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Herd immunity levels and multi-strain influenza epidemics
in Russia: a modelling study

V. N. Leonenko∗

Abstract — In the present paper, we consider a compartmental epidemic model which simulates the
co-circulation of three influenza strains, A(H1N1)pdm09, A(H3N2), and B, in a population with the
history of exposure to these virus strains. A strain-specific incidence data for the model input was
generated using long-term weekly ARI incidence and virologic testing data. The algorithm for model
calibration was developed as a combination of simulated annealing and BFGS optimization methods.
Two simulations were carried out, assuming the absence and the presence of protected individuals
in the population, with 2017–2018 and 2018–2019 epidemic seasons in Moscow as a case study. It
was shown that strain-specific immune levels defined by virologic studies might be used in the model
to obtain plausible incidence curves. However, different output parameter values, such as fractions
of individuals exposed to particular virus strain in the previous epidemic season, can correspond to
similar incidence trajectories, which complicates the assessment of herd immunity levels based on the
model calibration. The results of the study will be used in the research of the interplay between the
immunity formation dynamics and the circulation of influenza strains in Russian cities.
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Outbreaks of influenza, one of the oldest and the most widely spread human infec-
tious diseases, result in 3 to 5 million cases of severe illness annually worldwide, and
the mortality rate is from 250 to 640 thousand individuals per year [11]. In addition
to induced mortality, influenza causes an increase of heart attacks and strokes [5], as
well as other disease complications. To enhance the capabilities of influenza surveil-
lance and, as a consequence, to find means of restraining influenza epidemics and
reducing the mortality attributed to influenza complications, the healthcare organs
widely use statistical and mechanistic models. One of the most important factors re-
lated to influenza dynamics, beside weather conditions [18, 21, 29, 31, 33, 34] and
contact patterns in the population [2, 16, 23, 35], is the herd immunity to various
influenza strains [3, 9, 15, 24].

It is generally known that the immunity level dynamics and the disease incid-
ence dynamics in the population are intertwined but there is still a lot of open ques-
tions related to quantification of their connection. In earlier influenza modelling
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efforts, such as those undertaken in the second part of the XX century [1, 4, 7, 30],
it was found possible to explain the influenza dynamics on the basis of the assump-
tion which related the variance in the disease incidence primarily to the seasonal
virus mutation. Thus, different geographical areas were assumed to have approx-
imately the same level of immunity to a circulating virus strain, and there was no
need in considering the long-term history of exposure to different influenza strains
in particular regions. However, since the early 1980s this assumption was put under
doubt since modelling frameworks based on it started to show growing incoherence
with the observed seasonal epidemic outbreak patterns. According to one of the
opinions, the reason for that is in the growing immunity levels to influenza due to
increasing speed of its circulation around the globe [13]. The experiments with the
SEIR models calibration on the contemporary Russian ARI incidence data [19, 20]
demonstrated that assuming the variance in immunity levels among Russian cities
negligible, one can obtain the prediction of prospected epidemic peak height with
satisfactory accuracy, but there is no chance to assess in advance the epidemic peak
day. The experiments with calibrating metapopulational models to Russian ARI in-
cidence data and data on inter–city transport flows within the country demonstrated,
that the accuracy of peaks predictions made by homogeneous coupled SEIR mod-
els on the contemporary incidence data is much lower than it used to be in Soviet
times and does not allow to use this approach for the disease forecasting [21]. Due
to that matter, and also to the increased availability of serological data, the research
area devoted to the analysis of the long-term influenza dynamics and the herd im-
munity levels is gaining popularity among other topics related to the epidemiology
of influenza. As an example, a set of models was presented which was designed
to model the long-term incidence of influenza in England caused by various viral
strains, taking into account the dynamics of population immunity levels and vaccin-
ation coverage [9, 10].

