basis for the quantification of emergent physiological properties through the
mechanistic description of the interplay and dynamical behavior of system com-
ponents. Among these methods, quantitative systems pharmacology (QSP) stands
out as a versatile tool, capable of answering various essential questions through-
out the drug development process and beyond, such as identification of optimal
biological targets, validation of a mechanism of action, choice of the optimal pop-
ulation to treat, competitor benchmarking. The primary goal of a QSP model is
to quantitatively and mechanistically characterize biological, toxicological, and dis-
ease processes in response to therapeutic modulation [9]. Therefore, QSP model can
be defined as a mathematical system, which integrates pharmacological preclinical
and clinical data to predict dynamical and spatial pathophysiological response. The
spectrum of modelling approaches considered as QSP is not well-determined, and
sometimes includes even computational fluid dynamics models, agent-based mod-
elling and machine learning [38]. Nevertheless, the core of the method may be best
represented by the mechanism-based pathway and signal-transduction models and
mechanistic PK/PD systems of various scales, based on the deterministic ordinary
differential equations (ODE) or delayed differential equations (DDE).

Obligatory robustness of regulatory-level decisions creates multiple challenges
for QSP model development and application. Among them, the details on expert
knowledge and data used for model development, differences in model scope and
complexity, lack of acceptance criteria and common expectations of model credibil-
ity, and discrepancies in solving of the direct problem for virtual patient populations
can be considered as the most common and essential [2]. In current research, we pro-
pose a methodology able to overcome part of these limitations and illustrate it with
an integrative QSP model of type 2 diabetes mellitus (T2DM).

Diabetes mellitus (DM) is a group of diseases characterized by an abnormally
high glucose concentration in blood, affecting hundreds of millions of people world-
wide [1]. In healthy condition, average glucose concentration in blood is maintained
in a narrow interval through a complex neuro-humoral regulatory system [46]. In
the most commonly occurring T2DM, tissue resistance prevents insulin from stim-
ulating glucose utilization, resulting in an increase in insulin and glucose plasma
concentration, at least during the early phases of the disease [12].

A lot of mathematical models were developed to explore various aspects of
T2DM [26]. Among them, the Bergman minimal model, published in 1979, stands



Methodological challenges in the development and application of QSP models 3

out as one of the first examples of in silico description of glucose-insulin homeo-
stasis: the cornerstone of the pathophysiology of DM [8]. The original model con-
tained 3 ordinary differential equations and 4 parameters describing the dynamical
changes of insulin in blood, insulin in an effect compartment, and glucose in blood
after intravenous glucose tolerance test in dogs. The Bergman minimal model was
subsequently updated to describe insulin-sensitivity in humans and used as a basis
for multiple model extensions and applications. One of the initial model limitation
caused by a necessity to calibrate parameters sequentially using forcing functions
to describe insulin and glucose time series was later addressed by De Gaetano and
Arino [11]. Jauslin and Silber subsequently updated this mathematical model to de-
scribe glucose-insulin crosstalk in healthy subjects and patients with T2DM after
intravenous, oral glucose tolerance test, and food intake [22–24, 52, 53].

Life-threatening complications of T2DM occur after continuous exposure to the
high glucose levels in blood, which are in turn reflected in the proportion of glyc-
ated haemoglobin (HbA1c). As such, a few mathematical models were developed
to describe the kinetics of haemoglobin glycation [6, 19, 21, 29, 31, 35, 36, 39, 55].
One approach considers the formation of HbA1c as a function of red blood cells life
span and blood glucose concentration based on the data from different populations
of healthy subjects and DM patients [29].

Many mathematical models were also created to support the development of
anti-T2DM therapies. In particular, the successful release of the gliflozins to the
market was accompanied by a set of modelling works based on empirical or semi-
empirical PK/PD models [4, 13, 44, 45, 56]. Gliflozins (or SGLT2 inhibitors,
SGLT2i) decrease glucose concentration in blood by inhibiting glucose reabsorp-
tion in kidneys and thereby causing the excess of glucose to be excreted with urine.
Therefore, physiologically based models of gliflozin effect contain mathematical
description of kidney lumen, processes of renal filtration, reabsorption, and urine
secretion. Gliflozins are also one of the rare examples when positive effects of the
treatment are being discovered even after compounds release to the market: treat-
ment with SGLT2i reduced the risks of heart failure; the nature of this phenomenon
was also explained via mathematical model [18]. Finally, further in silico research
was substantiated by the potential application of the gliflozins as an add-on therapy
to insulin in type 1 DM [25, 43].

