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Application of minimum description length criterion
to assess the complexity of models in mathematical
immunology

D. S. Grebennikov∗†‡, V. V. Zheltkova ∗†§, G. A. Bocharov ∗†§

Abstract — Mathematical models in immunology differ enormously in the dimensionality of the state
space, the number of parameters and the parameterizations used to describe the immune processes.
The ongoing diversification of the models needs to be complemented by rigorous ways to evaluate
their complexity and select the parsimonious ones in relation to the data available/used for their cal-
ibration. A broadly applied metrics for ranking the models in mathematical immunology with respect
to their complexity/parsimony is provided by the Akaike information criterion. In the present study,
a computational framework is elaborated to characterize the complexity of mathematical models in
immunology using a more general approach, namely, the Minimum Description Length criterion. It
balances the model goodness-of-fit with the dimensionality and geometrical complexity of the model.
Four representative models of the immune response to acute viral infection formulated with either or-
dinary or delay differential equations are studied. Essential numerical details enabling the assessment
and ranking of the viral infection models include: (1) the optimization of the likelihood function, (2)
the computation of the model sensitivity functions, (3) the evaluation of the Fisher information matrix
and (4) the estimation of multidimensional integrals over the model parameter space.

Keywords: Model selection, information criteria, minimum description length, geometric complexity,
maximum likelihood estimates, delay differential equations
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Mathematical modelling of infectious diseases in humans and experimental animal
systems is a rapidly expanding area of applied mathematics [7]. The recently ob-
served strong boost in infection modelling is driven by the SARS-CoV-2 pandemic
which is a medical problem for the human population worldwide. Mathematical
models are used to link various phenotypes of infection dynamics with the paramet-
ers of virus spreading and immune responses as well as to analyze plausible ther-
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apies ahead of their clinical applications [17]. A comprehensive set of references
and discussion can be found in [11].

The collection of the so far developed mathematical models consists of a broad
set of systems including systems of ODEs, reaction-diffusion-type PDEs and hy-
brid models. The models differ enormously in the specific parameterizations used
to describe specific processes, the dimensionality of the state space and the number
of parameters. These features determine a trait known as the model complexity. The
ongoing model expansion needs to be complemented by rigorous ways to evalu-
ate their complexity and select the parsimonious ones in relation to the data avail-
able/used for their calibration. These days, a broadly applied metrics for ranging the
models in mathematical immunology with respect to their complexity is provided by
Akaike information criterion [3, 5]. A more general framework, i.e., the Minimum
Description Length (MDL) principle [20], has not yet become a universal tool for
model evaluation and selection. Some applications of the MDL principle to ranking
simple models of immune cell viability can be found in [8].

The Fisher information (FI) is a key element in the analysis of the model com-
plexity and the estimated parameter uncertainty. We discuss in detail the numerical
aspects of computing the FI and the MDL in Section 2. A first systematic application
of the MDL principle to the analysis of four representative models of the immune
response to acute viral infection formulated with ordinary- and delay differential
equations (respectively, ODEs and DDEs) is presented in Section 3. Finally, the
challenges and future direction of the computational assessment of the model com-
plexity using the MDL principle are discussed in Section 4.

1. Methods

The models of the experimental virus infection analyzed in this paper are based
on either ordinary differential equations (ODEs) or delay differential equations
(DDEs), and have the following general structure:

d
dt

y(t, p) = f (y(t, p),y(t− τ, p), p)≡ f (y,yτ , p), t ∈ (0,T )

y(t, p)≡ h0, t ∈ [−τ,0), y(0, p)≡ y0

(1.1)

where state vector y = [y1, . . . ,yM]∈RM is a model solution which we are interested
to obtain during the time course of infection (0,T ), p = [p1, . . . , pL−1,τ] ∈ RL is a
vector of model parameters, which includes a single delay τ > 0 (τ = 0 corresponds
to the ODE model), h0 and y0 are a constant history function and an initial value,
respectively. More generally, we could consider any piecewise-continuous initial
function h0(t, p) and a finite number of constant delays τk, but for simplicity we
will stick with form (1.1).
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1.1. Estimation of model parameters

Given a set of experimental data
{

ŷi
j
}

for model variables i = 1, . . . ,M at time mo-
ments t j ∈ (0,T ), j = 1, . . . ,N, one can formulate an inverse problem to estimate the
model parameters. This typically involves minimization in the parameter space of
some objective function Φ(p) which measures the discrepancy between the experi-
mental data and the model solution. A classical example of the objective function is
the one used in the ordinary least squares (OLS) method:

ΦOLS(p) = ΦOLS(p, ŷ) =
N

∑
j=1
‖y(t j, p)− ŷ j‖2. (1.2)

More general framework for obtaining the point estimates for model paramet-
ers is the maximum likelihood approach. Instead of minimizing the discrepancy,
maximum likelihood estimation (MLE) involves maximizing the likelihood func-
tion, i.e., the function which defines the probability to observe the experimental
data with a given model (a model solution with given parameters). The formulation
of the likelihood function depends on the assumptions about the distribution of the
noise in experimental data. Note that the OLS estimates and MLE are equivalent
under the following assumptions [3]:

(a1) the errors between the true model solution and experimental data are inde-
pendent at successive time moments t j;

(a2) the errors in the components of ŷ j are independent;

(a3) the errors have the Gaussian distribution with the constant variance σ2:

ŷ j ∼ N(y(t j, p),Σ j), Σ j = diag{σ , . . . ,σ}.

Under assumptions (a1)–(a3), the likelihood function is defined as

L(p) = L(ŷ|p) =
N

∏
j=1

1√
2πσ

exp
(
− 1

2σ2 ||y(t j, p)− ŷ j||2
)
. (1.3)

The logarithm of likelihood function (log-likelihood function) is linked with the
objective function in the following way:

logL(p) =−1
2

nobs log(2π)− 1
2

nobs log(σ2)− 1
2σ2 ΦOLS(p) (1.4)

where nobs is the total number of experimental data points (nobs = MN for complete
data sets).

The variance σ2 can be estimated using the maximum likelihood method as
well. The estimate [3] is given by

σ̂
2 =

1
nobs

ΦOLS(p̂) (1.5)
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where p̂ = argminp ΦOLS(p) is the vector of identified parameters. We will use
this estimate in the likelihood function (1.3), which gives the following number of
degrees of freedom: ndf = L+1.

We will use parameter values already identified using MLE in [3]. These estim-
ates are provided in Table 2 for each model. Other types of objective functions and
likelihood functions can be considered, as done in [3]. We will consider only the
basic ones ((1.2) and (1.3)) in this research.

1.2. Information criteria for model selection

Information criteria (IC) are used to rank the models based on the balance between
their goodness-of-fit and complexity to favour more generalizable models and to
prevent overfitting [18]. To select an optimal (parsimonious) model among a set of
competing models, one needs to choose a model with minimal criterion value (in-
dicator). There are different IC which provide a compact formula for the indicators.
They are derived under certain asymptotic approximations of the general notion of
Kullback-Leibler distance between the true probabilistic model (which may not be
present among the competing models) and the model under consideration (defined
by its likelihood function). In practice, the most commonly used criterion is the
Akaike IC (AIC), as well as its correction for small sample sizes AICc, which are
defined for model Mk (see [3]) as

µAIC(Mk) =−2logLMk(ŷ|p̂k)+2ndf

µcAIC(Mk) =−2logLMk(ŷ|p̂k)+2ndf +
2ndf(ndf +1)
nobs−ndf−1

.
(1.6)

One can see that AIC provides the parsimony by penalizing the goodness-of-fit
(proportional to the negative log-likelihood function) with the number of estimated
model parameters, i.e., the complexity of the model. Other similar IC can be applied,
e.g., the Bayesian IC (BIC), which includes the penalty term ndf log(nobs) instead of
2ndf. In both cases, the model complexity is related to the dimensionality of the
problem.

In this work, we aim to compute more general indicator, which not only ac-
counts for the goodness-of-fit and the dimensionality of the problem, but also for the
so called geometric complexity of the model. The theory of minimum description
length (MDL) criterion [12] is based on the concepts of Kolmogorov complexity
and Kolmogorov structure functions [13]. In our context, the description length lk
of model Mk can be defined through the normalized maximum likelihood (NML)
function [15] as

lk =− log pNML(ŷ|Mk) =− logLMk(ŷ|p̂k(ŷ))+ log
∫

Ω

LM j(ỹ|p̂k(ỹ))dỹ (1.7)

where the first term on the right-hand side is the measure of goodness-of-fit, and the
second term, the logarithm of the denominator of pNML, is the measure of model
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complexity. The NML function can be understood as the observed likelihood (for
given experimental data ŷ) normalized by the overall likelihood for all possible out-
comes for the state vector ỹ ∈ Ω treated as random variable. The second term can
be hard to compute, as it requires to obtain the ML estimates p̂k(ỹ) for each sample
in the state space ỹ. However, it can be approximated through the use of Fisher in-
formation approximation (FIA) [20] via the sum of dimensionality and geometrical
complexity terms. This gives the following indicator for the minimum description
length criterion:

µFIA(Mk) =− logLMk(ŷ|p̂k)+
1
2

ndf log
nobs

2π
+ log

(∫
Θ

√
det IMk(pk)dpk

)
(1.8)

where IMk(p) is the Fisher information for model Mk with parameters pk, and Θ is
the hypercube on the range of admissible parameter values.