In the current study, we use a deterministic compartmental model to analyze the
multi-strain epidemics caused by co-circulation of different influenza virus strains
in a fixed epidemic season. Apart from similar influenza modelling works, partic-
ularly, devoted to the circulation of influenza pandemic strains [6, 8], where herd
immunity is not considered, we assume an exposure history to different influenza
strains which influences the disease dynamics in the regarded epidemic season. A
strain-specific incidence data, employed for model calibration, was generated by
coupling long-term weekly ARI incidence with virologic testing data — both data-
sets being provided by Russian Research Institute of Influenza [28]. Using the data
for two epidemic seasons in Moscow as a case study, we perform model calibration
and assess its parameter values related to virulence of influenza strains, intensity
of immunity waning and the levels of immunity induced by the preceding epidemic
season. As a consequence, we obtain a possibility to compare the levels of immunity
in the population estimated in two different ways: indirectly through the assessment
of the epidemic model parameters and directly from serological monitoring data.
The presented study is a part of the ongoing research, the ultimate aim of which
consists in finding the connection between the two named immunity assessment
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methods and thus gaining more insight into the interplay between the immunity
formation dynamics and the circulation of influenza strains in Russian cities.

1. Data
The datasets used in the study were the following:

• Weekly ARI incidence (Moscow, 2009–2019), which includes total number
of clinically registered cases of diseases caused by influenza strains and other
ARI.

• Strain-specific virologic data (Moscow, 2009–2019) with the assessment of
the number of detected influenza strains (see Figs. 1 and 2).

Since the second mentioned dataset became available to us, we managed to
simplify the assessment of ARI cases related to influenza, compared to previous
studies, where we had to rely on establishing the fixed [17, 20] or varied [22] ARI
baselines according to the known epidemic thresholds. In the current research, we
used the following algorithm to find strain-specific incidence:

• We calculated the weekly proportion of strain-specific influenza cases detec-
ted via virologic studies as a ratio between the number of detected particular
influenza strains in the samples, and the total number of samples collected
(assuming all of them corresponded to ARI cases).

• If the total number of collected samples was stated to be less than the sum
of the samples corresponding to specific influenza strains, we considered the
corresponding data erroneous and removed it from consideration.

• The cases marked ’strain A(type unknown)’ were distributed among the cases
of A(H1N1)pdm09 and A(H3N2) according to the proportion established by
comparing the number of correctly specified samples.

• The obtained proportions of influenza strain incidence among ARI were mul-
tiplied by the weekly registered ARI incidence from the first dataset.

The resulting strain-specific incidence is shown in Fig. 3.

2. Model
In this study, a multi-strain compartmental model of influenza dynamics is used
based on a deterministic system of difference equations, with the time step equal
to one day. The model was derived from the original Baroyan–Rvachev model [4]
and its modifications used by the author in the earlier studies [20, 22]. In this model
version, we consider the co-circulation of three influenza strains, A(H1N1)pdm09,
A(H3N2), and B, thus, we assume ns = 3, where ns is the total number of regarded
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Figure 1. Proportion of different influenza strains summed by epidemic seasons, Moscow.
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Figure 2. Weekly number of different influenza strains and ARI collected through virologic sampling,
Moscow.
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Figure 3. Resulting strain-specific incidence data for Moscow.
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strains. Different strains of influenza B type are not distinguished and the dominant
B type strain is regarded during each epidemic season. Let x(h)t be the fraction of
susceptible individuals in the population with exposure history h ∈ {1, . . . ,ns +1},
y(m)

t be the number of individuals newly infected at the moment t by the virus strain
m, and y(m)

t be the cumulative number of infectious persons by the time t transmit-
ting the virus strain m, m ∈ {1, . . . ,ns}. A possibility of co-infection by multiple
strains in the course of one season is not regarded, hence, the individuals recovered
from the influenza caused by any of the circulating strains are considered immune.
However, this assumed cross-immunity between virus strains is not transferred to
the next epidemic season.

The susceptible individuals are divided into subgroups based on their exposure
history h, h ∈ {1, . . . ,ns +1}. A group of susceptible individuals with exposure his-
tory state h ∈ {1, . . . ,ns} is composed of those individuals who were subjected to
infection by the strain m in the previous epidemic season, whereas a group with
exposure history state h = ns + 1 is regarded as naive to the infection caused by
any strain. The variable µ ∈ [0;1) reflects the fraction of population which do not
participate in infection transmission (see Section 4.2). In the default case, µ = 0.
Following [9], we make a simplifying assumption that the preceding epidemic sea-
son is the one that solely affects the immunity levels of individuals, thus neglecting
the effects of older exposures to influenza illness. Due to immunity waning, the in-
dividuals with the history of exposure to a fixed influenza strain in the preceding
season might lose immunity to the same strain in the following epidemic season.
We assume that the fraction a of those individuals, a ∈ (0;1), becomes susceptible,
whereas 1−a individuals retain their immunity during the modelled epidemic sea-
son. As a result, a function f (h,m) is introduced into the model which defines the
proportion of the individuals with exposure history state h, who are susceptible to
virus strain m:

f (h,m) =

{
a, m = h
1, m 6= h.

