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Numerical modelling of the transition of infected cells and
virions between two lymph nodes in a stochastic model of
HIV-1 infection

N. V. Pertsev∗†, V. A. Topchii∗, and K. K. Loginov∗

Abstract — The paper is focused on stochastic modelling of the process of transition of infected
cells and virions of HIV-1 infection between two lymph nodes. The model is based on the following
assumptions: (1) the duration of transition of infected cells and virions between two lymph nodes is set
using a time-dependent function, (2) infected cells produce virions in the process of transition between
two lymph nodes, (3) infected cells and virions may die when moving between two lymph nodes.
The methods of the theory of branching random processes are used to study analytically the model
variables. An algorithm for statistical modelling of the number of infected cells and virions in the
second lymph node is presented. The results of computational experiments studying the distribution
law of the number of virions produced by one infected cell depending on the duration of movement
between two lymph nodes are presented.
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The present paper continues the study presented in [3, 4, 11, 12] and focused on
modelling of population dynamics in application to the problem of studying the
HIV-1 infection dynamics in the human body. An important aspect related to the
study of the HIV-1 infection dynamics consists in taking into account the move-
ment of cells of various types and viral particles through the human lymphatic sys-
tem. The combination of mathematical models describing the flow of lymph in the
human body [8, 9] and the dynamics of the HIV-1 infection development in indi-
vidual lymph nodes [3, 11] is an urgent, but rather complex problem. To simplify
the construction of a model of the HIV-1 infection dynamics without involving hy-
drodynamic models, an approach in which the transition of cells and viral particles
between lymph nodes is set parametrically is proposed in [3, 4]. Functions reflecting
the duration of transitions of cells and viral particles between lymph nodes and sat-
isfying fairly simple assumptions are used here. In particular, functions containing
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constants and weighted sums of cosines with different oscillation periods were used
in [3, 4].

The approach proposed in [3, 4, 12] can be used to construct a stochastic com-
partment model of the HIV-1 infection dynamics taking into account the produc-
tion of viral particles by infected cells during their transition between lymph nodes.
Infected cells are understood here as target cells for HIV-1 infection viruses (dend-
ritic cells, macrophages, CD4+ T-lymphocytes). Viral particles produced by infected
cells during the transition between lymph nodes represent an additional source of
occurrence of viral particles in individual lymph nodes.

Such an additional source may significantly affect the dynamics of HIV-1 infec-
tion in the human body.

The aim of this paper is to construct and study a stochastic model describing
the production of viral particles by infected cells during their transition between
two lymph nodes. The goals of the work include: (1) description of the transition of
infected cells and virus particles generated by them between two lymph nodes; (2)
analytical study of probabilistic characteristics of the model variables using methods
of the theory of branching random processes; (3) development of a computational al-
gorithm based on the Monte Carlo method; (4) computational experiments to study
the distribution law for the number of viral particles produced by one infected cell
depending on the duration of transition between two lymph nodes.

1. Description of the model
Introduce the following notations:

• I is an infected cell beginning its transition from the lymph node N1 to the
lymph node N2 through the lymphatic vessel N12;

• W is the viral particle produced by the cell I in the process of transition
through the lymphatic vessel N12;

• D are the particles W and cells I dying in the process of transition through the
lymphatic vessel N12;

• I2 is the infected cell in the lymph node N2;

• V2 is the viral particle in the lymph node N2.

Let the cell I begin its transition from the lymph node N1 to the lymph node N2 at
the time moment τ ∈ R. Assume that ∆(τ) ∈ R+ specifies the duration of transition
of the cell I through the lymphatic vessel N12. In this case the expression τ +∆(τ)
means the moment when the transition of the cell I was completed if it did not die
during the transition. Assume that ∆(τ) satisfies the following two conditions:

C1: if τ1 < τ2, then τ1 +∆(τ1)< τ2 +∆(τ2), τ1,τ2 ∈ R;

C2: ∆∗ 6 ∆(τ)6 ∆∗∗, τ ∈ R, where ∆∗, ∆∗∗ are positive constants.
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Condition C1 means that the cell I beginning its transition at the time moment τ2 >
τ1 does not ‘catch up’ the cell I beginning its transition at the time moment τ1.
Condition C2 means that neither instant, nor infinitely long transitions of the cell I
from N1 to N2 are feasible.