A mathematical platform of renal glucose reabsorption, insulin-glucose homeo-
stasis, and haemoglobin glycosylation in T2DM highlighted in this research is an
example of an integrative QSP model designed to capture various aspects of the dis-
ease. The details on model development are described elsewhere [48]. In this study,
we perform a sensitivity analysis using the platform to identify subgroup of patients
most responsive to the treatment with gliflozins.

1. Computational methods of QSP model development

QSP is a relatively new modelling technique. The term QSP was first proposed by
the National Institute of Health, USA in 2011 white paper [58]. Since then, the
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Figure 1. Generalized scheme of model development and associated limitations in QSP.

methodology became widespread within the pharmaceutical industry and academic
researchers. However, despite its frequent use, the methods and algorithms, work-
flow, software tools, and criteria for quality assessment of QSP models are still
loosely defined, which in turn limits further application of QSP modelling for reg-
ulatory decision making [2, 15, 38]. Three categories of common limitations were
derived, related to the data handling and definition of a structural model, identifi-
ability of parameters, and forward simulations (see Fig. 1) and a more generalized
methodology able to overcome these limitations was proposed.

1.1. Defining the structural and statistical models

In a way, QSP modelling is an embodiment of Bayesian principle, as it integrates
all prior knowledge on a physiological system to make inference on new poten-
tial scenarios. In case of QSP modelling, prior knowledge first of all includes all
up-to-date information on key pathophysiological processes within a disease area,
relevant biological entities such as molecules and cells, their spatial distribution
and interactions, and all possible quantitative data related to these processes. The
quantitative data for model development should be collected through a process of
systematic literature review, following the same guidelines created for the meta-
analyses (PRISMA guidelines): dates, search queries, exclusion/inclusion criteria,
number of papers, etc., should be indicated and validated [40]. Trial design, popu-
lation characteristics and time series of different measurements should be digitized
into a standardized database and processed into the datasets, acceptable by a soft-
ware, through reproducible scripts. Following these actions, a modeler can define
the necessary set of model variables within the system of interest, relate observed
measurements with those variables, evaluate the dynamics and population distribu-
tions, correlation between the measurements, between-study and between-subject
variability, and infer possible functional relationships and feedbacks between the
model components [20].
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In contrast to the phenomenological approach typically used in the population
PK/PD modelling, the structure of a QSP model should be based on the principles of
(1) enzymological kinetics to reflect nonlinearity and regulations specific to biolo-
gical reactions; (2) steady-state conditions corresponding to the systems homeo-
stasis; (3) multicompartmental structure mimicking physiological distribution of
biomarkers and drug exposure. Typical actualization of the first principle is the
application of Michaelis–Menten equation when describing the interactions of a
substrate, enzyme, and a drug (competitive inhibitor) within the model [10]:

dP
dt

=
kcat E0 S(t)

Km(1+ I(t)/Ki)+S(t)
(1.1)

where kcat is the catalytic constant, Km is the Michaelis constant, Ki is the inhibi-
tion constant, P is the product of the enzymatic reaction, E0 is the concentration of
an enzyme, S(t) is the concentration of a substrate, I(t) is the concentration of an
inhibitor (e.g., a drug).

Second principle is illustrated by deriving initial conditions for the variables
through model parameters. If S(t) in equation (1.1) is defined by the following ODE
in the absence of the enzyme:

dS
dt

= kin− kout S(t) (1.2)

where kin and kout are synthesis and elimination rate constants, respectively, then
initial condition for S(t) should be defined by

S(0) =
kin

kout
. (1.3)

Finally, it should be noted that the concentrations of biological entities in equa-
tions (1.1) and (1.2) can be attributed towards a specific physiological compart-
ment, e.g., kidney tubules, thereby illustrating the third proposed principle of QSP
model development. Choosing the model structure based on these principles allows
a researcher to move from the apparent macro-parameters to physiologically based
micro-parameters measurable in a clinical or preclinical studies. For example, con-
centration of an enzyme and a substrate, Km, Ki, kcat, and kout parameters can be
estimated in the in vivo or in vitro experiments.