The last term in (1.8), which we will denote as µgc, is called geometric com-
plexity due to its possible interpretation as a logarithm of the volume of model in
the space of probabilistic models [15]. The model volume is also used in Bayesian
inference as normalizing constant for the Jeffrey’s prior distributions on model para-
meters [15], which have an important property of being invariant to model repara-
meterizations.

1.3. Computation of the Fisher matrix

Fisher information, which needs to be computed to determine µFIA, is defined as the
variance of the sensitivity of the log-likelihood function with respect to parameters,
also called score. As the expected value of the score is zero, Fisher information
matrix I(p) ∈ RL×L is given by

I(p) = Ey∼Y

((
∂

∂ p
logL(y|p)

)2
)

=
∫

Ω

(
∂

∂ p
L(ỹ|p)

)2

L(ỹ|p)dỹ (1.9)

where (x)2 is understood as x · xT . Fisher matrix can be expressed, under certain
regularity conditions, as the expectation of the Hessian of negative log-likelihood or
objective function. For the given observation data ỹ, it is called the observed Fisher
matrix,

Iobs(p) = Iobs(p, ỹ) =− ∂ 2

∂ p2 logL(ỹ|p) = 1
2σ2

∂ 2

∂ p2 ΦOLS(p, ỹ) ∈ RL×L. (1.10)

Observed Fisher information (1.10) is usually used instead of the Fisher inform-
ation (1.9), for example, to obtain the confidence intervals for parameter values.
To compute Fisher information, i.e., the expectation of the observed Fisher matrix,
it can be beneficial to use (1.9) instead of (1.10), as in practice, computed Hes-
sian (1.10) can be non-symmetrical or non-positive definite matrix in some areas of
Ω. In addition, it is no longer required to compute the second-order derivatives for
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the model solution, but only the first-order sensitivities. The score, i.e., the sensitiv-
ity to the log-likelihood, is given by sensitivities S(t j) of the model solution at time
moments t j as

g(ỹ, p) =
(

∂

∂ p
logL(ỹ|p)

)
=

1
σ2

N

∑
j=1

S(t j)
T (y(t j)− ŷ j) (1.11)

where

S(t j) =
∂y(t j, p)

∂ p
= [S1(t j), . . . ,SM(t j)]

T ∈ RM×L.

By applying the chain rule to differentiate the original system (1.1), we obtain
the direct method to compute S(t). In matrix form, the system is given by

d
dt

S(t) =
[

∂ f
∂y

]
S(t)+

[
∂ f
∂yτ

]
S(t− τ)+

[
∂ f
∂ p

]
−
[

∂ f
∂yτ

][
0, . . . ,y′(t− τ)

]
(1.12)

where, for the equation on the sensitivity to the delay τ , SL(t) ≡ Sτ(t) we need to
compute the term y′(t−τ) in (1.12), which is nonzero for t > τ and can be computed
as

y′(t− τ) = f (y(t− τ),y(t−2τ), p), t > τ.

There are several alternative ways to obtain S(t). First, one can use the adjoint
method to compute sensitivities, which can be beneficial for the models with many
parameters (cf. [2, 16, 19]). Alternatively, one can use the automatic differentiation
software, such as the package ForwardDiff.jl [10] which we used for verification.
These packages track all the elementary operations made to numerically obtain the
solution and apply the differentiation rules to get the gradients and Hessians to the
solution. Finally, one can use the finite difference methods to obtain the approxima-
tion for S(t), or directly for (1.10), although this method can be prone to numerical
instabilities.

1.4. Computation of the geometrical complexity and description length of the
model

To compute Fisher information I(p), we need to estimate the expectation of g(ỹ, p) ·
g(ỹ, p)T over the state space (1.9). We use the properties of the expectation: by
sampling the random numbers yk distributed as π(y) = L(y|p) (for fixed p), the ex-
pectation can be approximated as the mean value of observable matrices at sampling
points:

I(p)≈ 1
n

n

∑
k=1

g(yk, p) ·g(yk, p)T .