The schematic representation of the ‘destiny’ of the cell I and virus particles W
produced by it is as follows:

I λ−→ D, I ν−→ I +W, W
µ−→ D (1.1)

I|τ−→I2|τ+∆(τ), W |τW−→V2|τ+∆(τ) (1.2)

where λ , ν , µ are positive constants, τW is the time of appearance of the viral
particle W produced by the cell I during its transition. Relation (1.1) has the fol-
lowing probabilistic interpretation. Over a period of time (τ + t,τ + t + h), t > 0,
h→ 0+, the cell I dies with the probability λh+o(h), the cell I produces one viral
particle W with the probability νh+ o(h). During the same time period, the viral
particle W dies with the probability of µh+o(h); the specified events do not occur
with the probability 1− (ν + λ + µ)h+ o(h). Relations (1.2) are interpreted as a
description of the cell I and viral particles W which complete their transitions at the
time moment τ +∆(τ). If the cell I did not die in the process of transition, then at
the time moment τ +∆(τ) it becomes the cell I2. If the viral particle W appeared
at the time moment τ < τW < τ +∆(τ) and did not die in the process of transition,
then at the time moment τ +∆(τ) it becomes the viral particle V2. Here we accept
that each appearing viral particle W moves ‘near’ the cell I. We assume that the cell
I and all viral particles W produced by it behave independently of each other and
preceding events.

By Gr(u) = 0, u < 0, Gr(u) = 1− e−ru, u > 0, we denote the exponential dis-
tribution with the parameter r > 0. Descriptions (1.1), (1.2) imply that the lifetime
of the cell I has the distribution Gλ (u), the lifetime of the viral particle W has the
distribution Gµ(u). Moreover, the duration of time before production of the next
viral particle W by the existing cell I has the distribution Gν(u).

Assume I(τ +∆(τ)) = 0 if the cell I died before the time moment τ +∆(τ)
and I(τ +∆(τ)) = 1 otherwise; W (τ +∆(τ)) is the number of viral particles W at
the time moment τ +∆(τ). Using the above assumptions, we can write down the
following expressions for the number I2(τ +∆(τ)) of infected cells I2 and number
V2(τ+∆(τ)) of viral particles V2 in the lymph node N2 at the time moment τ+∆(τ):

I2(τ +∆(τ)) = I2(τ +∆(τ)−0)+ I(τ +∆(τ)) (1.3)
V2(τ +∆(τ)) = V2(τ +∆(τ)−0)+W (τ +∆(τ)) (1.4)

where I2(τ +∆(τ)− 0) and V2(τ +∆(τ)− 0) are the numbers of infected cells I2
and viral particles V2 in the lymph node N2 at the moment when survived viral
particles W and the cell I complete their transition. The distribution law for the
random variable I(τ +∆(τ)) has the following sufficiently simple form:

P{I(τ +∆(τ)) = 0}= 1− e−λ∆(τ), P{I(τ +∆(τ)) = 1}= e−λ∆(τ).
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To complete the construction in formulas (1.3), (1.4), we have to know the distribu-
tion law of the pair I(τ +∆(τ)), W (τ +∆(τ)), namely,

Pnm = P{I(τ +∆(τ)) = n, W (τ +∆(τ)) = m} , n = 0,1, m = 0,1,2, . . . .
(1.5)

The explicit form of distribution (1.5) is described in the next section.

2. Application of the theory of branching processes to study the model
We study distribution law (1.5) analytically in terms of a branching process with
two types of particles [14]. We introduce the terminology typical for branching pro-
cesses, replace the model from the first section to an equivalent one, and call this
modification the ‘BP-model’, i.e., the model written in terms of a branching process.
Assume that the original model has a single particle A1 at the time moment t = 0.
In the original model, the lifetime of the particle A1 has the distribution Gλ (t) with
λ > 0. For the sake of convenience of studying a particular, but important case of the
BP-model, we assume that the parameter λ may take zero value and hence Gλ (t)
is such that λ > 0. The particle A1 may produce particles A2 many times during
its lifetime. The time before the first particle A2 is produced by the particle A1 and
between births of next particles A2 is random and has the distribution Gν(t) with
ν > 0. The lifetime of the particle A2 is described by the distribution Gµ(t) with
µ > 0. All random variables in this definition are independent.