The remaining unknown parameters in the system are identified using the max-
imum likelihood approach against the observed data, usually available in a form of a
time series of measurements Y (t). As such, the parameter estimation procedure can
be defined as a search for a vector of parameters Θ for which the predicted outcome
Ŷ (t,Θ) is close to the given experimental data for the matching time points under the
following conditions: the residuals between the observed and model-predicted val-
ues are normally distributed, and the errors between the observations and between
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the variables are independent. Then, the objective function can be described as:

L(Θ) =
n

∏
j=1

1√
2πσ2

exp
(
− 1

2σ2 (Yj(t)− Ŷj(t,Θ))2
)

−2log(L(Θ)) = n log(2π)+
n

∑
j=1

(
log(σ2)+

(Yj(t)− Ŷj(t,Θ))2

σ2

)
where j is the jth measurement, n is the total number of measurements, σ is the
standard deviation of the residual error, Yj is the observed value, Ŷj(t,Θ) is the pre-
dicted value, Θ is the vector of model parameters, t is the time, and discrimination
between the models can be based on the Akaike information criterion (AIC) [16]:

AIC =−2log(L(Θ))+2P

where P is the number of unknown parameters in the model.
The variance of the observational error in PK and PD data is not necessarily

constant over time, and often increases in proportion to the variable value. There-
fore, a residual error model g must be introduced and tested, such that PRED j =

Ŷj(t,Θ)+gε j, where ε ∼ N(0,σ2), g = 1 and g = Ŷj for constant and proportional
error models, respectively. Another important feature of the QSP modelling is the
ability to integrate heterogeneous data, both subject-level (i.e., time series per indi-
vidual) and aggregated (i.e., mean, or median measurements), from different exper-
iments into a single quantitative system. It substantiates the need to use hierarch-
ical modelling approach through the implementation of random effects, considering
physiological constraints of the parameters via their transformation:

ϑ̂i = ϑ̂TV +ηi

for unconstrained parameters (e.g., power function parameters),

log(ϑ̂i) = log(ϑ̂TV )+ηi

for the majority of physiologically based parameters,

log

(
ϑ̂i

1− ϑ̂i

)
= log

(
ϑ̂TV

1− ϑ̂TV

)
+ηi

for the parameters constrained between 0 and 1 (e.g., bioavailability or fraction
unbound), where ϑ̂i is the estimated individual parameter value, ϑ̂TV is the estimated
typical parameter value, ηi is the ith random effect, η ∼ N(0,ω2).

Likelihood function cannot be computed in closed form for a non-linear mixed
effects modelling (NLME) problem. Thus, QSP model calibration based on indi-
vidual data requires special algorithms, among which first-order conditional es-
timation (FOCE) and stochastic approximation expectation maximization (SAEM)
methods, implemented in the NONMEM and the Monolix software, are the most
commonly used [5, 28].
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1.2. Practical identifiability and applicability

Arranging the models by AIC is the first among multiple criteria in QSP model
assessment. A model can provide lower AIC score while suffering from the large
degree of uncertainty in estimated parameters, which deems the model unusable
for the decision-making in drug development, especially if high uncertainty is as-
sociated with the drug effect parameters. Thus, at least one of the three techniques
to evaluate confidence intervals (CI) for the model parameters must be applied to
consider a QSP model usable: variance–covariance matrix, profile likelihood, or
bootstrap (parametric or non-parametric) [3, 14, 54].

Variance-covariance matrix can be derived from the Fisher information matrix,
in turn calculated either by stochastic approximation using a Markov chain Monte
Carlo algorithm, or linearization using a Taylor expansion:

I(Θ̂) =− d2

dΘ2 log(L(Θ̂)), C(Θ̂) = I(Θ̂)−1, C(Θ̂) = JT C(Θ̂)J

SE(ϑ̂k) =

√
Ck,k(Θ̂), RSE(ϑ̂k) =

SE(ϑ̂k)

ϑ̂k
·100%, CI(ϑ̂k) = ϑ̂k± tα,nd−np SE(ϑ̂k)

where Θ̂ is the vector of parameter estimates, J is the Jacobian, Ck,k are the diagonal
elements of the variance-covariance matrix, nd is the number of data points, np is the
number of parameters, tα,nd−np is the percentage point of the Students t-distribution
with nd−np degrees of freedom.

Identifiability is assessed through the measure of correlation between the estim-
ated parameters:

corr(ϑ̂k1 , ϑ̂k2) =
Ck1,k2

SE(ϑ̂k1)·SE(ϑ̂k2)

where Ck1,k2 is the covariance between parameters ϑ̂k1 and ϑ̂k2 .
Non-parametric bootstrap is based on resampling of the original dataset used

for the model calibration into smaller subsets with uniform probability of drawing a
random measurement. Parametric bootstrap creates new data samples by perturbing
the original data, i.e., Yj(t) = Yj(t)+σ N(0,1). In both cases, confidence intervals
for the parameter estimates are calculated using the following equation:

CI(ϑ̂k) = µ(ϑ̂k)± zα SD(ϑ̂k)

where µ(ϑ̂k) and SD(ϑ̂k) are mean and standard deviation of the estimates of ϑ̂k,
respectively, and zα is the α percentile of a normal deviate.

