
pp. 1–21 (2022)

Computational mimicking of surgical leaflet suturing
for virtual aortic valve neocuspidization

A. A. Liogky∗†‡

Abstract — The aortic valve neocuspidization (AVNeo) procedure requires the design of patient-
specific neocusps which can be made numerically through the neovalve closure modelling. Prior the
simulation, it is required to ‘suture virtually’ the neocusps into the patient’s aortic geometry, i.e.,
to find such state in which the neocusps are placed in the aortic root lumen without intersections
of physical surfaces and neo-valve prolapse, and the position of the suture boundary satisfies the
boundary conditions. To solve this problem, we tried to mimic neocusps suturing in Ozaki’s operation.
As a result, we propose a new algorithm for ‘virtual suturing’ of given neocusps, considered as thin
shells. The approach is able to work with both small and large (compared to an optimal size) neocusps
and to handle each cusp independently of the others.
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In recent years, aortic valve neocuspidization (AVNeo) procedure proposed by
Ozaki et al. [19] has become popular. The approach is based on using leaflets from
treated autologous pericardium to replace the aortic valve and have very low risk of
tissue rejection in patients. Moreover, as shown in [3, 8, 25, 27], the procedure has
a lot of other advantages, such as avoiding anticoagulation therapy, a low gradient
of transvalvular pressure, an increased effective orifice area, minor regurgitation,
normal dimensions of the aortic annulus and aortic root during cardiac cycle, low
degradation and calcification, reproducibility, and a low cost.

Choosing an optimal leaflet size and form is the main problem of using AVNeo.
If the leaflets are too small, then there is a risk of regurgitation in the neo-valve;
if they are too large, then the neo-leaflets may cover the coronary orifices [17]. An
optimal reconstructed neo-valve should provide normal aortic valve function and
therefore should satisfy certain properties, i.e., no billowing, no regurgitation and
etc., for details refer to [11, 12, 15, 22, 24].

Ozaki et al. proposed their own methodology for selecting the neo-leaflet tem-
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plates based on measurements of aortic root made by their sizer [19], but there is no
guarantee that the proposed approach provides optimally sized neocusp templates.
Moreover, it has been shown in echocardiography research that 12.5% of patients
undergoing the AVNeo procedure develop thrombosis, which can also be caused by
an excess neocusp area [6], i.e., non-optimality of the selected cusp templates.

To assess the degree of optimality of the neo-valve, it is necessary to evaluate its
characteristics in the closed state. Numerical modelling of the diastolic state of the
neo-valve can be used for the patient-specific design of optimal cusps. The process
of modelling can be divided into several stages: (i) extraction from the patient’s
CT images of the inner surface of the aortic root and determination of the future
cusp-aorta suture line on the aortic surface, (ii) finding the initial configuration of
the cusps inside the aortic root (‘virtual suturing’ of the neo-cusps), (iii) performing
numerical simulation of the aortic valve closure and, finally, (iv) estimation of the
parameters of interest for the closed valve configuration. These estimated paramet-
ers may be used in an optimization procedure. By ‘virtual suturing’ in step (ii) we
mean finding such configuration of the neo-valve, in which the neocusps are placed
in the lumen of the aortic root without neo-valve prolapse, do not intersect with
each other or with the surface of the aorta, the position of the cusp suture bound-
ary satisfies specified boundary conditions. Since optimization procedure requires
calculation of a solution for a sufficiently wide range of cusp template parameters,
a ‘virtual suturing’ method applicable for different neocusps, is demanded. In the
present paper we propose such a method.

Significant success in the technique of ‘virtual suturing’ was achieved for the
operation of transcatheter aortic valve implantation (TAVI) providing expansion of
a stent from a compressed state to the size of the aorta [16, 23] or expansion of the
aortic lumen to the size of a stent [31]. However, these methods are not suitable for
AVNeo surgery, since stents are not used in it, and the aorta does not change its
diameter [30].

Besides the works on TAVI modelling, a few articles address the process of ‘vir-
tual suturing’ and most of them study the behavior of the aortic valve for idealized
geometries, avoiding the issue of ‘virtual suturing’ of the cusps. The simplest variant
of the ‘virtual suturing’ is the ‘contact planes of symmetry’ method, which is used
in symmetric geometries[13, 14] and therefore is not applicable for patient-specific
geometries. An extension of this method to the case of a real aorta in the form of the
‘virtual contact planes’ method was proposed in [5]. However, this approach does
not work properly with sufficiently large neocusps when the virtual planes are not
the real surfaces of contact of the cusps (see Fig. 1). Moreover, the method may not
work if the central line of the aorta inside the aortic root is very different from a
straight line.