(2.1)

The modelling equation system is formulated in the following way:

x(h)t+1 = max
{

0,
(

1−
ns

∑
m=1

β (m)

ρ
y(m)

t f (h,m)
)

x(h)t

}
, h ∈ {1, . . . ,ns +1} (2.2)

y(m)
t+1 =

β (m)

ρ
y(m)

t

ns+1

∑
h=1

f (h,m)x(h)t , m ∈ {1, . . . ,ns}

y(m)
t =

T

∑
τ=0

y(m)
t−τg(m)

τ , m ∈ {1, . . . ,ns}

x(h)0 = α
(h)((1−µ)ρ−

ns

∑
m=1

y(m)
0 )> 0, h ∈ {1, . . . ,ns +1}

y(m)
0 = ϕ

(m)
0 > 0, m ∈ {1, . . . ,ns}. (2.3)
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The piecewise constant function gτ gives a fraction of infectious individuals in
the group of individuals infected τ days before the current moment t. The func-
tion reflects the change of individual infectiousness over time from the moment of
acquiring influenza. It is assumed that there exists some moment t: ∀t > t gτ = 0,
which reflects the moment of recovery. The values of g(τ) were set according to
[4]: g(0) = g(1) = 0, g(3) = 0.9, g(3) = 0.9, g(4) = 0.55, g(5) = 0.3, g(6) = 0.15,
g(7) = 0.05, g(8) = g(9) = . . . = 0. The initial conditions are assumed to be non-
negative.

We consider that β (m), the intensity of effective contacts (i.e., contacts followed
by infection transmission) related to virus strain m, conforms to the following ex-
pression:

β
(m) = λ

(m)
δ

where λ (m) is virulence of the strain m, δ is the average number of contacts in the
population [22].

3. Algorithm
3.1. Optimization criterion

Let Z(dat) be a set of incidence data points corresponding to one particular outbreak.
Assuming that there are no gaps in incidence data, let t1 be the length of the re-
gistered period of incidence, which coincides with the size of Z(dat). The optimum
criterion is reached by minimizing the difference between the incidence values taken
from data and the incidence calculated by the model:

F(Z(mod),Z(dat)) =
t1

∑
i=0

wi ·
(

z(mod)
i − z(dat)

i

)2
−→min . (3.1)

Here z(dat)
i and z(mod)

i are relative incidences on the ith week taken from the input
dataset and derived from the model, respectively. The weights wi are included into
the formula to reflect the varied impact of assessment quality for different incidence
points: we assume that the accurate peak assessment is the most important task, and
the ‘importance’ of the other incidence points is proportional to their distance from
the peak. The corresponding formula is

wd = σ
−d

where d is the distance of the current data point from the peak in time units (weeks),
σ > 1 regulates the rate of decreasing of the ‘importance’ of incidence points for
the fitting procedure.

To compare the daily incidences of the model output with the original weekly
incidence data, the former are summed in groups of 7.



Herd immunity levels and multi-strain influenza epidemics 7

Table 1. Model parameters.

Variable Description Values

ρ Population size, people 12,263,854
α(h) A fraction of population exposed to the strain m in the

preceding epidemic season, h ∈ {1, . . . ,m}*
Varied

λ (m) Virulence of the virus strain m Varied
a The fraction of people who lost immunity after being

exposed to the virus strain in the preceding epidemic
season

Varied

δ Average daily number of contacts in the population for
a fixed individual

6.528 [22]

I(m)
0 Initial number of individuals infected with the strain m,

people
1

σ Parameter for calculation of the weights wd of data
points

Varied

* A fraction α(m+1) of the naive population was calculated as α(m+1) = 1−∑
m
h=1 α(h)

