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Spatially averaged haemodynamic models for different parts
of cardiovascular system

S. S. Simakov∗

Abstract — This paper revisits the usage of spatially averaged haemodynamic models such as non-
stationary 1D/0D in space and stationary 0D in space models. Conditions of equivalence between
different 1D model formulations are considered. The impact of circular and elliptic shapes of the tube
cross-section on the friction term and the tube law is analyzed. Finally, the relationship between 0D
lumped and 1D models is revealed.
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The choice of blood flow modelling method depends on the time-to-time variability
of the flow, the spatial scale of the vascular domain and the target physiological
and pathological processes. The most detailed are 3D models which consider the
interaction of flow with a moving viscoelastic vascular wall (FSI) [25, 45]. The 3D
FSI modelling is a complicated task both from technological and practical points of
view. It requires to specify with great details 3D geometry of the vascular region,
elastic properties of the wall, boundary conditions, and to apply advanced numerical
schemes.

This paper revisits the usage of spatially averaged haemodynamic models such
as non-stationary 1D/0D in space and stationary 0D in space models. They are useful
for analysis of blood flow in vascular networks including tens or hundreds of vessels.
These models are also applied to modelling the closed-loop circulation including
systemic and pulmonary arteries and veins via 1D [1,6,7,28,39] and 0D [10,17,23]
reductions. Detailed descriptions of spatially averaged blood flow models can be
found in [4, 32, 36, 40, 45, 46], although some issues (e.g. blood flow in veins) have
received less attention. In this work we present a monolithic view to reduced-order
blood flow in different parts of the cardiovascular system.

Methods of the reduced-order solution of FSI problems include two basic ideas:
asymptotic analysis with a thin wall assumption [2, 9, 15, 18] and integration over a
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cross-section of an elastic tube [11]. We apply the spatial averaging procedure [11]
to the Navier–Stokes equations for flows of viscous incompressible fluid in long
elastic tubes with circular cross-section and study some specific details which are
not addressed in the literature. The derivation gives 1D equations for the cross-
section area and flow variables. In particular, a 1D formulation using the cross-
section and averaged linear velocity variables provides a system of hyperbolic equa-
tions. Numerical methods for the approximate solution of such system are well
known. Thus first, we consider in details conditions of equivalence between dif-
ferent 1D model formulations. Flows in the elastic tubes with circular and elliptic
cross-section are different, and the model of the blood flow in veins should be stud-
ied separately. Second, we consider the impact of circular and elliptic cross-sections
on the friction term and the tube law contributing to 1D haemodynamic models.
Spatial and/or dynamic effects may be neglected in some parts of the cardiovascu-
lar system where 0D lumped models may be used successfully (microcirculation,
heart chambers); therefore, we clarify the relationship between 0D lumped and 1D
models.

The rest of the paper is organized as follows. In Section 1 we consider 1D hae-
modynamic models in large arteries (Section 1.1) and veins (Section 1.2). In Sec-
tion 2 we derive spatially averaged 0D lumped models which describe variations
of pressure, volume and flow in time (Section 2.1) and time-averaged relationships
between them (Section 2.2). Concluding remarks are given in Section 3.

1. 1D haemodynamic models in large vessels
The Reynolds number in arteries ranges from 10 to 4 ·103. The standard assumptions
for deriving 1D hemodynamic models are:

1. The ratio of the vessel diameter to its length is small.

2. The shape of the velocity profile in any cross-section orthogonal to the vessel
centerline remains the same along the centerline (e.g., it stays flat or para-
bolic).

3. The pressure is constant in each cross-section.

4. The forces act on the vessel wall in normal directions and wall displacements
occur in the same direction.

The detailed list can be found in [45].

1.1. 1D haemodynamic model for large arteries

The above assumptions allow us to integrate the 3D Navier–Stokes equations over a
cross-sectional slice [11,45]. We consider a slice of an elastic tube (vessel) between
two cross sections Γ1 and Γ2 orthogonal to its centerline (see Fig. 1 for the 2D
analogue). Here ΓW is tube wall, Ω is the integration domain limited by Γ1 ∪Γ2 ∪
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ΓW . Let t be the time, x denote the coordinate along the centerline, ΓS be a circular
cross-section orthogonal to the centerline at a point with coordinate x, the radius
of ΓS be R(t,x) and the area be S(t,x) = πR2(t,x), η(t,x) be the displacement of
the wall in the radial direction of ΓS. In the cross-section we introduce the radial
coordinate r and the Cartesian coordinates y, z.