In this paper we propose a new computational algorithm for ‘virtual suturing’.
To this end, we mimic the neocusp’s suturing from the procedure of neocuspidiza-
tion proposed by Ozaki, by highlighting the features of the sutured neocusps. Then
we formulate these features as mathematical constraints. We consider the aortic neo-
cusps as thin membranes or Kirchhoff–Love shells made of a specific hyperelastic
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(a) (b)

Figure 1. Sutured configurations of the reconstructed aortic valve. The blue curves are leaflet contact
lines that radiate from the triple contact point marked in green. Commissure points are marked in red.
Possible positions of the virtual contact planes are marked in yellow and it can be seen that they are
very different from the real contact surfaces. Black color marks the virtual circle passing through the
commissure points. Photo (a) is taken from [20] and photo (b) is a screenshot from Ozaki’s procedure
training video [21].

material. As a result we have proposed a sequence of elastic problems for quasi-
static equilibrium to be solved that consistently include more and more constraints
and eventually lead to the desired state. The advantage of the proposed approach is
its ability to work with both small and large (compared to optimal size) neocusps,
which is achieved through the use of non-planar contact surfaces. Also, the method
does not allow a strong sagging of the neocusp’s free boundary below the plane of
the commissures, which guarantees the absence of prolapse. In addition, the method
imposes restrictions on the neocusps independently, and therefore the calculation of
the position of each cusp can be performed in parallel.

The paper is organized as follows. In Section 1 we present the problem de-
scription and an algorithm for solving arising quasi-static equilibrium problems. In
Section 2 we briefly overview the suturing of the neocusps in AVNeo procedure
and discuss its features. In Section 3 we formulate the ‘virtual suturing’ algorithm.
Results of numerical experiments are presented in Section 4. Limitations of the ap-
proach are given in Section 5.

1. Modelling of the cusp quasi-static equilibrium

1.1. Elastic nodal forces

A detailed description of elastic models is not the purpose of this article, we give a
sketch of used modelling methods, for details we refer to [29].

We consider cusps as thin hyperelastic shells, which are described by the
Kirchhoff–Love thin shell theory [26]. Within this theory, the right Cauchy–Green
tensor C can be decomposed into in-plane CS and out-of-plane CN components [18,
26]:

C= CS +CN . (1.1)
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Hyperelasticity implies that there is a potential ψ(C) which determines an internal
elastic energy of the material U . In the theory of thin incompressible shells it can
be rewritten as a function ψ̂(CS), and the variation of the internal elastic energy δU
due to displacements can be represented as

δU = δUm +δUb. (1.2)

Here δUm is the membrane part of the energy variation describing an in-plane de-
formation of the cusp, and δUb is the bending part characterizing resistance of the
shell to bending [29].

In this article, we aim to place three preset aortic valve cusp patterns inside the
aortic volume avoiding their intersections. We do not aim to reproduce the actual
position of the cusps inside the aorta under the influence of external forces. Although
we are free to choose a material model, it should not be too rigid, to avoid problems
with numerical instabilities. We have chosen St. Venant–Kirchhoff (SVK) material
with zero Poisson’s ratio ν = 0, whose potential in the thin shell theory takes the
form

ψ̂SV K(I1,J) =
E
8
(
(I1−1)2−2J2 +1

)
(1.3)

where I1 = trCS, J2 = detCS and E is Young’s modulus.
The middle surface of the cusp is defined by its triangulation. Due to (1.2), at

each node of a computational mesh with index n, the elastic force is a composition
of the membrane FFFm

n and bending FFFb
n forces [29].

1.2. External nodal forces

The force of external pressure acting on the nth node of the cusp mesh is calculated
using the following formula:

FFF p
n =

P∑i(n)SSSt
i

3
(1.4)

where P is applied diastolic pressure, ∑i(n)SSSt
i is the sum of all oriented areas of

triangles sharing the nth node at the current configuration.
To confine the cusp inside a given constraint volume Ω, we use additional forces

that will restrict the cusp to remain in Ω. Let dΩ(xxx) be the signed distance field
(SDF) to the boundary ∂Ω of the constraint volume

dΩ(xxx) =

min
yyy∈∂Ω

||xxx−yyy||, xxx ∈Ω

− min
yyy∈∂Ω

||xxx−yyy||, otherwise

and let nnnΩ(xxx) = ∇dΩ(xxx). Then the repulsion SDF-force acting on the nth node QQQn is

FFFr,Ω
n =

η1 ∑i(n) St
i

3
f (dΩ(QQQn)) nnnΩ(QQQn), f (d) = max

(
1− 2(d +η3)

η2
,0
)

(1.5)
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(a) (b)

Figure 2. Scheme of suturing in AVNeo. Green dotted line is cusp suture line (CSL), blue dotted
line is free boundary of the cusp, pink dotted line is aortic suture line (ASL). Subfigure (a) shows flat
template of the cusp and subfigure (b) shows the scheme of suturing the cusp in AVNeo procedure.
Subfigure (a) is changed screenshot from [20] and (b) is modified picture from [2].

where f (d) is a penalty function, coefficients η1, η2, and η3 characterize the penalty
force and the depth of immersion into the volume, and ∑i(n) St

i is the sum of areas of
all triangles sharing the nth node at the current configuration.

