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Abstract — Pathophysiology of ischemic heart disease is a complex phenomenon determined by the
interaction of multiple processes including the inflammatory, immunological, infectious, mechanical,
biochemical and epigenetic ones. A predictive clinically relevant modelling of the entire trajectory of
the human organism, from the initial alterations in lipid metabolism through to atherosclerotic plaque
formation and finally to the pathologic state of the ischemic heart disease, is an open insufficiently
explored problem. In the present review, we consider the existing mathematical frameworks which are
used to describe, analyze and predict the dynamics of various processes related to cardiovascular dis-
eases at the molecular, cellular, tissue, and holistic human organism level. The mechanistic, statistical
and machine learning models are discussed in detail with special focus on the underlying assump-
tions and their clinical relevance. All together, they provide a solid computational platform for further
expansion and tailoring for practical applications.
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1. Lipid metabolism and heart disease
Ischemic heart disease, also known as coronary heart disease, presents a tremendous
health problem worldwide [18]. It develops as a consequence of a persistent reduc-
tion in blood flow in arteries of the heart. The formation of atherosclerotic plaques
inside large arteries results in a narrowing of the vessel lumen and hardening of its
walls and is considered as one of the major pathological factors of the disease. In-
deed, it limits the supply of the heart with an oxygen-rich blood, and in a long-term,
promotes the development of the ischemic heart disease.

The pathogenesis of the atherosclerosis is a complex phenomenon resulting
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from the interaction of multiple processes including the inflammatory, immuno-
logical, infectious, mechanical, biochemical and epigenetic ones [47] (see Fig. 1).
The underlying endothelial dysfunction can be induced by factors of various phys-
ical and physiological nature with the elevated levels of serum Low-Density Lipo-
proteins (LDL) being among them [35]. The deposition of LDL (cholesterol) in the
inner layer of arterial vessel (intima) results in plaque buildup which can grow, stag-
nate or regress depending on a number of biological and biomechanical mechanisms
[42]. The dynamics of the atherosclerotic plaques formed by LDL determining the
degree of occlusion of the vessels is not fully understood and requires the applica-
tion of in silico, in vivo, and in vitro models to develop a mechanistic understanding
of relationship between the lipid metabolism and the development of atherosclerosis
[18, 47].

Alterations in lipid turnover (biosynthesis, transportation and degradation), i.e.,
the lipid metabolism, are considered to play an important role in atherosclerosis
[46]. An elevated serum level of LDL cholesterol (LDL-C) is a critical factor for
coronary heart diseases. The plasma levels of High-Density Lipoprotein (HDL)
cholesterol show a significant negative correlation with the cardiovascular risk and
atherosclerosis [22, 46]. However, the relationship between the levels of HDL cho-
lesterol (HDL-C) and LDL-C is complex as shown in studies with CETP inhibitors
[24] and additional research of the regulation loops is needed.

The networks of processes determining the lipid metabolism are extremely com-
plex and include multiple layers of regulation [22], as depicted in Fig. 1. The link
between the lipid metabolism and the molecular biology pathways in conjunction
with genetic regulation are starting to be investigated on a systematic basis [23, 47].
The number of mathematical models considering the lipid metabolism regulation
at a single cell level is rather limited. It goes back to the remarkable study of LDL
metabolism and intracellular cholesterol regulation [4]. The multiphysics biomech-
anical and biochemical aspects of the atherosclerotic plaque formation at the blood
vessel level were thoroughly addressed in numerous studies (see, e.g., [8, 35] and
the references therein). The corresponding approaches which we refer to as mech-
anistic models are discussed in detail in the next sections and summarized in Fig. 1.

2. Mechanistic models
2.1. Models of lipid metabolism in a single cell

Mathematical model describing the lipoprotein metabolism in a single cell is presen-
ted in [31]. It describes the uptake of LDL and very Low-Density Lipoprotein
(VLDL) by hepatocyte mediated by LDL receptors (as in [43]), the intracellular
biosynthesis of cholesterol (similar to [3]) and receptors for LDL, and delipidation
of VLDL to LDL. The turnover of the transcription factor, i.e., sterol regulatory
element-binding protein 2 (SREBP-2), regulated by cholesterol is taken into ac-
count. The model was formulated as a system of 18 coupled nonlinear ODEs by
applying the law of mass action to describe the underlying biochemical reactions.
The calibrated model with about 50 estimated parameters was employed to study
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Figure 1. The processes which are described by corresponding mathematical models at various levels
of pathology-related comorbidities of cardiovascular disease and the approaches for linking the pro-
cesses at genomic and systemic physiological levels to the disease risk or severity. The figure was
created with BioRender.com.