Proceed to definition of the BP-model. Denote the studied particles in this new
model by A1 and A2, respectively, and call them particles of the first and second
types. The formal distinction from the original model is that at the moment of birth
of the particle A2 we assume that A1 also dies and simultaneously generates new
A1. The death of the original particle A1 corresponds to the death of A1. In the
theory of probability, this approach is called the method of probabilistic space. In
this case, the distributions of lifetime of particles in the new process are changed,
but the numbers of particles of all types coincide in both processes at each time
moment.

Following [14], we describe the evolution of particles in terms of generating
functions and lifetime distributions. By s1,s2,s ∈ [0,1] we denote the arguments of
the generating function used below. The lifetime of particles of the first type has
the distribution Gλ+ν(t). If a particle of the first type dies, it does not generate
descendants with the probability p0,0 = λ/(λ + ν), it generates a one descendant
of the first type and one descendant of the second type with the probability p1,1 =
ν/(λ +ν). This implies that the generating function of the number of descendants
of particles of the first type has the form

h1(s1,s2) = p0,0(s1)
0(s2)

0 + p1,1(s1)
1(s2)

1 =
λ

λ +ν
+

ν

λ +ν
s1s2.

The lifetime of each particle of the second type has the distribution Gµ(t) and they
do not generate descendants in the case of their death, i.e., the generating function
of the number of descendants of a particle of the second type is h2(s1,s2) = 1.
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By x(t) and y(t) we denote the numbers of particles of the first and second types,
respectively, at the time moment t > 0. Assume that x(0) = 1, y(0) = 0. Introduce
the following conditional generating functions of the process (x(t),y(t)):

Fi(t,s1,s2) = E
(

sx(t)
1 sy(t)

2

∣∣(x(0),y(0)) = (δ1i,1−δ1i)
)
, t > 0 (2.1)

where the symbol E(·) denotes the mathematical expectation, for each fixed t > 0
the product sx(t)

1 sy(t)
2 is an auxiliary random variable, the expression δi j is the Kro-

necker symbol (δi j = 1 for i = j and δi j = 0 for i 6= j). Applying the traditional total
probability formula for generations functions (2.1), we get the following system of
equations for F1(t,s1,s2) and F2(t,s1,s2):

F1(t,s1,s2) = s1
(
1−Gλ+ν(t)

)
+λ (λ +ν)−1Gλ+ν(t)

+ν(λ +ν)−1
∫ t

0
F1(t−u,s1,s2)F2(t−u,s1,s2)dGλ+ν(u) (2.2)

F2(t,s1,s2) = s2
(
1−Gµ(t)

)
+Gµ(t). (2.3)

Using the explicit form of all Gr(t) and the fact that F2(t,s1,s2)≡ F2(t,s2), rewrite
system (2.2), (2.3) in the form

F1(t,s1,s2) = s1e−(λ+ν)t +λ (λ +ν)−1(1− e−(λ+ν)t)
+ν(λ +ν)−1

∫ t

0
F1(t−u,s1,s2)F2(t−u,s2)dGλ+ν(u) (2.4)

F2(t,s2) = 1+(s2−1)e−µt . (2.5)

Note that the component x(t) of the studied process can take only two values,
namely, x(t) = 1 or x(t) = 0. In addition, expression (2.4) contains an exponential
under the sign of differential. This allows us to study solutions to system (2.4), (2.5)
applying not the canonical method using the recovery function, but transforming
(2.4), (2.5) to first order differential equations with separating variables.

Using the expression for the generating function h1(s1,s2), we obtain that for
λ = 0 and ν > 0 a particle of the first type always generates after its death one
descendant in the form of particles of the first and second type, thus we have
P{x(t) = 1}= 1. Therefore,

F1(t,s1,s2) = F1(t,1,s2) = E
(

sy(t)
2

∣∣x(0) = 1
)

and it is sufficient to describe F0(t,s) = E
(
sy(t)
∣∣x(0) = 1

)
.