3.2. Calibration algorithm

To perform the optimization and assess the model parameters, we used the scripts
implemented in Python 3.6 with numpy and matplotlib libraries. The arising
issue of executing numerical optimization procedure with the optimum criterion
(3.1) is the convergence of the algorithm to local minima which results in finding
non-optimal parameter values [20]. To deal with this problem, simulated anneal-
ing optimization algorithm [14] was used. Simulated annealing deals effectively
with local minima problem, delivering the values which are close to optimum,
but it converges very slowly to the optimum itself. Thus it is recommended to
consequently apply another optimization method, using the values found by an-
nealing as initial ones. For example, in [36], where the authors also performed
influenza dynamics model calibration, Nelder–Mead method was used. Accord-
ing to the results of numerical experiments with the standard methods for the op-
timization function scipy.optimize.minimize [32], Nelder-Mead method
showed poor performance during influenza dynamics model calibration compared to
limited-memory BFGS optimization method [26], thus we decided to use the latter
in the calibration algorithm. However, we assume that the calibration algorithm per-
formance might depend on the type of input data and model structure. In this case,
additional experiments could be beneficial to define the best optimization method
for the case of the multi-strain model.

4. Experiments

To calibrate the model, we used generated strain-specific incidence corresponding
to two epidemic seasons (Moscow, 2017–2018 and Moscow, 2018–2019). These
particular outbreaks were chosen due to the availability of the immunity level as-
sessments through virologic studies for this city and time period.

The model parameters used in the calibration procedures are listed in Table 1.
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The procedure was performed according to the optimization algorithm described in
the previous section. In the course of generating the parameter values, we controlled
that the condition ∑

m
h=1 α(h) 6 1 is not violated by normalization of the values which

exceeded 1 in sum.

4.1. Original model

Apart from the previous studies [20, 22] where we assumed a fraction of immune
individuals in the population which was invulnerable to infection and thus excluded
from the epidemic process, the structure of the current model supposes that each in-
dividual is in fact prone to the infection caused by any of the circulating strains, with
the exposure history only slightly reducing the intensity of the infection process (for
a 6= 0). As a consequence, the reservoir of susceptible individuals has immensely
grown resulting in extremely high outbreak peaks. Neither automatic nor manual
calibration was able to find parameter values corresponding to the fitting with de-
termination coefficient R2

σ > 0.5. In Fig. 4 one can see a typical set of trajectories
which were manually fitted to match the incidence peak heights. The correspond-
ing infection force does not allow reasonably fast outbreaks, resulting in very slow
disease propagation through the population (by several orders longer than the real
outbreak duration). The attempt to match the disease outbreak durations, on the
contrary, caused unrealistic incidence numbers (see Fig. 5).

4.2. Introducing protected individuals

To make it possible for the model to reproduce real incidence, we had to introduce
the proportion µ of the individuals with the protection from infection by any in-
fluenza strains. This proportion was chosen to be µ = 0.9, following the order of
the values obtained in [22]. The resulting modelling curves became more plausible
and better corresponded to data. The automatic calibration with σ = 1.3 resulted
in finding some erroneous local minima of the optimization function corresponding
to zero incidence model curves for one or several strains. Since this output was not
reflecting the actual incidence, we avoided those minima by narrowing the intervals
for some of the model parameters (see Table 6, second column in [22]). Another
set of experiments was conducted with enhanced and unified parameter value inter-
vals, which reflects the situation of batch calibration of many consecutive epidemic
seasons when manual tweaking of parameter ranges is not possible. We used the
value of σ = 1.5 to increase the importance of fitting the maximum incidence at the
expense of the incidence points situated farther from the peak. The fitting results for
both experiments are shown in Figs. 6 and 7.

As one can see, for 2018–2019 epidemic season in Moscow, both fitting out-
comes with different σ did not match the data. The apparent reason for that is the
complicated form of the incidence curve induced by B strain, which includes sev-
eral low peaks. It seems to correspond to an outbreak which did not gain momentum
after several disease reintroductions.

The epidemic season of 2017–2018 was better described by the fitted modelling
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Figure 4. Model trajectories against incidence data in case with no protected individuals assumed in
the population.

Figure 5. An example of explosive incidence growth demonstrated by short epidemics compared to
Moscow data.
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Figure 6. Model fitting to incidence data in the population with protected individuals, σ = 1.3.

Table 2. Variation of model parameters.