To avoid valve prolapse, we introduce another artificial force that does not allow
the free boundary of the cusp to sag too deeply. Let the cusp boundary consist of a
free boundary and a suture boundary, and on the cusp in the initial planar state one
chooses such an orthonormal cartesian coordinate system {eee1,eee2} that eee1 is parallel
to (NNN0−NNN1), where NNN0 and NNN1 are the beginning and end of the suture boundary and
eee2 is oriented outwards of the suture boundary (see Fig. 4a). Let PPPn = Px

neee1 +Py
neee2

be an initial position of the nth node of the free boundary and QQQn is its current
position. Let M be a plane of commissures with a unit normal nnn directed from the
left ventricle towards the aorta, and AAA0 be one of the commissures, AAA0 ∈M . Then
the free-boundary force acting on node QQQn is

FFF f−b
n = η1S0 ∑i(n) li

free

2Lfree
f ((QQQn−AAA0) ·nnn− (PPPn−NNN0) ·e2e2e2) (1.6a)

f (d) = max
(

1− 2(d +η3)

η2
,0
)

nnn (1.6b)

where S0 is the full area of the cusp and Lfree is the length of free boundary, ∑i(n) li
free

is the sum of lengths of all free boundary edges sharing QQQn at the initial flat config-
uration, and η1, η2, η3 characterize the penalty force and the depth of penetration
through the plane M .

1.3. Algebraic system with constraints

Let QQQ = (QQQT
0 ,QQQ

T
1 , ...,QQQ

T
N−1)

T be the coordinate vector of all nodes (degrees of free-
dom) of the cusp triangulation. Given all the forces applied to the mesh nodes, we
can write down N equilibrium equations for the cusp:

FFFm
n + cbFFFb

n +FFF p
n +FFF f−b

n +
K−1

∑
k=0

FFFr,Ωk
n = 0, n = 0, . . . ,N−1 (1.7)
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where cb = 1 and cb = 0 for shell and membrane formulations, respectively, and Ωk,
k = 0, . . . ,K− 1 are K given constraint volumes. Equations (1.7) form a nonlinear
algebraic system

F (QQQ) = 0. (1.8)

We solve system (1.8) approximately using the inexact Newton method with the
line search strategy from package Kinsol [7] supplemented by a linear solver
MPT ILUC from the framework INMOST [28]. Note that the approximate solu-
tion of the equilibrium problem is used to move the cusp to the constraint volume of
the aortic root that we set and to weaken the local deformations of the cusps. Actu-
ally, we find a rough approximation QQQ∗ to the solution of (1.8), which requires a few
Newton iterations and provides a cusp with self-intersections. To avoid the latters,
we apply the collision solver proposed by Bridson et al [4] for robust collision res-
olution and get a state QQQ∗∗. The overall procedure is summarized in Algorithm 1.1.

Algorithm 1.1 Approximate solution of quasi-static problem (1.8), SolveQSEProb
initial guess GGG

1: Form nonlinear algebraic system F (QQQ) = 0
2: Solve approximately the system QQQ∗ = NonLinSolver(F , GGG)
3: Resolve self-intersections QQQ∗∗ = ResolveSelfIntersections(QQQ∗, GGG)
4: return QQQ∗∗

2. Suturing in surgical AVNeo procedure
Prior suturing in the surgical AVNeo process, one prepares a cut from the treated
pericardium template with marked points for making stitches (see Fig. 2). The line
drawn through the marked points forms the cusp suturing line (CSL). The suturing
process is represented by the following algorithm [1]:

1. Drop the cusp into the aorta (see Fig. 2b). Make the first suture passing
through the center of CSL and the center of the corresponding future aortic
suture line (ASL) on the aortic ring (see Fig. 3a).

2. Suture a half of the cusp:

(a) Make sutures passing through the marked points on the template and the
future ASL so that the ratio of the distance between the stitches on the
template to the distance between the stitches on the aortic ring is 3:1. At
the same time, push the template down underneath the remnant annulus
(see Fig. 3b).

(b) When the remainder of the CSL half length is equal to or slightly greater
than the remainder of the future ASL half length, start making the su-
tures between the cusp and the aortic ring equidistant (see Fig. 3c).
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(c) Make the last stitch passing through a point that is located at a distance
of 5 mm from the free edge of the cusp and 2 mm below the highest
point of the commissure on the ring.

(d) Adjust the position of the cusp towards the aortic wall.

3. Repeat Step 2 for the second half of the template.

4. Repeat Steps 1 and 2 for the half of the second cusp approaching the first
cusp.

5. Creating a commissure between the first and second cusp. After this step, the
end of the CSL will be brought to the end of the ASL (see Fig. 3d)

6. Repeat Step 2 for the second half of the second template.

7. Repeat Steps 1, 2, and 5 for the first half of the third template, and then Steps
2 and 5 for the second half of the third template.

8. Adjust the positions of each commissure to ensure the best configuration and
coaptation of the tricuspid valve (see Fig. 1b) .

Important features of this procedures are:

• Nonlinear CSL-to-ASL mapping. The mapping of the points of CSL to ASL
is non-linear in terms of the curve lengths, although the curve length distortion
function resulting from the mapping is piecewise constant.

• Fixed near-CSL tangent half-plane. Lowering the template into the left ventricu-
lar cavity in Step 1 and pushing the template down in Step 2 results in lining
of the sutured cusp part near the CSL on the aortic surface so as to provide
more downward deflection towards the left ventricle. This should be taken
into account when setting boundary conditions in shell models, as this may
have a significant impact on the resulting coaptation (for example, an incor-
rectly chosen lining direction led to inappropriate coaptation results for the
shell model [29]).

• Complex non-planar cusp-to-cusp contact surfaces (see Fig. 1).