(1) the effects of statin therapy, which is used to lower the serum cholesterol levels,
and (2) the origins of five class types of familial hypercholesterolaemia. The overall
conclusion of the study was that mathematical modelling can be a useful tool for un-
derstanding lipoprotein metabolism at a single cell level. Importantly, the model of
intracellular biosynthesis of cholesterol [3] is built upon the previous studies of the
same group (in particular, [4, 43, 45]), and includes the SREBP-2-mediated feed-
back control of intracellular cholesterol on LDL-receptor (LDLR) and HMG-CoA
reductase (HMGCR) transcription. This feedback control system was found to be
necessary for accurate description of cholesterol metabolism [28]. Indeed, it was
the only model of lipid metabolism in a cell that passed the functional tests in the
meta-study [28]. The tests were used to evaluate whether the model can reproduce
the effects of treatment with a statin observed in vivo by respectively perturbing
the model. Namely, simulating decrease in cholesterol production by reducing the
activity of HMGCR by 75% resulted in an increased uptake of LDL in the pres-
ence of LDL and in a lowering of intracellular cholesterol in the absence of LDL,
as expected.

The most recent study of cholesterol metabolism at a single cell level exam-
ines the aging effect on hepatic regulatory mechanisms [26]. The computational
model formulated using the Systems Biology Graphical Notation (SBGN) platform
and Systems Biology Markup Language (SBML) considers the dynamics of 34 bio-
chemical characteristics of the cholesterol regulation. It was used to analyze the
mechanisms of the phenomenon of increased mortality associated with low levels
of LDL-C and the observations that high blood cholesterol levels can be associated
with a decreased risk of death in aged individuals. Further research is needed to gain
a consistent understanding of the underlying mechanism.

https://biorender.com
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2.2. Multi-compartmental models of lipid dynamics

Another approach in the study of the causes of dyslipidemia was chosen by research-
ers who built a multi-compartment model of lipid metabolism in the human body
[6]. They were guided by the goal of constructing a model that allows tracing the
entire process of lipid metabolism, since measuring the levels of lipids in the blood
does not give a complete understanding of the processes taking place in the body. To
track the processes of lipid metabolism, stable isotopes of the elements that make up
leucine, glycerol, involved in the processes of metabolism of VLDL, lipogenesis in
the liver, and HDL-mediated transport of cholesterol were used. Recent discoveries
in mass spectrometry have made it possible to make accurate measurements of the
amount of a traceable substance, with a small number of samples even for a low
concentration of considered isotopes. Further, using the SAAM software package,
multi-compartment models of the dynamics of VLDL, LDL, intermediate-density
lipoproteins (IDL) and HDL were built. As the next step, the authors of the work
see taking into account the metabolism of lipids in the intestine and the effect of
chylomicrons on the processes of lipid metabolism.

This modelling approach should allow one to understand mechanistically the
processes of lipid metabolism and identify those interactions that lead to an im-
balance of lipids in various tissues and organs of the human body, including those
leading to the development of atherosclerosis and other cardiovascular diseases.