Theorem 2.1. Let λ = 0 in the BP-model. In this case the generating function
of the number of particles of second type is

F0(t,s) = exp{(s−1)νµ
−1(1− e−µt)} (2.6)

i.e., the random variable y(t) has the Poisson distribution with the parameter
νµ−1(1− e−µt).
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Proof. For λ = 0 equations (2.4), (2.5) imply

F0(t,s) = e−νt +νe−νt
∫ t

0
F0(u,s)

(
1+(s−1)e−µu)eνudu. (2.7)

Denote

F̃(t,s) = F0(t,s)
(
1+(s−1)e−µt)eνt , z = z(t) =

∫ t

0
F̃(u,s)du

considering s as a parameter. Transform (2.7) to the differential equation

z′ =
(
1+(s−1)e−µt)(1+νz)

and derive from this equation

1+νz = exp{νt +(s−1)νµ
−1(1− e−µt)}. (2.8)

Returning to the original notations and differentiating both sides of equation (2.8),
we easily obtain the representation

z′ = F̃(t,s) = F0(t,s)
(
1+(s−1)e−µt)eνt

= exp{νt +(s−1)νµ
−1(1− e−µt)}(1+(s−1)e−µt)

which implies relation (2.6). It is well known that the Poisson distribution with the
parameter γ > 0 has the generating function exp{(s−1)γ}. This completes the proof
of the theorem.

Substitute s1 = 0, s2 = 1 into system (2.4), (2.5). We get the equation for
P{x(t) = 0} = F1(t,0,1) having the unique solution 1− e−λ t . Therefore, P{x(t) =
1}= e−λ t . This proves the equivalence of the original model and BP-model.

By χ(t) we denote the indicator of the event {x(t) = 1} at the time moment
t > 0. In this case,

P{χ(t) = 1}= e−λ t , P{χ(t) = 0}= 1− e−λ t .

Corollary 2.1. Let λ > 0 in the BP-model. Then the conditional distribution of
the random variable (y(t)|x(t) = 1) is Poisson with the parameter νµ−1

(
1− e−µt

)
and, in addition,

E
(
sy(t)

χ(t)
)
= exp

{
(s−1)νµ

−1(1− e−µt)}e−λ t (2.9)

E(y(t)χ(t)) =νµ
−1(1− e−µt)e−λ t . (2.10)

Proof. For λ > 0 denote the generating function of the conditional distribution
of the variable (y(t)|x(t) = 1) by

Q1(t,s) = E
(
sy(t)
∣∣x(t) = 1

)
.
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Associate Q1(t,s) with the original generating functions, i.e.,

∂

∂ s1
F1(t,s1,s) = E

(
sy(t)

χ(t)
)
= Q1(t,s)P{χ(t) = 1}= Q1(t,s)e−λ t .

Differentiating the left- and right-hand sides of (2.4) with respect to s1 and tak-
ing into account (2.5), after obvious transformation we get the equation for Q1(t,s)
coinciding with (2.7) after the change of F0(t,s) by Q1(t,s). Therefore, Q1(t,s) =
F0(t,s). Relation (2.9) follows from (2.7) according to the total probability formula
and (2.10) follows from (2.9) as its derivative with respect to s at s = 1. This com-
pletes the proof of the corollary.

The function 1−χ(t) is the indicator of the event {x(t) = 0} at the time moment
t > 0, 1−χ(0) = 0.

Theorem 2.2. Let λ > 0 in the BP-model. Then the generating function of the
random variable y(t)(1−χ(t)) is a convolution of the functions from (2.6) with the
function Gλ (u) over the temporal parameter, and the mathematical expectation for
y(t)(1−χ(t)) has the form

E(y(t)(1−χ(t))) =
λν

µ(µ−λ )
e−λ t − λ

µ−λ
e−µt +

λ

µ
e−(µ+λ )t , µ 6= λ

E(y(t)(1−χ(t))) =νe−µtt−νµ
−1e−µt(1− e−µt), µ = λ .