3. Virtual suture algorithm
3.1. Input geometry

Let an initial planar template Si
c of the ith cusp, i = 0,1,2, be defined by two bound-

aries rrri
csl(t) : [0,1]→R2 and rrri

free(t) : [0,1]→R2 where the first boundary represents
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(a) (b) (c) (d)

Figure 3. Procedure of suturing in surgical AVNeo. The pink dotted line shows the future aortic
suture line of the cusp. Subfigure (a) shows the process of making the first suture; subfigures (b)
and (c) demonstrate the process of making sutures with a distance ratio between stitches on the cusp
and the aortic ring 3:1 and 1:1, respectively; subfigure (d) shows the result of making a commissure
between two cusps. All photos are modified screenshots from [21].

CSL and the second one is the free edge of the cusp (see Fig. 4a). These curves sat-
isfy to rrri

csl(0) = rrri
free(0), rrri

csl(1) = rrri
free(1) and do not self-intersect or intersect each

other at internal points. We denote by H i the ith cusp thickness.
Let a constraint volume Ωa be a truncated part of the aorta including the aortic

root, ∂Ωa = Sr∪Si∪So, where Sr is the internal surface of the aortic root, Si and So
are the inlet and outlet cross-sections of Ωa (see Fig. 4b).

Functions rrri
asl(t) : [0,1]→ R3∩Sr, i = 0,1,2, representing ASL of the ith cusp,

parameterize continuous curves without self-intersections, the distance between
curves rrri

asl and rrr j
asl, i 6= j, is not less than H i j = (H i +H j)/2. The parameteriza-

tion of curves rrri
asl is chosen so that when looking at the aortic lumen towards the

left ventricle, the point on the curve moves counterclockwise with an increase of
the parameter and the indexing of the curves is such that both points rrri

asl(1) and
rrr(i+1)%3

asl (0) form a common commissure (where ‘%’ means the remainder of the
division).

To specify the clamped boundary condition, we introduce the tangent direc-
tion of rrri

asl curve τ i
asl(t) = (drrri

asl/dt)
/
||drrri

asl/dt|| , the unit normal nnnSr to the sur-
face Sr directed inside the region Ωa. Then we define the field bbbi

asl(t) : [0,1]→ S2,
which is required to specify the clamped boundary condition, as bbbi

asl(t) = τ i
asl(t)×

nnnSr(rrr
i
asl(t)). The clamped boundary condition at a point of the sutured boundary

rrri
asl(t) defines the tangent half-plane to the cusp passing through this point as fol-

lows:
rrrt(u,v) = uτ

i
asl(t)− vbbbi

asl(t), u ∈ R, v ∈ R+. (3.1)

The introduced objects are defined via their discrete counterparts: Si,h
c is a planar

triangulation of the ith cusp, rrri,h
csl(t) and rrri,h

free(t) are piecewise linear curves, Sh
r is

a triangulation of the aortic root surface, rrri,h
asl(t) is a piecewise linear curve with

nodes on Sh
r , bbbi,h

asl is a piecewise constant function. Hereinafter we omit superscript
h indicating discrete objects.

We also introduce auxiliary objects (see Fig. 4b):
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(a) (b)

Figure 4. Input geometry. Subfigure (a) shows the schematic geometry of the ith initial planar cusp
template where the green line is CSL and the blue line is the free boundary. Subfigure (b) depicts a
constraint volume of the aortic root. The dashed parts of the lines indicate invisible parts of the lines.
The dark green and violet lines shows the boundaries of the inlet and outlet parts, respectively. The
red lines are ASLs; the yellow line is a cut of the aortic root by the plane of commissures. The zoomed
section shows the position of the commissure point A0 with respect to the ends of the cusp suturing
lines.

• P0,i = rrri
asl(0), P1,i = rrri

asl(1) are the local points of commissure of the ith cusp;

• N0,i = rrri
csl(0), N1,i = rrri

csl(1) are the ith cusp corners;

• Ai = (P1,(i+1)%3 +P0,(i+2)%3)/2 is the midpoint of the commissure;

• MMM = aff(A0,A1,A2) is the plane of commissures with the normal
nnn = (A1−A0)×(A2−A0)

||(A1−A0)×(A2−A0)|| ;

• R is the radius of the circumscribed circle for triangle A0A1A2;

• lenrrr(t) = L(rrr, t) =
∫ t

0 ||drrr(t ′)/dt ′||dt ′ is the length function of curve rrr;

• (ϕnatural ◦rrr)(s) = rrr(len−1
rrr (s)) is the natural parameterization of curve rrr;

• (ϕscl(a)◦rrr)(s) = rrr(s ·a) is the a-scaling parameterization of curve rrr.

Whenever possible, for the sake of brevity we shall omit the cusp index and write
Sc, rrrcsl, rrrfree, H, bbbasl, N0, N1, P0, P1.

3.2. Suturing a cusp

At this step, we impose boundary conditions on the cusp template and expand it
deep into the aorta.