Due to the assumptions, the Navier–Stokes equations for the incompressible
Newtonian viscous fluid are reduced to

divu = 0 (1.1)

∂ux

∂ t
+div(uxu)+

1
ρ

∂P
∂x
−ν∆ux = 0 (1.2)

ux(t,x,y,z) = ū(t)ξ (x,y,z) (1.3)

ur(t,R,x) =
∂η

∂ t
(t,x) (1.4)

where u = (ux,uy,uz) is the 3D velocity, P(t,x) is the pressure, ρ = 1.04 g/cm3 is
the blood density, ν = 0.04 cm2/s is the blood viscosity. The shape of the velocity
profile in (1.3) is defined by function

ξ (x,y,z) =
γ +2

γ

(
1−
(

y2 + z2

R2(t,x)

)γ/2
)
, y2 + z2 6 R2(t,x). (1.5)

Here γ = 2 corresponds to the parabolic (Poiseuille) profile, γ = 9 corresponds to
an almost flat profile. Equation (1.4) means the non-slip condition on the side wall
ΓW since ux(t,R,x) = 0 due to assumption 4. In (1.3) we define the linear velocity
averaged in ΓS as

u =
1
S

∫
ΓS

uxds. (1.6)

We will also use the flow Q through the cross-section ΓS as

Q|
ΓS

=
∫
ΓS

uxds = Su. (1.7)

Integrating incompressibility equation (1.1) over Ω we get

0 =
∫
Ω

divudx =
∫

∂Ω

u ·nds =
∫
Γ2

uxds−
∫
Γ1

uxds+
∫

ΓW

urds (1.8)

which is transformed into the 1D mass conservation equation

∂S
∂ t

+
∂Q
∂x

= 0. (1.9)
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Figure 1. Integration domain (2D case).

Integrating momentum equation (1.2) over Ω we get∫
Ω

∂ux

∂ t
dx+

∫
Ω

div(uxu)dx+
1
ρ

∫
Ω

∂P
∂x

dx−ν

∫
Ω

∆uxdx = 0 (1.10)

which is transformed into the 1D momentum conservation equation

∂Q
∂ t

+
∂

∂x

(
α

Q2

S

)
+

S
ρ

∂P
∂x

= Kru (1.11)

where
Kr =−2π (γ +2)ν (1.12)

α =
1

Su2

∫
ΓS

u2ds = π
−1R−2u−2

R∫
0

(
γ +2

γ

)2

ū2
(

1− rγ

Rγ

)2

2πr dr =
γ +2
γ +1

. (1.13)

Substituting Q = Su to (1.9) and (1.11) we get

∂S
∂ t

+
∂ (Su)

∂x
= 0 (1.14)

∂u
∂ t

+

(
α− 1

2

)
∂u2

∂x
+(α−1)

u2

S
∂S
∂x

+
1
ρ

∂P
∂x

=−2π (γ +2)ν
u
S
. (1.15)

The third equation of the model is a constitutive relationship between P and S
which defines the elastic properties of the tube wall. It describes the response of
collagen and elastin fibres of the vessel to the pressure difference across the wall
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(transmural pressure). This relationship is also known as the tube law. For arteries,
its general form [44] is

P = F (S) (1.16)

where F (S) is a smooth monotonic function with ∂F/∂S > 0. Since the inverse
function S = F̂ (P) exists and ∂ F̂/∂P > 0, equation (1.15) transforms to

∂u
∂ t

+

(
α− 1

2

)
∂u2

∂x
+

(
1+(α−1)

ρu2

S
∂ F̂
∂P

)
1
ρ

∂P
∂x

= ψ (1.17)

where ψ =−2π (γ +2)νuS−1.
If one chooses the tube law F (S) = Pext+ρwc2

0
(
eS/S0−1−1

)
for S0 denoting the

cross-section area under P = 0 [39, 40, 44], he gets F̂ =
(
1+ ln

(
1+ρ−1

w c−2
0 P

))
S0

and (1.17) transforms to

∂u
∂ t

+

(
α− 1

2

)
∂u2

∂x
+(1+ ε)

1
ρ

∂P
∂x

= ψ (1.18)

where

ε = (α−1)
ρ

ρw

S0

S

(
u
c0

)2 1
1+ρ

−1
w c−2

0 P
. (1.19)

We note that for any velocity profile parameter γ > 2 the correction factor α 6
4/3 in (1.11) and (1.15). The physiology of arteries gives the estimates ρ < ρw,
S > S0, u < 0.5 m/s, c0 > 4 m/s which guarantee that ε < 5 ·10−3. Under assumption
that α is independent of x one can omit the ε-term in (1.18) and approximate (1.18)
by

∂u
∂ t

+
∂

∂x

((
α− 1

2

)
u2 +

P
ρ

)
= ψ. (1.20)