Confidence intervals based on the likelihood profiling correspond to the interval
[ϑ min

k ,ϑ max
k ] of maximal width containing ϑ̂k such that:

| log(L(Θ̇))− log(L(Θ))|6 1
2

χ
2
1,0.95



8 V. Sokolov

where L(Θ̇) is the likelihood when ϑ̂k is fixed within the set of pre-defined values,
and χ2

1,0.95 = 3.84.
Both bootstrapping and likelihood profiling methods might not be optimal for

computations in the framework of complex QSP models; instead, a multi-start para-
meter estimation procedure to confirm the uniqueness of a found solution can be
used.

The presence of highly correlated parameters (|corr(ϑ̂k1 , ϑ̂k2)| > 0.5), paramet-
ers with RSE > 50% or 95% CI including zero, and model convergence to different
local minima substantially undermines its predictive power and usefulness. Histor-
ical data and physiological estimates of the parameter values are therefore vital for
avoiding overparametrization of a QSP model, further substantiating the need for
thorough systematic review of the published information. Finding more data, fixing
parameter values or the distribution of their random effects allow for better identi-
fiability of the remaining unknown parameters, while the contribution of the fixed
parameters to the model outputs can be subsequently evaluated through a local or
global sensitivity analysis.

Finally, the model quality is assessed by the number of goodness of fit plots,
designed to reflect the quality of data description by the model, and include the
visualization of observed versus predicted values, weighted residuals over time and
over predicted values, distribution of the residuals, visual predictive checks, etc.
(see [37]). Even with the best AIC and identifiable parameters, a QSP model may
not be able to reflect the trends in the observed data properly. Systemic bias in
predictions, skewed distributions, heteroscedasticity in residuals require revisions
of the structural and statistical models. Until all three requirements are met, a model
cannot be used for model-informed drug development.

1.3. Solving the direct problem

One of the distinct characteristics of the QSP, differentiating it from the other meth-
ods of the quantitative pharmacology, is the potential for model extrapolation in the
predictions of various treatment scenarios. Therefore, validation of a QSP model by
comparing model predictions with the data, previously not used in solving the in-
verse problem (i.e., external validation) is an advisable step in model development.
Furthermore, a taxonomy of model simulations should be developed, to achieve the
correct interpretation of the in silico scenarios (see Fig. 2).

Ground level of the proposed taxonomy is a model simulation based only on
the typical values of the parameters. This simulation corresponds to a population
trend in a single study or a cohort and is used in the model evaluation tasks such as
sensitivity analyses. Next, by creating a sample of population parameter values from
the variance-covariance matrix (see Section 1.2), a modeler can compute the con-
fidence interval around the trend, which is the equivalent of comparing population
curves between multiple studies or cohorts. On the other hand, if random effects
were introduced, they can be used to explore data heterogeneity, e.g., differentiate
subject-level variability from noise, and, combined with the measurements of un-
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Figure 2. The taxonomy of model-based simulations.

Figure 3. Scheme and variables of the integrative platform of T2DM.

certainty, derive informative posterior distributions through the model simulations.
Described scenarios can be further updated by introducing covariates: popula-

tion or trial design characteristics, such as age, body weight, etc., affecting typical
parameter values within the model. Proper covariate model can explain part of the
variability within the data and allows to perform predictions while simultaneously
controlling certain aspects of a virtual population. Together with the elements of the
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trial execution, uncertainty, and variability, such predictions can be considered the
in silico clinical trial simulations.

Finally, all types of the predictions may or may not include residual error, de-
pending on the needs to observe full theoretical variability for the system.

Taken together, the proposed methodology addresses common limitations of the
QSP model development by formulating key principles underlying the choice of a
structural model, providing a list of criteria for the assessment of model quality, and
creating a taxonomy of forward simulations.

2. Mechanistic integrative model of type 2 diabetes
Following prior knowledge existing in the field and previously published model-
ling analyses, the methodological principles shown above were applied to build an
integrative systems model able to link together different aspects of T2DM patho-
logy and various mechanisms of drug action. As a result, a QSP model of gliflozin
PK, renal filtration, insulin-glucose homeostasis, and haemoglobin glycation was
developed (see Fig. 3) [48]. The model is comprised of 42 ODE and 48 parameters
with 20 random effects. Schematic representation of the model structure and vari-
ables is provided in Fig. 3. Table 1 contains the data on model parameters, where 32
parameters were fixed based on the previously reported values and 16 parameters
were estimated using Nelder–Mean simplex algorithm or SAEM procedure, imple-
mented in Monolix software (version 2019R1) [28]. Solving of the ODE system
was performed using backward differentiation formula. Processing of the model-
ling outputs, forward simulations and other programming activities were performed
in R (version 3.5.1).