Given the midpoint K of segment N0N1, the midpoint L of segment A1A2 and an
initial planar cusp mesh S(1,0)c , we perform the following steps (see Fig. 5):

1. Shift and rotate S(1,0)c to get a planar mesh S(1,1)c with the following properties
(see Fig. 5a):



10 A. A. Liogky

(a) (b) (c) (d)

Figure 5. Step 1 of the virtual suturing of the 0th cusp. The black circle passing through the green
points of the commissures, lies in the plane MMM. The red line is ASL, the green line is CSL, the blue line
is the free boundary of the cusp. Subfigure (a) shows the initial planar cusp position after shifts and
rotations. Subfigure (b) depicts the setting of the new position of the cusp sutured line. Double-sided
arrows show cusp-to-aorta suture line distance relations. Subfigures (c) and (d) demonstrate results of
solving quasi-static elastic problem in the membrane and shell formulations, respectively.

• Segment N0N1 lies in the plane MMM parallel to A1A2, and ‖N0A1‖ <
‖N1A1‖.
• Vector

−→
LK is orthogonal to N0N1 and (

−→
LK,
−−→
A1A0)> 0.

• The plane of S(1,1)c is orthogonal to MMM and is oriented so that CSL and
ASL are in the same half-space of the plane MMM.
• ‖−→LK‖ = (c0 + c1k)R, where k is a minimal non-negative integer such

that S(1,1)c does not intersect curve rrrasl(t), c0 = 1.0 and c1 = 0.1 are
predefined constants.

2. Suture CSL to ASL.
Surgical suturing in AVNeo procedure defines cusp-to-annulus stitching ratio
αsl = 3.0 near the middle of the suture line and αsl = 1.0 near the ends of
the suture line. We assume that for lengths la of ASL and lc of CSL it holds
α
−1
sl < Jsl = la/lc < 1, otherwise the selected template is too small or too

large. For rrrasl(s) = (ϕnatural ◦rrrasl)(s) and rrrcsl(s) = (ϕnatural ◦rrrcsl)(s) the cusp-
to-annulus mapping may be expressed as

ϕ : rrrcsl(s)→ rrrasl(γ(s))

with a positive monotone function γ : [0, lc]→ [0, la]. Then the curve length
distortion function is

χ(s) =
||drrrasl(γ(s))||
||drrrcsl(s)||

=
|| drrrasl

dγ

dγ

ds ||

|| drrrcsl
ds ||

=
dγ

ds
.

We introduce the normalized length distribution function ρ(ϑ) : [0,1]→ R+

such that

ρ(ϑ) =
lc
la

χ(ϑ lc) = J−1
sl ·χ(ϑ lc)∫ 1

0
ρ(ϑ)dϑ =

∫ 1

0

lc
la

χ(ϑ lc)dϑ =
1
la

∫ lc

0
χ(s)ds =

γ(lc)− γ(0)
la

=
la−0

la
= 1.
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The cusp-to-annulus stitching ratios (χ(0) = χ(1) = 1.0, χ(1
2 lc) = α

−1
sl ) and

the normalization conditions

ρ(0) = ρ(1) = J−1
sl , ρ(0.5) = α

−1
sl J−1

sl ,
∫ 1

0
ρ(ϑ)dϑ = 1

provide the following function

ρ(ϑ) =

J−1
sl , |ϑ −0.5|> αsl(1− Jsl)

2(αsl−1)
α
−1
sl J−1

sl , otherwise.

Finally, for each S(1,1)c -mesh node n lying on the CSL-boundary, we calculate
its parameter sn

csl with respect to the piecewise linear rrrcsl curve and set a new

position rrrn = rrrasl(γ
n) of the node, where γn = la

∫ sn
csl/lc

0 ρ(ϑ)dϑ . The resulting
mesh is denoted by S(1,2)c .

3. Solve the static equilibrium problem in the membrane formulation.
Impose Dirichlet boundary condition on the sutured boundary of the cusp
and the free boundary condition on the other part of boundary, apply the dia-
stolic pressure force (1.4) and the free-edge-penalty force (1.6) to avoid the
fall of the cusp inside the aorta. Solve approximately the problem of quasi-
static equilibrium of the cusp in the membrane formulation; to this end, apply
the hyperelastic nodal force method with the St. Venant–Kirchhoff potential
(1.3). The resulting nonlinear system is solved with the initial guess S(1,2)c and
the initial unloaded configuration of the cusp S(1,0)c . The resulting mesh is de-
noted by S(1,3)c . Since the cusp may undergo large displacements, the collision
solver may fail. In this case one solves a sequence of similar problems, where
Dirichlet condition on CSL-boundary is sequentially shifted from position on
S(1,1)c to position on S(1,2)c .

4. Solve the static equilibrium problem in the shell formulation.
The clamped boundary condition on the sutured boundary uses vector field
bbbasl interpolated from ASL to CSL at Step 2. To take into account the clamped
boundary condition, solve approximately the quasi-static equilibrium prob-
lem of the thin Kirchhoff–Love shell using the same hyperelastic potential
(1.3) and get the surface mesh S(1,4)c . The final mesh is denoted by S(1)c .