2.3. Quantitative systems pharmacology modelling of lipid metabolism

A separate category of the models of lipid metabolism are those that follow the
quantitative systems pharmacology (QSP) approach. These models are developed
to answer certain questions related to the effects of specific therapeutic treatments
and the parameterizations of drug effects are calibrated and validated extensively.
For example, to study the effectiveness of two kinds of HDL-C raising drugs on
increasing the rate of reverse cholesterol transport (RCT), a QSP model was de-
veloped in [24]. The ODE-based model describes the dynamics of the following
6 variables: small lipid-poor ApoA-I particles, ApoA-I particles in α-HDL pool,
particle concentration in α-HDL pool, cholesterol ester (CE) in α-HDL pool, CE in
LDL, and CE in VLDL. The other species from HDL proteome and lipidome that
do not directly regulate RCT are represented implicitly. For example, the ratio of
triglycerides to CE is assumed to be 13%. The expression for RCT rate as a func-
tion of the lipid-poor ApoA-I particles was derived. The model was calibrated using
the Bayesian approach, and the maximum a posteriori estimates of parameters were
computed. For model validation, the experimental data on subjects with mutations in
ABCA1 and ApoA-I genes was used. The mutations were simulated by setting the
respective parameters (ABCA1 activity and ApoA-I synthesis rate) to 50% and 0%
of their baseline value. By sampling the model parameters from a multivariate nor-
mal distribution, the synthetically generated data was produced. These data showed
that there is a strong correlation between HDL-C and RCT rate and allowed to find
two candidate biomarkers for ABCA1 activity: the concentration and the percentage
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of ApoA-I. By simulating HDL-C raising treatments, it was predicted that the first
one, CETP inhibition, increases HDL-C but does not lead to an increased RCT rate,
while the second one, ABCA1 up-regulation, increases both HDL-C and RCT rate.
In [14], the model was further used to study the effects of additional treatments:
enhancement of ApoA-I synthesis by RVX-208 and the infusion of reconstituted or
delipidated HDL.

Recently, a multiscale QSP model was developed in [44] to study the effects of
statin and anti-PCSK9 treatments on lowering plasma LDL-C. In the model, three
compartments were considered: liver, small intestine and peripheral tissues. The
model variables include: cholesterol concentration in three compartments, blood
levels of VLDL, LDL-C, HDL, LDL receptors (LDLR) on the surface of hepato-
cytes and internalized LDLR, intracellular HMG-CoA concentration, PCSK9 level
in blood, and three complexes which are formed as PCSK9 binds to LDLR ex-
pressed on the cell surface. The cholesterol synthesis rate was determined by us-
ing Flux Balance Analysis (FBA) to apply constraints on the comprehensive meta-
bolic network Hepatonet [15], which includes 777 intracellular metabolites. FBA al-
gorithm finds such steady-state fluxes for network reactions that minimize the sum
of internal fluxes under a set of two-bound constraints on each flux [15, 44]. The
HMG-CoA concentration was used to set the constraint to control the cholesterol
synthesis rate. The Michaelis–Menten parameterization was used to incorporate the
direct effect of atorvastatin drug on the cholesterol synthesis rate in the liver, while
the Hill equations were used to model the indirect effect of atorvastatin on LDLR
and PCSK9 synthesis rates. In contrast, to simulate the effect of anti-PCSK9, which
reduces the number of PCSK9 proteins available for binding with LDLR, the two-
compartment target-mediated drug disposition model [12] was used. The overall
result of the study was that combination treatment is necessary to reduce LDL-C
levels for patients with high levels of PCSK9 and cholesterol synthesis rates.

For a quantitative comparison of the effects of two anti-PCSK9 classes of drugs,
an integrative QSP model of lipoprotein dynamics was developed in [36]. Three
monoclonal antibodies (mAbs) and two small interfering RNA (siRNA) drugs were
considered. The model is formulated as system of 17 ODEs describing the following
variables: plasma concentrations of PCSK9, LDL-C, LDL receptors, Lp(a) (LDL-
like particles containing apolipoprotein(a)), the amount of three drugs (alirocumab,
evolocumab and RG-7652 mAbs) in the administration and circulation compart-
ments, the number of complexes formed between PCSK9 and each drug, and the
amount of two drugs (inclisiran and ALN-PCS siRNA) in the administration and
liver compartments. The inhibitory effect of anti-PCSK9 siRNA drugs on the trans-
lation of PCSK9 is modelled using Michaelis-Menten functions. The result of the
study was that, at the clinically used doses, mAbs decreased the LDL-C levels 20%
lower than siRNAs. At doses leading to the same level of LDL-C reduction, there
were no differences in the other lipid metabolites, even though they differ in mech-
anism of action. The model predicts the inhibitory level of siRNA drugs that needs
to be reached by changing their biochemical properties in order to have the same
effectiveness as mAbs or higher.
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2.4. Models of atherosclerotic plaque formation

2.4.1. Qualitative network-type Boolean approach. The complexity of the bio-
chemical interactions underlying the atherosclerotic plaque formation enforces the
probing of various approaches to the construction of the interaction network-type
dynamical models, e.g., (1) based on system identification methods, (2) the use of
prior knowledge in the form of the list of regulatory interactions, (3) as well as
their combination. The potential of using a prior knowledge network (PKN) for the
construction of the dynamical model of the formation of atherosclerotic plaques is
illustrated in [2].