Proof. Fix t, ` ∈ R, so that t > ` > 0. Assume (x(`),y(`)) = (0,n), where n is
some natural number. According to the definition, the generating function of our
process is

E
(
sy(t)
∣∣x(`) = 0,y(`) = n)

)
=
(
1− e−µ(t−`)(1− s)

)n
. (2.11)

The generating function of (2.11) corresponds to a random variable having the bi-
nomial distribution with the parameters n and p = e−µ(t−`). If n is a random variable
having the Poisson distribution with the parameter γ > 0, then instead of (2.11) we
get the generating function

F̀ ,γ(t,s) =
∞

∑
i=0

γ i

i !
(1− e−µ(t−`)(1− s))ie−γ = exp{γe−µ(t−`)(s−1)} (2.12)

which corresponds to a random variable having the Poisson distribution with the
parameter γe−µ(t−`). Let ` > 0 be the moment of death of a particle of the first type.
In this case for t = ` the number of particles of the second type has the Poisson
distribution with the parameter νµ−1

(
1− e−µ`

)
, and for t > ` it has the Poisson

distribution with the parameter

νµ
−1e−µ(t−`)(1− e−µ`

)
= νµ

−1e−µt(eµ`−1
)
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which follows from (2.12). Therefore, according to the total probability formula, we
get

E
(
sy(t)(1−χ(t))

)
= λ

∫ t

0
e−λu exp{(s−1)νµ

−1e−µt(eµu−1
)
}du. (2.13)

Differentiating both sides of relation (2.13) with respect to s and assuming s = 1,
for µ 6= λ we get

E(y(t)(1−χ(t))) =λe−µt
∫ t

0
e−λu

νµ
−1(eµu−1

)
du

=
λν

µ(µ−λ )
e−λ t − λ

µ−λ
e−µt +

λ

µ
e−(µ+λ )t

and for µ = λ we have

E(y(t)(1−χ(t))) = νe−µtt−νµ
−1e−µt(1− e−µt)

which completes the proof of the theorem.

Remark 2.1. The generating function for y(t)(1− χ(t)) is determined by integ-
ral (2.13) which cannot be expressed in elementary functions. Substituting s= 0 into
the indicated generating function, we get the probability P{y(t) = 0;x(t) = 0} of de-
generation of the process to the time moment t. For fixed t > 0 and the parameters
λ , ν , µ , the probability P{y(t) = 0;x(t) = 0) can be calculated only approximately
by using known numerical methods for calculation of definite integrals. Note that
for s= 0 the right-hand side of (2.13) implies P{y(t) = 0;x(t) = 0)→ 1 for t→+∞.

Using Theorems 2.1, 2.2, Corollary 2.1, and omitting obvious calculations, we
obtain the following result.

Corollary 2.2. The mathematical expectations Ex(t), Ey(t) of the numbers of
particles of the first and second types in the BP-model have the form

Ex(t) = e−λ t

Ey(t) = νt e−µt , µ = λ > 0

Ey(t) =
ν

µ−λ

(
e−λ t − e−µt), µ 6= λ > 0

Ey(t) = νµ
−1(1− e−µt), λ = 0.

For λ > 0 the mathematical expectation Ey(t) attains its maximal value at the point
t = tmax, i.e.,

tmax =
1
µ
, µ = λ (2.14)

tmax =
1

λ −µ
ln

λ

µ
, µ 6= λ . (2.15)
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3. Numerical simulation algorithm
In order to study the model described in the first section numerically, we apply the
Monte Carlo method. Let the cell I begin its transition from the lymph node N1 to
the lymph node N2 at some time moment τ . Assume that T = ∆(τ) and construct
the algorithm to simulate values of the pair x(t), y(t), i.e., the numbers of particles
of the first and second type considered in the second section for t = T . Here we use
the results of Theorems 2.1, 2.2 and Corollary 2.1. Taking into account the notations
introduced earlier, we assume that

I(τ +∆(τ)) = x(T ), W (τ +∆(τ)) = y(T ).

To generate the random variables x(T ) and y(T ), we use the generators of pseu-
dorandom numbers and formulas described in [6, 5, 7]. Let [ξ ] denote the integer
value of the variable ξ . The simulation algorithm consists of several successive
steps.

Step 0. Specify the parameters λ > 0, ν > 0, µ > 0 of the model, time moments
τ and T = ∆(τ).