3.3. Contact constraints

In order to guarantee that three deformed cusps do not intersect each other, we
define three nonintersecting constraint volumes. Repulsion force (1.5) makes each
cusp to belong to its constraint volume and thus provides their non-intersection.
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(a) (b)

Figure 6. Subfigure (a) shows the intersection of a tightly closed tricuspid aortic valve with the plane
of commissures and auxiliary geometric constructions. The blue lines depict slices of the cusp surfaces
and C is the point of cusp triple contact. The black circle centered at point O passes through the
red points of the commissure. Subfigure (b) shows position of parametric curves yyyα

10 and yyyα
20 for

α = 0, 0.5, 1.0.

The constraint volume is defined by contact surfaces which are formed by their
intersections with the plane of commissures MMM. The latter three curves are defined
by the position of point C of the triple contact of the cusps on the plane MMM (see
Fig. 6a). If point C of the triple contact does not exist, the valve is incompetent
and its assessment makes no sense. Figure 6a shows basic geometric objects on the
commissural plane MMM: the intersection of MMM and the contact surface of the ith and jth
cusp is a curve ÃkC of length ck, the length of the intersection of MMM and the ith cusp
is li, the length of segment A jAk is ai. Hereinafter (i, j,k) is a positive permutation
of numbers (0,1,2). The following geometric relations hold:

l0 = c1 + c2

l1 = c2 + c0

l2 = c0 + c1

⇔ ck = (li + l j)/2− lk.

It is clear that li should be geometrically consistent, otherwise ck may be negative.
The ideal position of the contact surfaces of the cusps (which surgeons are trying

to achieve in surgical AVNeo Step 8, see Section 2) makes each cusp aligned along
the corresponding intersection curve. Finally, since the cusp is deformed so that it
does not experience large billowing towards the left ventricle, we can assume that
the intersection curve mapped onto the undeformed planar configuration of the cusp,
is close to the segment N0,iN1,i and therefore its length is known: li = ||N0,iN1,i||.

3.3.1. The common point of virtual contact surfaces on the plane of commis-
sures. For length bi of segments AiC the relations bi 6 ci hold and point C belongs
to triangle4A0A1A2, otherwise the valve is incompetent. These two conditions give
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restrictions on admissible positions of point C. The next proposition defines point C
explicitly.

Proposition 3.1. Let point Ki divide the segment A jAk in the ratio c j to ck and
vi = ||A jAk||/(c j + ck). Then

1. if for some i we have ||AiKi||< vici, then C =Ki and ||A jC||6 v∗c j, j = 0,1,2,
with v∗ = vi;

2. if for some i = 0,1,2 we have ||AiKi|| > vici, then there exists a unique C ∈
4K0K1K2 ⊂4A0A1A2 satisfying the triple equality

||A0C||
c0

=
||A1C||

c1
=
||A2C||

c2
(3.2)

and ||A jC||6 v∗c j, j = 0,1,2, with v∗ = ||AiC||/ci, i = 0,1,2.

Remark 3.1. If 4A0A1A2 is not an obtuse triangle and c0 = c1 = c2, then C is
the center of the circumscribed circle.

Although Proposition 3.1 assures existence of C such that bi 6 v∗ci, for v∗ > 1
such point corresponds to an incompetent valve with possible regurgitation due to
small sizes of the cusps. The next proposition gives sufficient conditions for com-
petent valves.

Proposition 3.2. Let li = αai with certain factor α > 0 be chosen for i = 0,1,2.
Then

1. the triple contact point C satisfies (3.2) and its position does not depend on
α;

2. if α > 2/
√

3, then v∗ 6 1, i.e., bi 6 ci, i = 0,1,2.

Remark 3.2. Under assumptions of Proposition 3.2, point C is the 1st dilation
center of the4A0A1A2 [10, X(3513)].

Proposition 3.2 suggests to choose the cusps such that li = αai with α > 1.16
which provides existence of the triple contact point C.

3.3.2. Virtual contact surfaces. Virtual contact surfaces are repulsion surfaces
in the ‘virtual suturing’ algorithm which allows us to place the cusps independ-
ently within the aortic lumen while ensuring that there is no overlap between the
cusp surfaces. Intersection of the contact surfaces with the plane of commissures is
given by ÃiC curves (see Fig. 6). According to clinical evidence, these curves have
a consistent deflection clockwise or counterclockwise. For definiteness, we further
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assume that the deflection is counterclockwise, i.e., the curve ÃiC is located inside
the corner segment AiCA j with j = (i+1)%3. Let Bi be a point located at distance
di = min(R, ||CA j||) from C and lying on the ray CA j if the angle ∠AiCA j 6 π/2
and on the ray lying inside the corner segment and orthogonal to the segment CAi
otherwise (see Fig. 6a). We consider a Bezier curve yyyi = yyyσ∗

i (t), t ∈ [0,1]:

Y 0
i =C, Y 1

i =C+σ(Bi−C), Y 2
i =C+

σ

ω +σ
(Ai−C), Y 3

i = Ai (3.3a)

yyyσ
i (t) =

3

∑
k=0

Y k
i b3

k(t), bn
k =

n!
(n− k)!k!

tk(1− t)n−k (3.3b)

where ω is an adjustable positive parameter (ω = 0.5 hereinafter), and

σ
∗ = min(argmin

σ>0
|L(yyyσ

i ,1)− li|). (3.3c)

The Bezier curve is linearly extended for t > 1:

ỹ̃ỹyi(t) =

{
yyyσ

i (t), t ∈ [0,1]
Ai +(Ai−C)(t−1), t > 1.