The model is developed using the Boolean framework with the set space of the
system represented by Boolean variables, i.e., the nodes in the network interacting
via specified logical rules. The pathophysiology of atherosclerotic plaque formation
is split in the following stages: (1) initial lipid accumulation, (2) monocyte infilt-
ration, (3) platelets recruitment and (4) lipid core formation resulting in a chronic
systemic inflammatory condition [2]. The model derived using PKN is composed
of 729 nodes (432 proteins and 297 metabolites or biological processes) linked by
3406 interactions, of which 1841 regulations are encoded with logical operators and
1565 represent activatory or inhibitory interaction between the nodes. The model
is solved by converting the Boolean network into a certain continuous dynamical
system and finding its stable steady states [25]. The model was used to predict the
key regulators of the signal transduction and inflammatory cytokine secretion. In
particular, it was shown that a proper representation of the Akt signaling pathway is
key for a consistent prediction of its contribution to the healthy and the pathological
phenotypes.

Overall, the key importance of the expert curation of the complex regulatory
interactions considered in experimental literature is demonstrated. In addition, the
suitability of the logical modelling framework is advocated for complex and poorly
understood systems.

2.4.2. Quantitative ODE-based multi-compartmental approach. The most
comprehensive mathematical model of atherosclerotic plaque formation is developed
in [29]. It is based on molecular biology map underlying the atherosclerosis patho-
physiology. The model describes the population dynamics of 80 molecular species
taking place in five human organism compartments: the liver, intestine, tunica in-
tima, lumen, and endothelium. The model considers the dynamics of a broad spec-
trum of humoral and cellular factors, including lipoproteins, inflammatory compon-
ents (cytokines and cells of the innate and adaptive arms of the immune system),
muscle cells, and endothelial cells. The corresponding system of ODEs is set up
using the law of mass action and the Michaelis–Menten kinetics formalisms. A nu-
merous set of 179 model parameters was quantified using available literature search
or estimated via model calibration. For coding of the model equations and inter-
action maps representation, the facilities of the SBML and SBGN proved to the
critical. The computational experiments with the model enabled the identification
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of hypothetical therapies based on multi-drug interventions. In particular, five drugs
were predicted that can reverse the advance atheroma formation. The limitations of
the model are related to a simple description of the spatial effects (compartmental
approach) and the intracellular regulation of the processes.

2.4.3. Multiphysics distributed parameter systems-based approach. The de-
scription of the spatial dynamics of atherosclerosis is the subject of numerous mod-
els formulated with PDEs. For example, the model developed in [13], describes the
dynamics of 18 variables: (i) lipoprotein concentrations L, H, Lox (LDL, HDL, ox-
idized LDL (oxLDL)), (ii) densities of pro-inflammatory M1 and anti-inflammatory
M2 macrophages (M1, M2), foam cells (F), T cells (T ) and smooth muscle cells
(SMCs) (S), (iii) concentration of free radicals which oxidize LDL (r), (iv) con-
centrations of chemoattractant protein MCP-1 P and platelet-derived growth factor
(PDGF) (G), (v) density of extracellular matrix (ECM) (ρ), and concentrations of
MMP and TIMP (Q, Qr) which promote and inhibit the remodelling of ECM, (vi)
concentrations of inflammatory signal IFN-γ (Iγ ) and activation signal interleukin
IL-12 (I12), (vii) the pressure σ caused by the moving cells in the plaque and the
fluid velocity in the medium of the plaque, which is assumed to be porous and
therefore governed by Darcy’s law u =−K∇σ . Simulations were run in 2D planes,
i.e., in the cross-section of the artery and along the artery with periodic boundary
conditions. Various boundary conditions are considered for different variables and
domain boundaries. For a free boundary of the intima in contact with the lumen
(i.e., with blood), the Robin boundary conditions are considered for L, H, M1, M2,
T with constant convective constants αi for all variables except for M1:

αM1 = α̂M1

Lox

1+H
.