Table 1. Parameters of the integrative platform of T2DM. Coefficient of variation (CV%) is cal-
culated based on the value of ω , using the following formula for log-transformed parameters:
CV%=

√
exp(ω2)−1 ·100.

Parameter Description Parameter value RSE, % Dimension Reference
(CV%)

f upDapa Free fraction of 0.086 — — [57]
dapagliflozin in plasma

MWDapa Dapagliflozin molecular 408.87 — g/mol [57]
weight

kDapa
a Dapagliflozin absorption 2.39 (156) — 1/h [33]

constant
CLDapa Dapagliflozin clearance 16.8 (27.5) 4.81 L/h estimated
V dDapa Dapagliflozin volume of 68.5 5.96 L estimated

distribution
βV dDapa Body weight effect on 0.0101 39.8 — estimated

V dDapa
V pDapa Dapagliflozin volume of 149 13.7 L estimated

peripheral compartment
QDapa Dapagliflozin 8.42 5.5 L/h estimated

intercompartmetal
clearance

Continued on next page
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Parameter Description Parameter value RSE, % Dimension Reference
(CV%)

Alag Dapagliflozin lag time 0.447 1.99 h estimated
GFR Glomerular filtration rate Individual per — L/h covariate

subject
BW Body weight Individual per — kg covariate

subject

Renal submodel

Vlumen1 Proxima convoluted 0.045 — L [57]
tubules volume

Vlumen2 Proximal straight 0.019 — L [57]
tubules volume

Vbladder Bladder volume 0.2 — L [57]
Qlumen Flux in proximal tubules 2.7 — L/h [57]
Qbladder Flux in distal tubules 0.72 — L/h [57]
Qurine Urine excretion 0.055 — L/h [57]
KmSGLT 2 Michaelis constant for 4 — mmol/L [57]

SGLT2
KmSGLT 1 Michaelis constant for 0.5 — mmol/L [57]

SGLT1
V maxt2d

tot Maximum SGLT 140 — mmol/L [57]
reabsorption capacity

KiDapa
SGLT 1 SGLT1 inhibition constant 36.35 — nmol/L [57]

KiDapa
SGLT 2 SGLT2 inhibition constant 0.031 — nmol/L [57]

V maxSGLT 2 Maximum SGLT2 capacity 111(11.6) 1.88 mmol/L estimated

Glucose homeostasis submodel

N Power function in the 4 — — [47]
modulation function

V dGlu Glucose volume of 9.33 (8.89) — L [24]
distribution

QGlu Glucose 26.5 (82.9) — L [24]
intercompartmental
clearance

V dins Insulin volume of 6.09 (16.9) — L [24]
distribution

CLins Insulin clearance 73.2 (8.42) — L/h [24]
V pGlu Glucose volume of 8.56 (8.93) — L [24]

peripheral compartment
keGlu Delay constant for the 0.738 (28.6) — 1/h [23]

glucose effect
keins Delay constant for the 0.464 (12.2) — 1/h [23]

insulin effect
FbioGlu Glucose bioavailability 0.8 — — [41]

(oral glucose tolerance
test)

FbioGlu Glucose bioavailability 0.78 — — [22]
(meal) (meal)
CLGlu Insulin-independent 1.72 (35.9) — L/h [24]

glucose clearance
IPRG Insulin synthesis 1.42 (12.2) — — [24]

Continued on next page
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Parameter Description Parameter value RSE, % Dimension Reference
(CV%)

GSS Glucose steady state 6.53 (19.5) 2.91 mmol/L estimated
ISS Insulin steady state 9.14 (44.3) 6.38 mU/L estimated
CLIns