If the shape of the aorta root is close enough to cylindrical, the surface defined
by two parameters t,u:

GGGi(t,u) = ỹ̃ỹyi(t)−unnn, t > 0, u ∈ R (3.4)

does not intersect the suturing lines r j
asl and rk

asl. In this case GGGi is a proper contact
surface. Otherwise, the definition of the surface should be modified; the general
approach for defining GGGi will be presented elsewhere.

The surface constructed by formula (3.4) may deviated considerably from a
plane and the numerical solution of the quasi-static equilibrium problem with the
repulsion forces may fail. To cope with this, we approach to the constructed surface
GGGi(t,u) sequentially, starting from a planar surface. Let us consider the following
family yyyλ

i j of curves, i, j = 0,1,2 (see Fig. 6b):

yyyλ
i j =

3

∑
k=0

Y k
i j(λ )b

3
k , Y k

i j(λ ) = λY k
i +(1−λ )Zk

i j (3.5a)

ỹ̃ỹyλ
i j =

{
yyyλ

i j, t ∈ [0,1]
Ai +(Ai−Y 2

i j(λ ))(t−1), t > 1
, Z0

i j = A j, Z1
i j =

2
3 A j +

1
3 Ai, (3.5b)

Z2
i j =

1
3 A j +

2
3 Ai, Z3

i j = Ai.

The family of curves ỹ̃ỹyλ
i j generates the family of surfaces

GGGλ
i j(t,u) = yyyλ

i j(t)−unnn, t > 0, u ∈ R. (3.6)
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The surface GGG0
i j is a half-plane, the surface GGG1

i j is a contact surface. Iterative in-
creasing of parameter λ from 0 to 1 with subsequent solution of the quasi-static
equilibrium problem accounting the repulsion surface GGGλ

i j, provide small displace-
ments of the cusps between successive iterations and the overall robustness of the
suturing algorithm. The sign distance to a contact surface GGGλ

i (t,u) can be calculated
efficiently, since finding real roots of the 5th degree polynomial is provided by the
Jenkins–Traub algorithm [9].

3.4. Contact and volume constraints algorithm

Let thresholds 0 < vmin < 1 and vmax > 1 be given. We summarize the virtual sutur-
ing algorithm as follows.

1. Find point C and parameter v∗ in4A0A1A2 satisfying Proposition 3.1.
If the solution does not satisfy (3.2) then the given cusps are unable to form a
normally functioning tricuspid valve. If v∗> vmax, then the valve can not close
tightly that results in regurgitation. If v∗ < vmin, then the cusps are too large
for the aorta. In both cases the provided configurations of the cusps should be
discarded.

2. Apply the contact surface constraint.
Denote the current guess to the cusp surface mesh by S(2,1,0)c = S(1)c . Sequen-
tially increase parameter λm from λ1 = 0 to λM = 1 and for each λm solve
the problem of quasi-static equilibrium of the cusp with repulsive forces (1.5)
from the surfaces GGGλ

10 and GGGλ
20 using S(2,1,m−1)

c as the initial guess denote the
result as S(2,1,m)

c . Set S(2,1)c = S(2,1,M)
c .

3. Apply the aortic root constraints.
Compute the sign distance function for the surface of the control volume Ωa.
Until the cusp surface is entirely within the control volume Ωa, iteratively
increase parameter η1 in (1.5) and solve the quasi-static equilibrium problem
of equilibrium with repulsive forces from the surfaces GGG1, GGG2, and SDF-forces
to push the cusps into the domain Ωa, using the result of the previous iteration
as the initial guess. Denote the resulting mesh of the cusp after the iterations
as S(2)c := S(2,2)c .

The first step of the suturing algorithm ‘sutures’ the cusp to a given line without
imposing restrictions on the cusp displacement from other cusps or the aorta. Then
an allowable region is constructed for each cusp. The algorithm places the cusp in
this region at the second step and in the aortic root region at the third step.
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(a) (b) (c)

Figure 7. Subfigure (a) shows geometry of type A aortic suture line unfolding, AB and MN are
straight segments, and B̆CM arc is a half of an ellipse; Subfigure (b) shows geometry of type B aortic
suture line unfolding. The line includes straight segments AB and MN, B̄CD arc (a part of a half of an
ellipse B̄CK), and 4th order Bezier curve D̃M determined by points D, P1, P2, P3, M; Subfigure (c)
describes the geometry of cusp templates with parameters L f , H f , Hi, Rs. ˚�ABCDE is cusp sutured line
and ĀFE is the free boundary of the cusp.

4. Numerical experiments

4.1. Initial geometry

The present section presents three numerical experiments, which demonstrate per-
formance of the proposed algorithm. In all cases, the aortic root is considered to
be an ideal cylinder with radius R = 12 mm. The commissure points A0,A1,A2 are
chosen on the cross-section of the cylinder so that the sides of the triangle A0A1A2
are related in a chosen proportion a0 : a1 : a2. The thickness of the cusps is assumed
to be H = 0.5 mm, and the distance between adjacent ends of the aortic suture lines
(ASL) is also equal to H.