For other variables, except for ρ and σ , no-flux boundary condition is set. The free
boundary is held together by cell-to-cell adhesion forces, which is represented by
Dirichlet boundary condition for σ . The velocity of free boundary is set as Vn =
−∂σ/∂n. For the boundary of the intima in contact with the surrounding medium,
no-flux boundary conditions are assumed for all variables except ρ and S. For S, the
Robin boundary condition is set with convective constant

αS = α̂S
P+G

P0 +G0

as SMCs move into the intima from the media chemotactically by sensing MCP-1
and PDGF. For ρ , the boundary conditions on both boundaries is determined by
ρ = 1− S−F −T −M1−M2, so that the total density of all the cells and ECM is
constant and is equal to 1 g/cm3.

The PDEs of the model are in the form of reaction-diffusion equations for the
molecules, and convection-reaction-diffusion for the cells. For M1 macrophages,
the chemotaxis term along the gradient of MCP-1 is additionally considered. For
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SMCs, the equation governing S(x, t) consists of convection and diffusion terms,
and the terms for chemotaxis along the respective gradients ∇P and ∇G, as well as
haptotaxis along ∇ρ:

∂S
∂ t

+∇ · (uS)−DS∆S =−∇ · (χCS∇P)−∇ · (χCS∇G)−∇ · (χHS∇ρ).

The model was used to predict the dynamics of plaque formation during 60
days, and to explore four therapeutic drugs for plaque regression introduced start-
ing from day 31. The treatments are simulated by changing the model paramet-
ers in corresponding terms. The effects of three drugs (anti-miR33, antibody and
TGF-β treatments) that enhance the ABCA1 production were simulated. In each
case, the parameter inhibiting the reverse cholesterol transport rate was decreased
for a quantitative agreement of plaque regression with experimental data in terms
of either plaque weight, M1 and ECM density, monocyte chemoattractant protein
(MCP-1) concentration, or foam cell density. Next, the miR-145 drug which tar-
gets SMCs, therefore reducing plaque weight, was considered by decreasing the
influx rate of SCMs. Finally, the ‘risk map’ on the plane of HDL and LDL concen-
trations was computed, which represents the percentage of plaque mass growth or
shrinkage at the end of 300 days for each point of (L0, H0). Several strategies of per-
sonalized treatment of atherosclerosis were illustrated, which correspond to moving
from high-risk to low-risk zones on the map by combining lifestyle changes such
as antioxidant supplementation or quitting smoking, reducing blood pressure and
anti-cholesterol medications.

The most detailed and representative multiphysics model of early atheroscler-
osis was developed in [35]. The biological concept underlying the model devel-
opment is that atherosclerosis is a chronic inflammatory disease. The model is fo-
cused on the physiological, biochemical and biomechanical events which occur dur-
ing an early phase of atherosclerosis development. The 3D domain considered in
the model combines the blood vessel lumen, the intima and the endothelium layer
separating them. The time- and space-dependent variables of the model are LDL,
oxLDL, cytokines, factor increasing monocytopoiesis (FIM), monocytes, macro-
phages, foam cells. The transport of the cells and humoral factors is described by
convection/chemotaxis-diffusion-reaction type of equations. The boundary condi-
tions take into account the permeability of the endothelial wall for LDL and trans-
migration of monocytes from lumen to intima. The key parameterizations of the
model are (1) the wall shear stress (WSS), LDL concentration and inflammatory
cytokine dependence of the endothelial permeability for LDL, (2) WSS and cy-
tokine (MCP-1) dependent (in a multiplicative way) transmigration of monocytes
into intima (flux across the endothelium), and (3) differentiation of monocytes into
macrophages and the oxLDL-dependent transformation of the macrophages into
foam cells. The parameterizations take phenomenologically into account that low
WSS increases the residence time near the arterial wall, thus favoring the transport
of LDL and monocytes through endothelium to the intima. The inflammatory re-
sponse is launched once the oxLDL concentration reaches a specified threshold of
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1.9×10−7 g·cm−3 [35]. Importantly, a positive feedback FIM-dependent regulation
of the monocytopoiesis in the bone marrow is taken into account via the extra terms
in the inlet boundary condition for the vessel lumen.