Variable σ = 1.3 σ = 1.5 σ = 1.3 σ = 1.5

Moscow, 2017–2018 Moscow, 2018–2019
αA(H1N1)pdm09 (0.21,0.27)* (0.1,0.4) (0.1,0.4) (0.1,0.4)
αA(H3N2) (0.32,0.37) (0.1,0.4) (0.1,0.4) (0.1,0.4)
αB (0.37,0.42) (0.1,0.4) (0.1,0.4) (0.1,0.4)
λ A(H1N1)pdm09 (0.07,0.08) (0.06,0.13) (0.06,0.12) (0.06,0.13)
λ A(H3N2) (0.07,0.09) (0.06,0.13) (0.08,0.13) (0.06,0.13)
λ B (0.07,0.09) (0.06,0.13) (0.06,0.13) (0.06,0.13)
a (0.05,0.3) (0.05,0.5) (0.1,0.5) (0.05,0.5)

* the parameter range was narrowed to avoid erroneous local optimum with zero A(H1N1)pdm09
prevalence

curve. In the experiment with σ = 1.3 the first phase of multi-strain disease outbreak
is portrayed rather close to reality, but the peak heights are underestimated for all
the strains. In case of σ = 1.5 the increased ‘value’ of matching the peak according
to the optimization function resulted in accurate depiction of one peak out of three,
which is A(H3N2) (Fig. 7, green curve). However, that caused the mismatch in
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Figure 7. Model fitting to incidence data in the population with protected individuals, σ = 1.5.

assessing the other two peaks, along with the underestimation of disease incidence
before the peaks and its overestimation after the peaks.

Table 3 demonstrates that changing of σ also caused changes in assessed values
of parameters related to exposure history and thus consequentially to the immunity
levels (for the 2017–2018 epidemic outbreak, the optimal value of αA(H1N1)pdm09

was reduced in two times and αB – in three times). Partly this might be caused by
the known correlation between the parameters reflecting the immunity levels and the
disease virulence [4, 12]. As a consequence of that fact, different combinations of
λ and α might result in the similar incidence trajectories which greatly complicates
the assessment of the immunity levels from the output of the model fitted to disease
incidence trajectories.

In Table 4, the proportions of seropositives among the biological samples are
presented. It is worth noting, that the search of optimal values for α(h) close to the
values drawn from the serological studies for Moscow, 2017–2018 (see the experi-
ment with σ = 1.3, Table 2 under an asterisk) resulted in disease trajectories close
to the real incidence data. Unfortunately, the inverse is not true: it seems that due to
above–mentioned uncertainty of assessing the parameter values the seroprevalence
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Table 3. Optimal parameters for the fitted models.

Variable σ = 1.3 σ = 1.5 σ = 1.3 σ = 1.5

Moscow, 2017–2018 Moscow, 2018–2019
αA(H1N1)pdm09 0.22 0.1 0.31 0.33
αA(H3N2) 0.36 0.33 0.32 0.16
αB 0.37 0.1 0.11 0.10
λ A(H1N1)pdm09 0.0757 0.0734 0.07895 0.0807
λ A(H3N2) 0.0867 0.0953 0.0804 0.0713
λ B 0.0873 0.0734 0.0641 0.0641
a 0.28 0.11 0.31 0.32

Table 4. Fraction of samples seropositive to influenza strains in pre-epidemic period according to
surveillance data.

Strain Moscow, 2017–2018 Moscow, 2018–2019

A(H1N1)pdm09 0.29 0.76
A(H3N2) 0.40 0.71
B 0.45* 0.74/0.67**

* samples seropositive to B/Victoria strain
** samples seropositive to B/Colorado and B/Yamagata strains, respectively

results cannot be accurately assessed based on the model fitting output, at least, for
the current experiment design.

It is interesting to note that some of the numbers in Table 4 have sums more than
1, assuming that some individuals in the population had immunity to several influ-
enza strains at once, which contradicts the assumptions from [9] used in the current
study. A possible explanation is the discrepancy between the detected antibodies in
the sample and the actual immunity against the virus. In any case, this issue requires
careful consideration.

5. Discussion

In the presented research, a compartmental model for influenza strains co-circulation
was developed and calibrated to the generated strain-specific incidence data. The ex-
periments performed with two different sets or parameter ranges on two epidemic
seasons (Moscow, 2017–2018 and Moscow, 2018–2019) allow us to make the fol-
lowing conclusions.