Step 1. Simulate the lifetime LA1 of a particle of the first type by the formula

LA1 =−
1
λ

lnα1

where α1 is a random variable distributed uniformly in the interval (0,1). If LA1 > T ,
then assume x(T ) = 1 and calculate the parameter

γ = νµ
−1(1− e−µT ).

If LA1 < T , then assume x(T ) = 0 and calculate the parameter

γ = νµ
−1e−µT (eµLA1 −1).

Step 2. Simulate the number of particles of the second type as a random variable
y(T ) having the Poisson distribution with the parameter γ . Following Section 1.3.8
of [7], for γ < 9 we use recurrent formulas linking the probabilities Pk+1 and Pk, k =
0,1,2, . . . , in the Poisson distribution. If γ > 9, then assume y(T ) = [

√
γ η0,1 + γ],

where η0,1 is a random variable having the standard normal distribution. Here we
use formulas from Section 1.10.2 of [7] allowing us to obtain pairs of independent
random variables η0,1 simultaneously.

Step 3. Assume I(τ +∆(τ)) = x(T ), W (τ +∆(τ)) = y(T ) and complete the cal-
culations.

This algorithm is implemented in the form of a console modelling application
written in the C++ programming language in the Visual Studio 2008 integrated de-
velopment environment. Input parameters are read from a special configuration ini-
file. The simulation results, i.e., implementations of the variables x(T ), y(T ) are
stored in a separate text file.
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4. Results of numerical experiments
The goal of computational experiments was to study the distribution of the number
of viral particles W coming to the lymph node N2 depending on changes in the
duration of the transition ∆(τ) relative to the time tmax given by formulas (2.14),
(2.15). The simulation of the pair of random variables x(T ), y(T ) was performed
for four values of T = ∆(τ). The results of simulation are presented in the form of
histograms of the random variables

Wi =Wi(τ +∆(τ)) = y(Ti), i = 1,2,3,4.

Each histogram is constructed based on a sample of N = 500 implementations of the
pair of random variables x(Ti), y(Ti) for given Ti, i = 1,2,3,4. The values of para-
meters of the model (in dimensional form) are taken according to [1, 3, 11] (includ-
ing the estimates of the parameters from the papers cited there), namely, λ = 0.81
day−1, ν = 250 day−1, µ = 3.2 day−1. This gives that the average lifetimes of cells
I and viral particles W are 29.63 and 7.5 hours, respectively, and the average time
to the reproduction of the next viral particle W by a cell I is 5.76 minutes. For these
values of the parameters we get that tmax = 0.5748 days. For our calculations we
used T1 = 0.05, T2 = 0.5748, T3 = 0.75, and T4 = 1.25 days. In each experiment,
the dimensional time and dimensional parameters were transformed to dimension-
less form so that the transition of cells I and viral particle W between two lymph
nodes occurs within the time interval [0,1].

Figure 1 presents the results of the first experiment. The duration of the trans-
ition T1 is such that the probability of death of a particle of the first type (cell I)
within the period [0,T1] is sufficiently small, i.e., 1− e−λT1 ≈ 0.0397. It is seen that
the number of viral particles W1 varies from 0 to 23 and the most probable values of
W1 are located in the interval from 7 to 16.

Processing the sample of values of the variable W1 with the use of Neyman–
Pearson χ2 criterion [2], we can show that the H0 hypothesis on Poisson distribution
law for W1 should be rejected. Here we have the calculated value χ2 = 51.67 for
7 degrees of freedom. The table value χ2

α(7) = 24.322 is at the significance level
α = 0.001. Therefore, the deviation of the hypothesis H0 on the Poisson nature of the
distribution law of W1 is highly statistically significant [2]. At the same time, if we
consider the distribution of W1 under the assumption that the cell I lives to the end
of the period [0,T1], then the situation changes. The results of processing the sample
values of W1 obtained under this assumption (475 observations out of 500) are the
following: χ2 = 7.54 for 6 degrees of freedom. The table value χ2

α(6) = 10.647 is at
the significance level α = 0.1. Therefore, we can confidently accept the hypothesis
that the specified conditional distribution of W1 is Poisson. Note that the sample size
N = 500 provides the condition of applicability of the χ2 criterion recommended
in [2], taking into account unlikely values of the function W1, namely, N pi > 10,
where pi is the theoretical probability that the variable W1 fits the given interval of
data group with the number j = 1,2, . . . ,r, r > 3.