The most elaborated and computationally challenging part of the model is re-
lated to the transport processes. The model considers blood flow in the vessel lumen
governed by the Navier–Stokes equations for an incompressible Newtonian fluid
(u(t,x) is the blood velocity):

ρ
∂

∂ t
u(t,x)+ρ(u(t,x) ·∇)u(t,x) =−∇ ·

[
p(t,x)I+µ

(
∇u(t,x)+(∇u(t,x))T )]

∇ ·u(t,x) = 0.

The fluid flow in the intima is modelled by Biot system for a poroelastic medium
with r(t,x) being the unknown displacement and p(t,x) standing for the pressure of
the medium, µLame and λLame being the Lamé coefficients, and k being the hydraulic
conductivity:

∇ ·
(
µLame(∇r(t,x)+(∇r(t,x))T )

)
+λLame∇ · r(t,xI)−∇p(t,x) = 0

∇ ·
(

∂

∂ t
r(t,x)− k∇p(t,x)

)
= 0.

A central part of the modelling problem formulation for its further computa-
tional implementation of was an elaborate specification of the interface and bound-
ary conditions for fluid flow, molecular and cellular fluxes. The numerical simu-
lations of the reduced to 2D version of the model lead to two major conclusions:
(1) the region of atherosclerotic plaque formation can not be predicted solely on
the WSS but needs to be considered in relation to the spatial LDL distribution and
local inflammatory conditions, and (2) endothelial permeability for monocytes is
essentially influenced by MCP-1 level. In a broader context, the model provides a
general platform for further development of multiscale models with a more detailed
description of the regulation of pro- and anti-inflammatory immunophysiological
responses of the host to link the molecular- and cellular level processes with the
systemic dynamics of the host organism to a critical stage of atherosclerosis (as
shown in Fig. 1).

Two biomechanical aspects of the early atherosclerosis not considered in the
above model, i.e., incompressible non-Newtonian blood properties and the pulsative
blood flow interacting with the elastic artery wall were thoroughly examined using
a multiphysics approach in [41]. The key assumption of the model was that the low
wall shear stress is the sole factor controlling the permeability of the endothelium for
LDL to diffuse in the artery wall. The governing set of the model equations is cat-
egorized as a coupled fluidstructureadvectiondiffusionreaction model. In the model,
the branching subclavian and common carotid arteries are considered in defining the
computational region of interest. The interaction of the blood flow with the artery
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wall is FSI-based considering embedded three-element Windkessels with a hyper-
elastic structure. The later undergoes finite deformations, anisotropic growth, LDL
concentration-dependent remodelling and a change of its constitutive equation. The
structure of the artery wall is reduced to consideration of two compartments, the en-
dothelium and arterial wall. The model was calibrated using murine-specific data.
The 3D numerical simulations showed that the pulsative flow regime has a crucial
impact on the development of atherosclerosis and a minor effect is exhibited by the
aorta compliance.

In the follow-up study, the stability of atherosclerotic plaques was analyzed to
elaborate the criteria for classifying them as progression-prone and progression-
resistant using the measurable parameters such as the blood cholesterol level and
wall shear stresses [42]. The 3D multiphysics set of model equations consists of
two groups of equations. The first one of the biomechanical transport equations con-
siders Darcys law for the transmural flow through vessels walls, the KedemKatchal-
sky equations for endothelial fluxes of lipoproteins, and the model of early plaque
formation [41]. The second part consists of phenomenological equations for reac-
tions in the intima, which describe the monocyte-based metabolism of LDL to pro-
duce cholesterol, differentiation of monocytes into macrophages followed by their
apoptosis, the oxidative LDL and HDL modification by macrophages and the en-
dothelium. The unmodified HDLs function to reduce LDL oxidation. Macrophage-
produced cholesterol is assumed to be stored as esterified cholesterol, thus con-
straining the free cholesterol level between physiologic and cytotoxic limits. The
model predicts that regions in arteries with the wall shear stress dropping below 20%
of the average exposure are potential regions for the development of progression-
prone atherosclerotic plaques.