Glu Insulin-dependent glucose 0.423 (39.6) 6.05 L/(h·mU/L) estimated
clearance

Sincr Incretin effect on insulin 0.01 (27.6) 5.03 — estimated
secreation

kaGlu Glucose absorption from 1.68 (18.8) 3.28 1/h estimated
the gut (oral glucose
tolerance test)

kaGlu Glucose absorption from 0.564 (28.6) 4.57 1/h estimated
(meal) the gut (meal)
MA Amplitude of the glucose 74.6 1.27 — estimated

modulation function
MT Peak time of the glucose 8 h 46 min 0.369 clock time estimated

modulation
MW Width of the glucose 1.79 1.26 h estimated

modulation

Haemoglobin glycosylation submodel

LS Red blood cells life span 91.7 (0.7) — d [29]
LSP Red blood cell precursors 8.2 (1.32) — d [29]

life span
Kin Rate of red blood cells 1 — 1/d [29]

synthesis
KG Glycosylation rate 8.37·10−6 — 1/(d·mg/dL) [29]
γ Glucose feedback on red −0.38 — — [29]

blood cells life span
NC Number of transit 12 — — [29]

compartments

Dapagliflozin PK in plasma is represented by a two-compartment PK model
with first-order absorption and linear elimination (2.1). The dose is administered
to the Dapad compartment with a lag parameter Alag [h], so that the actual time of
dosing T̂d = Td +Alag, where Td [h] is the nominal time of dosing:

dDapad

dt
=−kDapa

a ·Dapad(t),
dDapap

dt
= QDapa·

(
Dapapl(t)

V d̂Dapa

−
Dapap(t)
V pDapa

)
dDapapl

dt
= kDapa

a ·Dapad(t)−CLDapa·
Dapapl(t)

V d̂Dapa

−GFR· f upDapa·
Dapapl(t)

V d̂Dapa

−QDapa·

(
Dapapl(t)

V d̂Dapa

−
Dapap(t)
V pDapa

)
(2.1)

where V d̂Dapa =V dDapa·exp
(
βV dDapa(BW −83.65)

)
.

Renal filtration module serves as a basis for the platform. Four compartments
of the module represent two segments of the proximal tubules, bladder, and urine,
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with the first-order rate of glucose and dapagliflozin appearance in each of them.
Glucose reabsorption from kidney tubules back to blood is carried out by two trans-
port proteins: SGLT2 and SGLT1 in the first and the second segments of kidney
lumen, respectively (see [17]). Thus, following the principles of enzyme kinetics
and considering the mechanisms of action of gliflozins, glucose reabsorption rate is
described by a rather complex equations based on Michaelis–Menten kinetics with
competitive inhibition from dapagliflozin concentration in respective compartments:

dGlulum1

dt
= GFR·

Glucosepl(t)

V̂ dGlu

−Qlumen·
Glulum1(t)

Vlumen1
−VRGR1

dGlulum2

dt
= Qlumen·

Glulum1(t)
Vlumen1

−Qbladder·
Glulum2(t)

Vlumen2
−VRGR2

dGlubl

dt
= Qbladder·

Glulum2(t)
Vlumen2

−Qurine·
Glubl(t)
Vbladder

dGluurine

dt
= Qurine·

Glubl(t)
Vbladder

dDapalum1

dt
= GFR· f upDapa·

Dapapl(t)
Vplasma

−Qlumen·
Dapalum1(t)

Vlumen1

dDapalum2

dt
= Qlumen·

Dapalum1(t)
Vlumen1

−Qbladder·
Dapalum2(t)

Vlumen2

dDapabl

dt
= Qbladder·

Dapalum2(t)
Vlumen2

−Qurine·
Dapabl(t)
Vbladder

dDapaurine

dt
= Qurine·

Dapabl(t)
Vbladder

where
V̂ dGlu =V dGlu·

BW
70

VRGR1 =
V maxSGLT2 ·

Glulum1(t)
Vlumen1

KmSGLT2 ·

1+
Dapalum1(t)

Vlumen1

KiDapa
SGLT2

+
Glulum1(t)

Vlumen1

VRGR2 =
V maxSGLT1 ·

Glulum2(t)
Vlumen2

KmSGLT1 ·

1+
Dapalum2(t)

Vlumen2

KiDapa
SGLT1

+
Glulum2(t)

Vlumen2

.

Overall structure of the glucose-insulin homeostasis module was based on the
published IGI model [22]. Equation (2.2) is central for this block, as it describes the
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change in plasma glucose over time, taking into account glucose absorption from the
gut, gluconeogenesis, insulin-dependent and insulin-independent glucose clearance,
renal filtration, and reabsorption. Glucose consumption with food and absorption in
the gut is described by two compartments, to capture the delay in glucose appear-
ance after food intake and implement the effect of the incretin on insulin production.
Insulin-dependent clearance depends on the insulin concentration in the effect com-
partment. Insulin secretion is modulated by the glucose in effect compartment and
the effect of incretins, mediated by the glucose in the gut:

dGlucosed

dt
=−kGlu

a ·Glucosed(t)

dGlucosetr

dt
= kGlu

a ·Glucosed(t)− kGlu
a ·Glucosetr(t)

dGlucosepl

dt
= kGlu

a ·Glucosetr(t)+GPRO·(1+M)−CLGlu·
Glucosepl(t)