For a rather flat profile (γ = 9, α = 1.1), the contribution of the ignored ε-term
in (1.18) is less than 0.16%

(
ε < 1.6 ·10−3

)
. Moreover, asymptotically ε → 0 as

α → 1 and (1.20) converges to (1.18) for almost flat profiles.
The 1D haemodynamic model (1.9), (1.11), (1.16) uses variables (S,Q,P). In

general this system is not hyperbolic. The 1D model (1.14), (1.20), (1.16) uses vari-
ables (S,u,P). This formulation is appealing [5, 7, 11, 12, 28, 34, 35, 46] as it is hy-
perbolic and admits the divergent form which is useful for mathematical analysis
and constructing efficient numerical methods. It is also possible to formulate a 1D
haemodynamic model in (R,P) variables closed by an elastic wall model [18].

1.2. 1D haemodynamic model for large deep veins

The systemic and pulmonary venous flows are necessary for modelling the closed-
loop circulation, or global circulation, in the whole organism. The Reynolds number
in veins ranges from 1 to 102. The common approach is to use lumped compartment



6 S. S. Simakov

models (Section 2), whereas haemodynamic 1D models are rarely used in this re-
gard [8, 12, 28]. Usually, 1D models of venous blood flow adopt the 1D model for
large arteries (Section 1.1) and modify the tube law. Such approach is valid for
superficial veins as their walls have much common with arterial walls. Also, the ap-
proach is partly valid for deep veins in the standing position as they are smoothed
out and their cross-section becomes circular. The cross-section of deep veins in the
lateroprone position as well as other positions is elliptic or even dumbbell-shaped.
Thus, the 1D haemodynamic model for large deep veins should account non-circular
cross-sections.

1.2.1. Averaging in elliptic cross-section. In this section we confine ourselves
by the elliptic cross-section with major and minor axes a and b which depend on x.
The elliptic analogue of the circular profile (1.5) is

ξab(y,z) =
γ +2

γ

(
1−
(

y2

a2 +
z2

b2

)γ/2
)
,

y2

a2 +
z2

b2 6 1. (1.21)

Similarly to (1.5) it produces a Poiseuille-like parabolic profile for γ = 2 and an
almost flat profile for γ = 9:

u(t,x,y,z) = ū(t)ξab(x,y,z). (1.22)

Integration and averaging of the Navier–Stokes equations over a slice with an
elliptic cross-section produce the same mass and momentum conservation equations
(1.9), (1.11) with possibly different factors α and Kr as they depend on the velocity
profile (1.21). Using the polar coordinates y = racosϕ , z = rbsinϕ (0 6 r 6 1,
0 6 ϕ < 2π) we have the same result (1.13) for the value of α . The averaging of the
friction term in (1.2) is modified as follows

−ν

∫
Ω

∆ux dx = ν

∫
∂Ω

∇ux ·nds = νu
∫

ΓW

(
∂ξab

∂y
ny +

∂ξab

∂ z
nz

)
ds (1.23)

where from (1.21) we have

∂ξab

∂y

∣∣∣∣
y2/a2+z2/b2=1

=−(γ +2)
y
a2 ,

∂ξab

∂ z

∣∣∣∣
y2/a2+z2/b2=1

=−(γ +2)
z

b2 (1.24)

and the outward normal to the elliptic wall is

n = (ny,nz) =

 y

a2

√
y2

a4 +
z2

b4

,
z

b2

√
y2

a4 +
z2

b4

 . (1.25)

Finally we obtain

Kr =−πν (γ +2)
a2 +b2

ab
. (1.26)

For circular cross-sections we have a = b and (1.26) reduces to (1.12).
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1.2.2. Constitutive relationship for elastic tubes with elliptic cross-section.
The constitutive relationship for a tube with elliptic cross-section is different from
that for a tube with circular cross-section. For an elliptic ring with major and minor

axes a and b, we introduce eccentricity k =
(

1− (b/a)2
)1/2

and wall thickness h.
If we inflate the tube by internal pressure P, neglect axial effects and use the linear
theory of deformations, then the strains along the major and minor axes δa and δb
can be computed as [3]:

δa =
Caa4

D
P, δb =

Cba4

D
P (1.27)

where D is the bending stiffness, coefficients Ca and Cb are

Ca = K1

(
b2

2a2 +
b

2ka
arcsink

)
− 1−3k2 +2k4

16
+

b
16ka

arcsink (1.28)

Cb =
K1

2
+

3k2−1
16

+
b2
(
8K1 +1+3k3

)
32ka2 ln

1+ k
1− k

(1.29)

and K1 is a constant. The tube law becomes

S = π(a+δa)(b+δb) = πa
(

b+(a+b)
Caa3

D
P+

CaCba7

D2 P2
)
= F̂(P,a,b).