The accumulation of LDL in the subendothelial layer is one of the key local
manifestations of pathophysiological process associated with plaque development
that can finally result in atherosclerosis, i.e., a systemic disease. Most of the mech-
anistic mathematical models were formulated to investigate this initial stage of ath-
erosclerosis development. To this end, a similar set of basic equations was used
with major differences in the parameterization of transport processes, multilayer
structure of the arterial wall, fluid structure interaction description. The core equa-
tions include those for fluid flow inside the vessel lumen (Navier–Stokes), the fluid
and lipoprotein transport in lumen and through the heterogeneous porous elastic tis-
sues of the vessel wall (Brinkman Darcy’s model, Kedem–Katchalsky equations for
interfacial coupling), and convection–reaction–diffusion for mass balance. Specific
aspects of the impact of biomechanical parameters of the transport model compon-
ents (e.g., via the sensitivity analysis [30]), the initial and inflow boundary value
conditions [10] on LDL accumulations were addressed in the following studies with
appropriately tuned mathematical descriptions:

• the effect of non-Newtonian behavior of fluids on LDL accumulation [11, 17];

• wall shear stress and high LDL concentration [20, 38, 39];

• effect of hypertension condition on LDL accumulation [9, 19, 33, 40];
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• impact of angiogenesis from the adventitial vasa vasorum and intraplaque
hemorrhage on the atherosclerotic plaque destabilization [16].

Recent study focused on formulation of multiphysics model was developed to
examine the hypothesis stating that the disruption of arterial wall nourishment is the
primary cause of the onset of inflammatory response of the wall tissue [37].

To examine the atheroprotective role of HDL, the mathematical model of the
inflammatory processes inside intima was developed in [1]. It is formulated as a
system of coupled reaction-diffusion equations for cellular and cytokine compon-
ents of the inflammatory reaction and oxLDL. The impact of HDL was modelled
by parameterization of the risk of plaque formation as a function of serum level of
HDL. The conditions for major phenotypes of inflammation, i.e., no inflammation,
stable plaque and vulnerable plaque, and the inflammation propagating as travelling
wave, were obtained.

Finally, it should be noted that the multiscale/multiphysics models of arter-
ial plaque formation available today can still benefit from adding a more detailed
description of cell-level and plasma-level dynamics of lipoprotein metabolism.
Moreover, the outputs of the models still need to be linked with the disease patho-
physiology metrics to be used as predictive tools of the disease dynamics and out-
come.

3. Statistical, bioinformatics and AI models

Another type of models is designed to identify the lipid metabolism biomarkers
and associate them with pathophysiology or risk of development of cardiovascular
disease (see Fig. 1). These include the regression models of various kinds and ar-
tificial neural network models, as well as bioinformatic analysis of gene networks,
examples of which are provided below. Importantly, the disease risk can be linked to
either genetic or plasma level lipid factors, thus providing a tool to be incorporated
in the multiscale models of atherosclerotic plaque formation to predict the disease
risk or severity.

3.1. Statistical analysis and regression models

The statistical models of the ischemic heart disease are based on the analysis of the
associations/correlations between the serum lipid levels and specific disease pro-
gression states of the patients. They rely on the data obtained by lipidomic pro-
filing to characterize the organ-specific alterations in the level and composition of
lipid molecules. The study published in [48] identified a group of circulating lip-
ids that were significantly altered negatively (63 lipids) and positively (62 lipids)
in ischemic heart and coronary diseases. Although the coronary artery disease and
blood serum lipid levels are highly correlated, the underlying regulatory molecular
networks remain to be thoroughly investigated.