For a deterministic estimator, we use the inverse transform sampling with So-
bol quasi-random low-discrepancy sequences. We generate Sobol sequences {sk}n

1,
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{zk}n
1, sk ∈ [0,1]n

V
obs , zk ∈ [0,1]n

E
obs where nV

obs and nV
obs are the number of observa-

tion points for variables V and E, respectively. The sample points yk = [Vk,Ek]
T are

obtained through the quantile functions of the independent Gaussian distributions
associated with the state vector components: Vk = F−1

V (sk), Ek = F−1
E (zk).

To compute the geometrical complexity term in (1.8), we need to take the in-
tegral of

√
det I(p) over the parameter space p ∈ Θ. Note that the parameter space

Θ is a part of model definition, and can be different for each model. In our case,
Θ = ∏

L
i=1[p

i
min, pi

max] is the same for all competing models, and determines the
admissible range of values for model parameters due to their biological meaning
(defined in Table 1). Once again, we use the quasi-Monte-Carlo integration method
with Sobol sequences generated on Θ.

Overall, we have two quasi Monte-Carlo methods, the internal one is used to
compute I(p) for particular p, the external one is used to compute the logarithm
of the geometrical complexity µgc. Depending on available computing resources,
one can employ different schemes to compute µgc in parallel. For external Monte-
Carlo loop, we distributed sequential streams along several nodes run in parallel, and
used batched multithreading for the internal loop. The estimate variances needed
to control the convergence of Monte-Carlo methods were combined from parallel
streams using the parallel version of the Welford’s online algorithm for variances.

2. Results
2.1. Competing mathematical models of the experimental virus infection

We analyze the models which were proposed in [3] to describe a data set of nobs =
15 data points for viral load and number of cytotoxic T lymphocytes (CTLs) in
spleen during experimental infection of mice with lymphocytic choriomeningitis
viruses (LCMV). Their MLE parameter estimation and ranking via Akaike IC was
performed in [3]. We apply the MDL criterion for their ranking by using a Fisher
information approximation indicator µFIA. The models and their characteristics are
described below.

• Model 1 (M1): Basic predator-prey model with logistic virus growth term:

d
dt

V (t) = βV (t)
(

1− V (t)
K

)
− γV (t)E(t)

d
dt

E(t) = b1V (t)E(t)−αEE(t).
(2.1)

• Model 2 (M2): Model 1 + saturation of CTL proliferation rate:

d
dt

V (t) = βV (t)
(

1− V (t)
K

)
− γV (t)E(t)

d
dt

E(t) = b2
V (t)E(t)

ϑSat +V (t)
−αEE(t).

(2.2)
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• Model 3 (M3): Model 2 + accounting for CTL division delay:

d
dt

V (t) = βV (t)
(

1− V (t)
K

)
− γV (t)E(t)

d
dt

E(t) = b3
V (t− τ)E(t− τ)

ϑSat +V (t)
−αEE(t).

(2.3)

• Model 4 (M4): Model 3 + accounting for CTL homeostasis:

d
dt

V (t) = βV (t)
(

1− V (t)
K

)
− γV (t)E(t)

d
dt

E(t) = b4
V (t− τ)E(t− τ)

ϑSat +V (t)
−αEE(t)+T ∗.

(2.4)

Models are subject to the following initial conditions:

V (0) = 200 virions, E(0) = 265 cells
V (t) = 0 virions, E(t) = 265 cells, t < 0 (for M3, M4).

(2.5)

The MLE parameters for each model are presented in Table 2, and the corres-
ponding numerical solutions (alongside the experimental data points) are shown in
Fig. 1. Note that we excluded from the analysis Model 2 due to its singularity with
respect to parameter ϑSat (the MLE estimate presented in [3], ϑSat = 3.23 · 10−176

was obtained without specifying constraints on the values of model parameters)
which makes obtaining the solution prone to numerical instabilities. More appro-
priate analysis of Model 2 should be made by transforming it to a stochastic model
with discrete state space, i.e., based on a Markov chain.

To calculate the geometrical complexity µgc, we need to specify the ranges of
admissible values for parameter space Θ. Note that the parameter space is a part
of model definition. The numerical solution of the model should also be stable and
biologically reasonable within the specified ranges. The lower and upper bounds for
model parameter values are specified in Table 1. They were derived from the range
estimates available in LCMV modelling studies [6, 14]. Note that we needed to nar-
row down the range for the CTL division time lag τ for models M3, M4 (see Table 1)
for numerical stability of these models at the extreme points of the parameter space.
For parameter ϑSat, the lower bound was set to machine epsilon 10−15 to avoid the
singularity in the corresponding model terms. In addition, during the Monte-Carlo
sampling process to compute µgc, at some sampling points the determinants of the
Fisher information matrices were slightly negative (deviated from zero less than on
machine epsilon), in which cases, these determinants were set to zero.