(1.30)
The solution of (1.30) gives the pressure P as a function of the area S:

P =
−B+

√
B2−4AC

2A
= F(S,a,b) (1.31)

where A = π CaCba8/D2, B = π (a+b)Caa4/D, C = πab− S. We select the plus
sign before the square root since the transmural pressure P can be either negative or
positive. The values A and B are always positive, thus P > 0 for S > πab and P < 0
for πab− 1

4 (a+b)2Ca/Cb < S < πab.
We note that

∂ F̂
∂P

= π
Caa4

D

(
a+b+

Cba4

D
P
)

(1.32)

is a linear function of P. We also note, that for elliptic cross-sections the difference
S−S0 may be negative and positive. Thus the error of transforming (1.17) to (1.20)
may be higher in this case.

2. Lumped haemodynamic models
Certain processes in the cardiovascular system do not rely on spatial effects of the
nonlinear pulse wave propagation. For instance, microcirculation in microvascu-
lature, transport of oxygen, carbon dioxide, drugs and nutrients, heart chambers
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function may be imitated by lumped models. The lumped models relate the aver-
aged haemodynamic parameters: pressure, flow and volume of the blood. Dynamic
lumped models account time variability of the parameters, whereas stationary mod-
els relate the time-averaged values via nonlinear algebraic equations which may
also include spatial derivatives. The latter models are useful for periodic or almost
periodic haemodynamic processes with short transition periods.

Derivation of lumped models may be based on different principles. Here we
derive dynamic (Section 2.1) and stationary (Section 2.2) lumped models from the
1D haemodynamic models for large arteries.

2.1. Dynamic lumped model

We consider an elastic tube with circular cross-section and length l equal to its dia-
meter. Rewriting the momentum equation (1.11), substituting the partial derivative
∂/∂x with its finite difference discretization with mesh size ∆x = l, we get

∂Q
∂ t

+
1

∆x
∆
(
αS−1Q2)+ S

ρ

∆P
∆x

= Kru. (2.1)

Multiplying (2.1) by ρS−1∆x and neglecting the change of the kinetic energy in the
short tube we can transform (2.1) to

ρS−1
∆x

∂Q
∂ t
−ρS−2

∆xKrQ+∆P = 0. (2.2)

We can rewrite (2.2) in the form

ρl2

V
dQ
dt
− ρl3Kr

V 2 Q+∆P = 0 (2.3)

where V = lS is the volume of the domain. Since Q = dV dt, we get finally

I
d2V
dt2 +Rh

dV
dt

+∆P = 0 (2.4)

where the inertia coefficient I and the hydraulic resistance R are defined by

I =
ρl2

V
, Rh = 2πν (γ +2)

ρl3

V 2 . (2.5)

We observe that coefficients I and Rh depend on the volume V , although in many
works they are considered as constants [16, 39, 40]. Inertia effects are sometimes
neglected (I = 0) [17]. It has proved that the solution by the lumped compartment
approach for a vascular segment converges to the solution by 1D haemodynamic
model for the same segment with the first order in space [26].

The momentum equation (2.4) may be applied to a spherical deformable ele-
ment or to an arbitrary deformable convex element like a heart chamber. In the latter
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case ∆P= P(V )−Pext−Pch, where Pch is the pressure in the chamber, function P(V )
describes an elastic response of the chamber similar to the tube law for an elastic
tube. The linear elasticity model of the heart chamber implies P(V ) = eV , e= const,
and Pext(t) < 0 describes the pressure from myocardium contractions [16, 39]. The
variable elasticity model of the heart chamber assumes P(V ) = P0 +E(t)(V −V0),
P0 = const, V0 = const, and E(t) is effective (average) elasticity due to the action-
potential propagation through the myocardium, Pext = 0 [17, 38, 42, 47].

The lumped model can account nonlinear effects via I, Rh and P(V ). For in-
stance, the blood rheology may be specified in R (2.5) by a non-constant vis-
cosity ν = ν(Q). Viscoelasticity of the heart chambers may be introduced as
Rh = Rh(P) [24, 37, 43]. The heart rhythm variations are described by modifying
E(t) [13].