In [27], lipidomics was used to measure 184 lipids in plasma samples of 3865
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individuals, with a follow-up approximately 20 years afterwards. At the endpoint,
536 participants developed coronary artherial disease. The Cox proportional haz-
ards regression models were trained to predict the risk of future disease onset. To
perform variable selection, i.e., to select only the most predictive risk factors and
prevent overfitting, the Lasso regularization technique was applied. This method
uses the l1 norm for penalty on model coefficients term instead of traditional for
ridge regression l2 norm, which forces some coefficients to be exactly zero, thus ex-
cluding the corresponding variable candidates from the resulting model. As a result,
eight new lipids in plasma were identified as predictive lipid risk factors: four differ-
ent phosphatidylcholines, sphingomyelin, diacylglycerol, phosphatidylinositol, and
sterol ester. Using them improved the model performance significantly compared to
considering only traditional risk factors: fasting levels of triglycerides, HDL and
LDL cholesterol in plasma, age, sex, body mass index, systolic blood pressure,
smoking and diabetes status. Notably, the improvement was achieved for predic-
tions as long as 20 years prior to disease onset, showing that lipidomics measure-
ments could be useful as early markers of increased cardiovascular disease risk.

3.2. Integrative genomics analysis using bioinformatics tools

Integrative genomic analysis of genome-wide association study summary data per-
formed in [7] led to identification of common 13 genes and pathways showing a
significant overlap. It was found that the genetic contribution of the coronary artery
disease is located in cell-type specific regions (aortic endothelial cells, adipose tis-
sues cells, liver tissue cells) containing the sites of plasma lipid metabolism regu-
lation. The key genes driving the disease include LDLR, APOB, and PCSK9. They
take part in LDL uptake and degradation of LDL particles.

Similarly, integrative genomics approach was applied in [5] to identify the
genetic variants associated with plasma lipid levels, i.e., total cholesterol, HDL
and LDL cholesterol, and triglycerides. On top of the known key regulator genes
(e.g., APOH, APOA4, and ABCA1), the researchers detected novel genes such as
F2 gene (coagulation factor II, trombin) in adipose tissue. Knockout of this gene
reduced intracellular adipocyte lipid content and increased the extracellular one.
These studies use a set of bioinformatics methods and tools for analysis of gene net-
works. In particular, Weighted Correlation Network Analysis (WGCNA) [21] was
used to build gene co-expression network modules. The identification of key genetic
drivers and interacting gene hubs was performed using weighted key driver analysis
(wKDA) in Mergeomics pipeline [34].

3.3. Artificial neural network models

To determine the key factors of lipid metabolism disorders in the human body, a
group of researchers carried out mathematical modelling using artificial neural net-
work of the perceptron type [32] (see Fig. 2). The authors examined 453 indicators
for their influence on the risks of developing lipid metabolism disorders, including
those leading to chronic heart diseases. An artificial neural network was trained to
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Figure 2. Schematic diagram of an artificial neural network for assessing the significance of measured
variables in determining the likelihood of lipid disorder and the concentrations of lipids and lipid-
containing structures in the human body.

predict the likelihood of developing lipid metabolism disorders based on combina-
tions of the studied indicators, and then the trained network was used to assess the
effect of specific indicators on the prediction results. As a result of the research,
12 key indicators were identified that affect the development of dyslipidemia. Thus,
alkaline phosphatase, free fat mass index, and hemoglobin levels were effectively
correlated with blood lipid markers, and the waist-to-hip ratio correlated with low-
density lipids and cholesterol levels. Also, about 10 indicators were identified as key
for determining the levels of high- and low-density lipids. The potential problem of
the developed model can be false correlations, i.e., situations when events happen
simultaneously, but do not depend on each other.

4. Conclusions: Emerging multidisciplinary approaches

The whole-organism predictive modelling integrating the entire trajectory of the hu-
man organism from the initial alterations in lipid metabolism through to atheroscler-
otic plaque formation and finally to the pathologic state of the ischemic heart disease
remains an open, unexplored task. It is the mathematical modelling of biomechan-
ical and (to a lesser extent) biochemical (i.e., the local LDL and HDL dynamics)
aspects of the atherosclerotic plaque development which received most attention of
researchers. All together, they provide a solid computational platform for expan-
sion and tailoring for practical applications. Further mathematical modelling of the
signalling and interaction networks across multiple regulation levels (see Fig. 1)
with focus on assimilation of big-data gathered in experimental and clinical studies
of heart diseases, and on strengthening their potential to make medically relevant
predictions is urgently needed. Multidisciplinary framework represents one neces-
sary condition for elaboration of approaches integrating the deepness of mechanistic
modelling, the clarity of statistical models and the power of machine learning meth-
ods for the benefit of personalized therapies.
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