First of all, the accurate reproduction of real incidence data seems to be not pos-
sible under the initial modelling assumptions (no fully protected individuals, µ = 0).
The model trajectories which are similar to data in terms of the peak height demon-
strate exceedingly long and thus unrealistic epidemic durations (see Fig. 4) and the
trajectories with plausible epidemic durations exhibit unnaturally high peaks (see
Fig. 5). Regarding some fraction of individuals in the population as fully protec-
ted helped bring the model curve parameters to similarity with the incidence data.
Nevertheless, the ideal model fit was not reached, especially for the case of Moscow,
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2018–2019, where the epidemic incidence for B strain was not adequately described
by the model (the coefficient of determination R2

σ was less than 0 for both values of
σ ). In this particular case, the reason of discrepancy lies in the apparent late onset of
the B strain outbreak compared to the outbreaks caused by A strains. This difference
in onset timing also worsened the model fit for A(H1N1)pdm09 and A(H3N2) in-
cidence curves. To properly describe such disease outbreak data, it might be fruitful
to incorporate possible time differences between the outbreak onsets into the model
by introducing strain-specific t(m)

0 > 0 instead of currently used t(m)
0 ≡ 0. This mech-

anism will reflect the onset of a full-fledged outbreak of particular virus strain taking
place after several failed strain reintroductions into the population, the possibility of
which is demonstrated by the stochastic models [25, 27].

In the other dataset used for calibration (Moscow, 2017–2018), the variation of
σ caused big discrepancy in the resulting obtained optimal values of α(h) and λ (m).
Combined with the fact that modelling incidence curves for both values of σ (see
Figs. 6 and 7) do not accurately reflect the data (R2

σ ∈ (0.5,0.8)), other local minima
could exist and be revealed in the repetitive model calibration. This might add even
more uncertainty to the parameter output. To overcome this issue, several options
will be considered. First of all, it is necessary to enhance the model fit to data, at
least achieving R2

σ > 0.8. This aim might be reached by tweaking the weights of
the fitting function to avoid some of the erroneous local optima (for instance, those
related to zero model curves) or switching to the other methods of curve fitting, for
instance, approximate Bayesian computation [9]. Finally, we could limit the state
space by assuming equal strain virulence λ (m) ≡ λ > 0 and narrowing uncertainty
intervals for the parameters that might be assessed using additional virologic data or
found in the papers published by other research teams. In any case, interval assess-
ments instead of point assessments should be found for the herd immunity levels.
Those assessments might be obtained by repeating the optimization procedures, al-
tering the calibration parameters and regarding more data on influenza outbreaks
for model calibration (different cities as well as different epidemic seasons). Once
those interval assessments are gathered, we will be able to start matching them with
the immunity levels measured in the course of virologic studies.

From the standpoint of epidemiological application of the model, it is crucial to
understand why the adequate representation of epidemic incidence curves was made
possible by the model only after the introduction of fully protected individuals. The
reasons of that might be the following ones: (a) the part of the population is in fact
not reachable by infection due to the heterogeneity in contact patterns, and hence
excluded from the infection process, which cannot be captured by the mass action
law principle used in the compartmental model; (b) we do not account for the fact
that the provided data solely represent the detected part of the incidence cases, rather
than all the cases occurred during an epidemic season. Also, the sizes of samples in
virologic data, which are used to calculate strain-specific incidence, allow big biases
in weekly registration of influenza cases and thus might result in high uncertainty
of resulting strain-specific incidence assessment. We plan to tackle this problem by
adding a separate model for healthcare services attendance and assessing the role
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of population heterogeneity in forming indirect protection via multiagent models
[23, 25]. This assessment might be later used to more accurately define the protected
fraction of individuals in susceptible cohorts of a multi-strain compartmental model.

It is worth noting that two issues related to managing epidemiological data must
be addressed, before the serological sampling results might be used in modelling
efforts in the most efficient way. Firstly, the samples were collected from the adults
(18 years of age and older), so to effectively match the results of serological stud-
ies to the immunity levels assessed by model calibration, an explicit age structure
should be implemented in the compartmental model. Secondly, we need to develop
a transparent interpretation of the sampling results which assume that an individual
can be immune to several influenza strains at once (see Section 4.2, Table 4). If it is
possible from the epidemiological point of view, contrary to the assumption in [9],
we will need to create additional exposure history states corresponding to immunity
to several strains. At last, we would like to explicitly add into the model the artificial
immunity caused by vaccination.
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