2.2. Ranking of models based on the Akaike and MDL information criteria

The results of the parameter estimation and evaluation of the Akaike and MDL
criteria for the four considered mathematical models are summarized in Table 2.
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Figure 1. Numerical solutions for the models M1-M4 with parameters given in Table 2.

Model 2 appears to describe the activation of the CTL response in a degenerate way
as the parameter ϑSat is effectively zero. This results in difficulties with comput-
ing the respective MDL value. The Akaike criterion ranks the models as follows:
M2, M3, M1, M4, suggesting that the second model (2.2) is the most parsimoni-
ous one. In contrast, the description length is smallest for the first one, ranking the
models as M1, M3, M4. The values of the indicators of the model complexities are
obtained under the assumption that the experimental measurements of the viral load
and CTL numbers follow the Gaussian distribution. Visually, the model M1 provides
a better match to the specific data set as compared to other models.

3. Conclusions
In this study, a computational framework has been elaborated to characterize the
complexity of mathematical models in immunology. The issue of dimensionality of
a model is one of the fundamental importance across many disciplines in life sci-
ences when dealing with processes for which their mathematical descriptions are
constructed rather than derived from first principles, in particular in mathematical
immunology [1, 7]. So far, for model ranking and selection the most popular ap-
proach makes use of the Akaike information criterion [9]. The more general MDL-
based approach balances the model goodness-of-fit with the model dimensionality,
in terms of the free parameters and the data sample size, and the geometrical com-
plexity of the model, i.e. the volume of distinguishable distributions that the model
can describe [4].
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Table 1. Definition of model parameters: biological meaning and admissible ranges.

Parameter meaning, units Range

β Virus exponential growth rate, day−1 (3,5)
K Carrying capacity for the virus, virions/spleen (106,108)
γ Virus elimination rate, 1/virions/day (10−6,10−3)
b1 CTL stimulation rate, 1/virions/day (10−8,10−6)
{bi}4

i=2 CTL stimulation rate, day−1 (0.1,10)
τ CTL division time, days (10−3,1),

narrowed to (10−3,0.1)
ϑSat Viral load for half-maximal CTL stimulation,

virions/spleen (0,10)
αE CTL death rate, day−1 (0.001,0.5)
T ∗ Homeostatic influx of specific CTLs into spleen,

cells/spleen/day (0,50)

Table 2. Maximum likelihood estimates of model parameters and the goodness-of-fit and complexity
measures of the corresponding models.

Parameters M1 M2 M3 M4

β 4.61 4.51 4.62 4.61
K 2.7 ·106 4.69 ·106 5.01 ·106 4.98 ·106

γ 1.39 ·10−6 8.04 ·10−5 3.29 ·10−4 2.96 ·10−4

bi 9.22 ·10−7 1.42 1.14 1.16
ϑSat − 0 (3.23 ·10−176) 8.79 ·10−6 4.59 ·10−6

τ − − 4.38 ·10−2 4.15 ·10−2

αE 9.29 ·10−2 2.01 ·10−1 1.02 ·10−1 1.02 ·10−1

T ∗ − − − 1.09

Indicators M1 M2 M3 M4

ΦOLS 6.54 ·1012 8 ·1011 1.71 ·1012 1.65 ·1012

σ̂ 6.6 ·105 2.3 ·105 3.4 ·105 3.3 ·105

ndf 6 7 8 9
µcAIC 467 443 464 478
µFIA 247 − 252 270

In future work, we would like to explore the Bayesian setting both for the in-
ference of these and other competing models and for their comparison using the
Bayesian Model Selection indicator, defined as

µBMS(Mk) =− log
∫

Θ

L(ŷ|pk)π(pk)dpk.

For the prior parameter distribution π(pk), the Jeffrey’s priors can be used which
depend on the geometrical complexity of models computed in this paper.

We have presented essential numerical details enabling the assessment and rank-
ing of four representative models of immune response to acute viral infection. These
include: (1) optimization of the likelihood function, (2) computation of the sensit-
ivity model functions, (3) evaluation of the Fisher information matrix, and (4) es-
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timation of multidimensional integrals over the model parameter space. Our study
shows the feasibility of the MDL approach to the analysis of dynamical systems for-
mulated with ODEs and DDEs. We hope that it will promote a broader application
of the MDL framework based on the fundamental concept of Fisher information for
analysis and selection of optimal models in biology and medicine.
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