Figures 2 and 3 show the results of the second and third experiments. In the
second experiment, the duration of transition is T2 = tmax, i.e., the maximal value
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Figure 1. Histogram of the distribution of W1.
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Figure 2. Histogram of the distribution of W2.
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Figure 3. Histogram of the distribution of W3.
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Figure 4. Historgam of the distribution of W4.

of the mathematical expectation of the variable W2 is attained at such duration of
transition. In the third experiment, the duration T3 of transition exceeds T2 approx-
imately 1.3 times. Note that the distribution histograms of the variables W2 and W3
differ essentially from the distribution histogram of W1. Each of distribution histo-
grams of W2 and W3 has a typical form similar to the other one, which is explained
by the fact that a cell I lives to the end of the period [0,T2], [0,T3] or by its death
within these intervals. The left parts of these histograms mainly correspond to viral
particles W produced by the cell I not surviving to the end of the intervals [0,T2],
[0,T3], respectively, the right parts of the histograms correspond to a cell I surviving
to the end of these intervals. Figures 2 and 3 show that, in comparison with experi-
ment 1, the range of the number of viral particles W2, W3 increases significantly and
takes values from 0 to 88 and from 0 to 93, respectively, in experiments 2 and 3.
This result is explained by an increase in the duration of the transition between two
lymph nodes and the appearance of both small and sufficiently large number of viral
particles W produced by the cell I during its transition.

Figure 4 presents the results of the fourth experiment where the duration of
transition T4 correspond to a sufficiently long duration of transition of a cell I and
viral particles W between two lymph nodes in comparison with experiments 1, 2,
3. The histogram presented in Fig. 4 shows that the range of the number of viral
particles W4 is from 0 to 100. In addition, the most probable values of W4 are from 0
to 10 and other values of W4 with a relatively high probability lie in the range from
65 to 85. Therefore, a prolonged transition of a cell I from the first lymph node to
the second one may result in formation of both a small and a large number of virus
particles W .

5. Conclusion

The present paper proposes an approach to stochastic modelling of the number of
infected cells and viral particles produced by them during the transition through a
lymphatic vessel connecting two lymph nodes. The main analytical result of the pa-



Modelling of the transition of infected cells 13

per is the distribution law of the number of viral particles entering the second lymph
node. The distribution law obtained here is quite complex and is not expressed ex-
plicitly. At the same time, depending on the lifetime of an infected cell moving
from the first lymph node to the second one, this law is described by a Poisson dis-
tribution. The Poisson distribution parameter takes into account the duration of the
transition of an infected cell between lymph nodes and its lifetime. The obtained
formulas are used to construct a compact algorithm for modelling model variables
based on the Monte Carlo method.

The results of computational experiments show that different durations of trans-
itions of infected cells between the first and second lymph nodes have a signific-
ant impact on the number of viral particles produced by them and entering the
second lymph node. During a long transition, a large number of viral particles can
be formed, which can be interpreted as creation of a temporary ‘depot’ or ‘storage’
of viral particles in the lymphatic vessel. The simultaneous appearance of a large
number of viral particles in the second lymph node can lead to activation of the pro-
cess of infection of target cells and to development of HIV-1 infection in this and,
as a result, in other lymph nodes. At the same time, if the transition of infected cells
is short enough, the number of viral particles produced by them may vary from zero
to several particles. In this case the main external source of replenishment of the
population of viral particles of the second lymph node will be viral particles coming
from the first or from other lymph nodes.

The approach described in the present paper can be applied to a stochastic com-
partment model of the HIV-1 infection dynamics taking into account the movement
of cells of various types and viral particles through the human lymphatic system.
To set the parameters of the compartment model, one should use estimates of actual
duration of transitions of infected cells and viral particles between lymph nodes,
which can be obtained from hydrodynamic models and models describing the struc-
ture of the human lymphatic system presented, for example, in [8, 9, 10, 13].
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