The momentum equation (2.4) may be also applied to a regional network of
vessels. In this case I is the effective inertia coefficient, Rh is the effective hy-
draulic resistance, E(t) is the effective elasticity. These coefficients are determined
by fitting with experimental or clinical data or derived from the internal structure of
the network (topological connectivity of its vessels). The latter reveals the electro-
mechanical analogy between the lumped hydraulic compartments and electrical cir-
cuits. In this analogy the volume corresponds to the electric charge, the flow cor-
responds to the electric current, the inertia coefficient corresponds to the induct-
ance, the hydraulic resistance corresponds to the electric resistance, the stiffness
coefficient e−1 corresponds to the capacity, the pressure corresponds to the elec-
trical voltage [40]. The connection of several lumped hydraulic compartments is
performed similarly to connections of elements of electrical circuits via the Kirch-
hoff’s laws.

2.2. Stationary lumped model

The flow of viscous fluid is stationary in a tube with small diameter d and length ∆x.
The Reynolds number lies in the range from 10−3 to 1, and one can neglect the flow
acceleration ∂Q/∂ t ≈ 0 and the change of the kinetic energy ∂

(
αQ2/S

)
/∂x≈ 0 in

order to derive from (2.1):
S
ρ

∆P
∆x

= Kru (2.6)

or, equivalently,

∆P = RhQ, Rh = 2µ (γ +2)π
−1d−4

∆x (2.7)

where Rh is the hydraulic resistance, µ = νρ is the dynamic viscosity. For the para-
bolic profile (γ = 2 in (1.5)) we obtain the Poiseuille pressure drop condition. Model
(2.7) considers microvasculature (arterioles, capillaries and venules) as a stationary
lumped compartment. The microvessels are connected via the mass conservation
condition at each junction point

∑Q = 0. (2.8)
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Numerical models of blood flow in microvasculature based on (2.7), (2.8) are
computationally expensive due to the nonlinear blood rheology and complex topolo-
gical structure with ∼ 105 microvessels per 1 cm3 of the tissue. The models require
solving systems of nonlinear algebraic equations.

The rheological properties of the blood are primary determined by the plasma
viscosity, the volume fraction of the red blood cells (RBCs) (hematocrit), the RBC
rheology, the RBC membrane elasticity, and interaction of RBCs. For various math-
ematical descriptions of the blood rheology we refer to [4, 29, 32, 33]. One possible
way to account it is to define the hydraulic resistance as [40, 45]:

Rh =
πκ1d4

8µ∆x

(
1+κ2Q2) (2.9)

with the predefined constants κ1 and κ2.
The topological structure of microvasculature may be recovered from high-

resolution microcomputed tomography images [41]. A physiologically correct
3D structure may be imitated via a direct force repulsion–attraction nonlinear
model [14]. Such structures are used in simulation of the transport of oxygen, drugs
and other substances in spatially anisotropic models of the tumour growth [22] and
the tissue perfusion.

3. Discussion
In the present paper we considered reduction of the Navier–Stokes equations to the
1D models of blood flow in arteries and veins, to the lumped dynamic compartment
of regional arterial networks and heart chambers, and to the stationary compartment
of microcirculation. We examined the limitations of the usage of variables (S, u, P)
in the 1D models of arterial and venous flows. For tubes with elliptic cross-section,
the analytic tube law was proposed. The relation between the lumped models para-
meters and mechanical and geometrical properties of the simulated structures was
revealed. Boundary conditions for 1D haemodynamic models were not discussed in
this paper, the interested reader is referred to [4, 20, 45].

Approximation (1.20) of (1.11) is based on small ε in (1.18). We neglected the
nonlinear term proportional to (ε/ρ)∂P/∂x which may be large in some patholo-
gical conditions and may be important for a strict mathematical analysis of (1.9),
(1.11). The exponential and the other analytic tube laws (their overview is given
in [44]) provide bounded derivatives ∂ F̂/∂P in the neighbourhood of S0, however,
for veins we have linear dependence on P, ∂ F̂/∂P = O(P), and the thick wall ap-
proximation gives even sharper increase of ∂ F̂/∂P [21]. Therefore, simplification
of (1.17) is valid for arteries whereas for veins it is valid just partly. Next, the formal
asymptotics of (1.18) for γ → ∞ results in the infinite viscosity term ψ in (1.11) or
(1.20) since it is proportional to γ . Thus the profile parameterization (1.5) is not
suitable for such analysis. The other options for profile description are the power
law profile and the Stokes layer [46]. Moreover, the actual velocity profile is not
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constant in time that makes α to be a time-dependent function [30,31]. The viscos-
ity dependence on the flow velocity is typical for the venous and lymph flows [27].
Some approaches use more complicated Oldroyd viscoelastic fluid model [19].

Different physiological features of blood flows are not considered in this work.
Accounting the arterial autoregulation, the heart and venous valves function, athero-
sclerotic plaques and endovascular implants modifies the considered 1D blood flow
model [45].
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