V̂ dGlu

−CLIns
Glu·Inse(t)·

Glucosepl(t)

V̂ dGlu

−GFR·
Glucosepl(t)

V̂ dGlu

+VRGR1

+VRGR2−QGlu·

(
Glucosepl(t)

V̂ dGlu

−
Glucosep(t)

V pGlu

)
dGlucosep

dt
= QGlu·

(
Glucosepl(t)

V d̂Glu
−

Glucosep(t)
V pGlu

)
dGlucosee

dt
= keGlu·

(
Glucosepl(t)

V d̂Glu
−Glucosee(t)

)
dInspl

dt
= IPRO·

(
Glucosee(t)

GSS

)IPRG

·(1+Sincr·Glucosetr(t))−CLIns·
Inspl(t)

V̂ dIns

dInse

dt
= keIns·

(
Inspl(t)

V d̂Ins
− Inse(t)

)
(2.2)

where

M(t) =
MA

MD(t)N +1

MD(t) =
time−12−24· f loor

(
time−(MT+12)

24

)
− (MT +12)

MW

V̂ dins =V dins·
BW
70

.

The final submodel is based on the haemoglobin glycosylation model by Lled-
Garca et al. [29]. The module includes a set of transit compartments representing
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life cycle of the red blood cells and haemoglobin glycosylation. All parameters are
based on the physiological estimates of the respective rates:

dHb1

dt
= Kin·exp(−KG·AG·LSP)−

(
NC

LS·AGLS
+KG·AG

)
·Hb1(t)

dHbi

dt
=

NC
LS·AGLS

·Hbi−1(t)−
(

NC
LS·AGLS

+KG·AG
)
·Hbi(t)

dHbA1c1

dt
= Kin·(1− exp(−KG·AG·LSP))+KG·AG·Hb1(t)−

NC
LS·AGLS

·HbA1c1(t)

dHbA1ci

dt
= KG·AG·Hbi(t)−

NC
LS·AGLS

·(HbA1ci−1(t)−HbA1ci(t))

where AGLS[−] = (AG/149)γ .

To capture the homeostatic nature of the system, initial conditions were derived
from the parameters and baseline states of the variables:

Glucosepl(0) = GSS·V d̂Glu, Glucosee(0) = GSS

Inspl(0) = ISS·V d̂Ins, Inse(0) = ISS

IPRO =CLIns·ISS, GPRO = GSS·(CLGlu +CLIns
Gu ·ISS+GFR)−VRGRSS

VRGRSS =

(
Glulum1(0)

Vlumen1

)
· V maxSGLT2

kmSGLT2 +Glulum1(0)/Vlumen1

+

(
Glulum2(0)

Vlumen2

)
· V maxSGLT1

kmSGLT1 +Glulum2(0)/Vlumen2

Glubl(0) =
Vbladder·Qbladder·Glulum2(0)

Vlumen2·Qurine
, Glup(0) = GSS·V pGlu

Glulum1(0) =
−b1 +

√
b2

1−4c1

2
, Glulum2(0) =

−b2 +
√

b2
2−4c2

2

Hb1(0) = Kin·exp(−KG·AG·LSP)/
(

NC
LS·AGLS

+KG·AG
)

Hbi(0) =
NC

LS·AGLS
·Hbi−1(0)/

(
NC

LS·AGLS
+KG·AG

)
HbA1c1(0) = (Hb1(0)·KG·AG+Kin·(1− exp(−KG·AG·LSP)))/

(
NC

LS·AGLS

)
HbA1ci(0) = HbA1ci−1(0)+

Hbi(0)·KG·AG·LS·AGLS
NC
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Figure 4. Dapagliflozin PK (A), urinary glucose excretion (C) at day 14, plasma glucose (B) and
insulin (D) concentrations at day 13 of the treatment. Dots individual data; empty circles observed
median; curves with shaded area (A, B, D) or triangles with error bars (C) predicted median, 5% and
95% percentiles sampled from the between-subject variability.

where

b1 =

(
KmSGLT2 ·Vlumen1 +

Vlumen1·V maxSGLT2

Qlumen
− Vlumen1·GFR·GSS

Qlumen

)
c1 =−

V 2
lumen1·GFR·GSS·KmSGLT2

Qlumen

b2 =

(
KmSGLT1 ·Vlumen2 +

Vlumen2·V maxSGLT1

Qbladder
− Vlumen2·Qlumen·Glulum1(0)

Qbladder·Vlumen1

)
c2 =−

V 2
lumen2·Qlumen·Glulum1(0)·KmSGLT1

Qbladder·Vlumen1
.