ASLs are defined by their unfolding from a cylindrical surface to a plane, and
two types of lines are considered, type A line (see Fig. 7a) and type B line (see
Fig. 7b). In the experiments the ASL parameters Hc = 2.5 mm and Hb = 10 mm are
fixed, R = 12 mm is the radius of the aortic root, as = 0.8 for the type B curve and ϕ

is determined by the ratio of the sides of the commissural triangle and the distance
between the ends of adjacent ends of the ASLs for every sutured line (see Figs. 7a
and 7b).

The geometry of the cusps is given by a 4-parameter template (see Fig. 7c), with
parameters H f = 2.5 mm and Hi = 11.5 mm. The triangular mesh for each cusp has
mesh size h = 0.7 mm.

All experiments exploit the same parameters for the nodal forces and the solvers
(see Table 1). Parameter λm = 0.1m, m = 0, ...,10.
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Table 1. Nodal forces parameters and solver’s parameters.

Elastic force E
1000 kPa

pressure force P
8 kPa

free-edge force η1 η2 η3
80 kPa 0.1 mm 0 mm

aortic domain η1 η2 η3
sdf-force 8 kPa 0.5 mm 0.5 mm

contact surface η1 η2 η3
sdf-force 16 kPa 0.1 mm 0 mm

Nonlinear solver (KinSol) Linear solver (INMOST)

SolveStrategy LineSearch SolverType mpt iluc
NumMaxIters 50 drop tol 8e−3
ScaledStepTol 1e−5 reuse tol 8e−4
FuncNormTol 1e−5
MaxSetupCalls 1

4.2. Experiment 1: suturing large symmetric cusps

In this experiment, we use three identical cusp templates with L f = 39 mm and
Rs = 16.5 mm (see Fig. 7c), sutured along ASL of type A, so that a0 = a1 = a2.

For such configuration, the virtual contact planes method fails: the Newton
method diverges. At the same time, the proposed suturing algorithm ‘sutures’ the
cusps successfully (see Fig. 8a). Moreover, the resulting configuration is already
close to the diastolic configuration of the valve.

4.3. Experiment 2: suture of different cusps

We consider three different cusp templates suturing to ASL of type B of different
sizes, with the sizes of the cusps being specifically inconsistent with the sizes of the
ASLs. Namely, we choose a0 : a1 : a2 = 8 : 9 : 6 and Li

f = γ il f , Ri
s = γ irs, rs = 33 mm,

l f = 39 mm, where γ0 : γ1 : γ2 = 6 : 4 : 5 and γ1 = 1. The proposed algorithm coped
with the placement of the cusps inside the aortic region without intersections (see
Fig. 8b), however, the resulting state is not very close to the diastolic configuration.
Nevertheless, the resulting state satisfies the requirements for the suturing algorithm
and therefore can be used for further work.

4.4. Experiment 3: ‘quasi-optimal’ cusps

Proposition 3.2 sets the ‘quasi-optimal’ intercommissural cusp length as Li
f =

2ai/
√

3. We performed calculations with cusps of this length, taking the ratio
Li

f : Ri
s = 13 : 11 fixed and choosing a0 : a1 : a2 = 6 : 4 : 5 for ASL curves of type

A. The resulting contact surface in this case is very close to the plane and at the
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(a) (b) (c)
Figure 8. Results of three numerical experiments. The vertical columns show the results for virtual
‘suturing’ of (a) large equal cusps, (b) cusps of different inconsistent sizes, and (c) cusps with quasi-
optimal intercommissural lengths. The horizontal rows show the dorsal and ventral views of the valve,
the surrounding cylindrical aorta is not shown.

same time the dimensions of the cusps are such that they provide a tight closure of
the entire valve (see Fig 8c). This means that the geometric relation formulated in
Proposition 3.2 can be used to select the optimal geometry of the cusp templates.

All the above results show the presence of folds on the abdominal part of the
template near the sutured border due to the nonlinear CSL-to-ASL suturing map. In
surgical practice similar folds are observed as well.

5. Limitations
Despite the promising results, there are a number of shortcomings in this work. We
did not investigate the suitability of the resulting ‘sutured’ states for carrying out
further calculations on them. There may be difficulties associated with the collision
processing which is inevitable for finding the diastolic configuration of the valve.
We formulated the contact surfaces and carried out numerical experiments for an
ideal cylindrical aortic root. A real geometry may produce new problems that were
not identified in this article. Finally, in the proposed algorithm, the contact surface
is imposed through the sequence of surfaces approaching to the required one. In
the case of an arbitrary geometry, computation of a sign distance function for each
surface may be an unacceptably computationally expensive operation.

6. Conclusions
We proposed the ‘virtual suture’ algorithm for initial placement of the aortic neo-
cusps in which they are immersed in the lumen of the aortic root without neo-valve
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prolapse, do not intersect with each other or with the surface of the aorta, the po-
sition of the cusp suture boundary satisfies the specified boundary conditions. The
numerical experiments on the suturing of large cusps in the aortic region demon-
strated the superiority of the proposed method over the method of virtual contact
planes. The method is capable to place cusps of various sizes along ASLs with in-
consistent sizes.

Acknowledgment: The author is grateful to Yuri Vassilevski and Victoria Salam-
atova for fruitful discussions and valuable comments.
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