Initial conditions of the dapagliflozin PK-related variables and food are equal to
zero.

As shown in Table 1, more than half of the model parameters were fixed based
on the prior knowledge. The remaining parameters were identified based on the
subject-level data from the randomized double-blind placebo-controlled Phase 2a
dapagliflozin trial [27]. In the study, 47 subjects with T2DM received placebo, 5 mg,
25 mg, or 100 mg of dapagliflozin once per day for 14 days. Time series of daily
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Figure 5. PRCC heatmap. Vertical axis represents the relative change in glycemic control variables
at week 30 of daily intake of 10 mg dapagliflozin; PRCC values with p-value 6 0.05 are marked with
color.

measurements of dapagliflozin, glucose and insulin concentration in plasma as well
as glucose amount in urine were available (6631 observations in total). Patients were
given meal twice per day and oral glucose tolerance test at day 2 and 13 of the study.
Figure 4 shows an exemplary part of the model analysis: comparison of predicted
and observed data within a single day of treatment with 100 mg of dapagliflozin.

To highlight the practical application of such platform, a sensitivity analysis was
performed in this work by calculating partial rank correlation coefficient (PRCC) for
selected variables against the number of parameters [32]. Correlation as a measure
of linear relationship between two variables can be defined as follows:

corrx j,y =
∑

N
i=1(xi j− x)(yi− y)√

∑
N
i=1(xi j− x)2·∑N

i=1(yi− y)2

where x j is the jth parameter, j = 1,2, ,k, y is the variable, N is the number of
samples, x and y are the sample means. The partial correlation corresponds to the
correlation between two residuals (x j− x̂ j) and (y− ŷ), where

x̂ j = c0 +
k

∑
p=1,p6= j

cpxp, ŷ = b0 +
k

∑
p=1,p6= j

bpxp

c0, cp, b0, and bp are the coefficients of multiple linear regression.
Thus, partial rank correlation is the result of partial correlation calculated for

the rank-transformed data. Subset of model parameters evaluated via PRCC ana-
lysis and respective bounds are summarized in Table 2. Parameter selection was
based on their physiological relevance to the gliflozin efficacy and importance in
the framework of the glycemic control. Latin hypercube sampling was used to re-
duce the number of sample size and, thereby, computation load necessary to cover
area in the space of parameter values wide enough to obtain consistent results.
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Table 2. Parameter bounds for PRCC calculation.

Parameter Left bound Right bound Dimension

Maximum SGLT2 capacity 98.8 125 mmol/h
Glucose steady state 5.38 7.92 mmol/h
Insulin-independent glucose clearance 1.21 2.44 L/h
Insulin-dependent glucose clearance 0.289 0.62 L/(h·mU/L)
Insulin steady state 5.99 14 mU/L
Insulin clearance 67.3 79.6 L/h
Insulin synthesis 1.26 1.6 —
Incretin effect on insulin secretion 0.00763 0.0131 —
Dapagliflozin clearance 12.8 22 L/h
Meal size 0.5 1.5 —

As follows from Fig. 5, parameters responsible for the status of T2DM (glucose
and insulin steady states, insulin-dependent glucose clearance) as well as maximum
capacity of SGLT2 display the strongest association with dapagliflozin-mediated
treatment effects on blood glucose and HbA1c. Dapagliflozin clearance negatively
correlates with its efficacy. Increasing the meal size or incretin effect indirectly
affect the rate of glucose disappearance through potentiation of insulin secretion,
thereby reducing overall treatment benefit.

3. Conclusions
QSP is a modelling technique that combines the elements of systems analysis with
physiology and biology. It is a versatile model-informed drug development method-
ology applied in support of decision-making throughout the process of the develop-
ment of new pharmaceuticals. The primary goal of a QSP model is to characterize
pathophysiological responses to drug interventions quantitatively and mechanistic-
ally. However, the spectrum of QSP approaches is vaguely defined and several im-
portant limitations exists impairing more extensive application of QSP models. In
this study, we developed solutions for the problems of data and knowledge manage-
ment, choice of the model structure, model credibility assessment, and simulation
scenarios, i.e., created a methodology for QSP model development. These methodo-
logical concepts are illustrated in a case study of QSP model development in T2DM
applied to identify patient subpopulation most responsive to the gliflozin treatment.
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