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Induced drift of scroll waves in the Aliev–Panfilov model
and in an axisymmetric heart left ventricle

S. F. Pravdin∗, T. I. Epanchintsev∗, T. V. Nezlobinskii∗, and A. V. Panfilov∗†

Abstract — The low-voltage cardioversion-defibrillation is a modern sparing electrotherapy method
for such dangerous heart arrhythmias as paroxysmal tachycardia and fibrillation. In an excitable me-
dium, such arrhythmias relate to appearance of spiral waves of electrical excitation, and the spiral
waves are superseded to the electric boundary of the medium in the process of treatment due to high-
frequency stimulation from the electrode. In this paper we consider the Aliev–Panfilov myocardial
model, which provides a positive tension of three-dimensional scroll waves, and an axisymmetric
model of the left ventricle of the human heart. Two relations of anisotropy are considered, namely,
isotropy and physiological anisotropy. The periods of stimulation with an apical electrode are found
so that the electrode successfully entrains its rhythm in the medium, the spiral wave is superseded
to the base of the ventricle, and disappears. The results are compared in two-dimensional and three-
dimensional media. The intervals of effective stimulation periods are sufficiently close to each other
in the two-dimensional case and in the anatomical model. However, the use of the anatomical model
is essential in determination of the time of superseding.
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Rotational modes of electrical excitation in the myocardium are associated with the
occurrence of dangerous heart arrhythmias [12]. It is known that rotation can occur
around non-excitable areas of the heart, for example, near holes in large vessels
or scars after a heart attack [37]. Such an area is called the anatomical block of
conducting and serves as the substrate of anatomical reentry. Moreover, the wave
can rotate in the absence of an anatomical obstacle, then it is called a spiral wave
[41, 42]. In the case of spiral waves, the rotation occurs around the functional core
of the wave. The core can be stationary or drift [5, 44]. When the core approaches
the electrical boundary of the heart wall, the spiral wave may disappear. Usually,
the atrioventricular septum is such boundary in ventricles. Thus, one of the ways to
stop an arrhythmia attack is to cause the spiral to drift in the direction of borders
of atria and ventricles. It is important that this can be achieved using an external
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action with low energy, for example, electrical stimulation with low voltage and
current being hundreds of times smaller than in traditional shock cardioversion-
defibrillation because the shock defibrillation can damage the heart. This method of
electrotherapy is called low-voltage.

One of the methods of low-voltage cardioversion-defibrillation (LVC) is heart
stimulation with a period less than the period of arrhythmia [10, 14, 30]. This LVC
was studied in a laboratory experiment [31] and in clinic [34, 39] and it demon-
strated quite high efficiency, but lesser than shock therapy, i.e., 60% vs. 90%. It
is very important to develop LVC methods because shock current pulses damage
the myocardium and are extremely painful for conscious patients (this is relevant
for atrial arrhythmias) and, when used with implanted cardioverters, their battery is
significantly drained.

In excitable media, this LVC method is associated with the drift and supersed-
ing of spiral waves [11, 35, 43]. Computer experiment is a very fruitful method for
studying LVC and other processes in the heart [2, 4, 22].

We studied LVC in numerical experiments in two-dimensional media using
both phenomenological (Aliev–Panfilov [1]) and biophysical (Luo–Rudy LR-I [17],
TP06 [36]) models of heart cells and tissue [6, 8, 9, 25, 27]. It turned out that there
is an interval of periods that give safe and effective stimulation. In order to compare
different models, it is more convenient to specify the boundaries of this interval in
fractions of the spiral wave period. For the Aliev–Panfilov model with a discontinu-
ous right-hand side (see Section 1 for parameters), one should use periods from 0.7
to 0.99 [9], for a continuous right-hand side those are periods from 0.8 to 0.99 [27],
for the LR-I model those are from 0.9 to 0.99 [6, 8], and for the TR06 model, from
0.95 to 0.99 [25]. At the same time, the degree of anisotropy of the medium and the
direction of fibres had little effect on this interval of periods. The size of the elec-
trode and stimulating current in some cases had a significant effect on the results of
the process. The role of the latter factor was also pointed out in [33], where the LR-I
model was used.

The next step to applying LVC in the clinic is numerical experiments on three-
dimensional models of the heart. In this paper we consider an axisymmetric model
of the left ventricle (LV) of the human heart [28] as the model contains the least
number of parameters, is not related to features of a specific patient, but at the same
time it accurately reproduces the form of LV in norm and the directions of muscle
fibres in it.

We use the phenomenological cell-level model of Aliev–Panfilov [1] with a dis-
continuous right-hand side. A spiral wave in this model rotates stably and has a
circular core in a flat medium.

A three-dimensional spiral wave rotates around a three-dimensional cylindrical
region, the core, which is often represented as a line called a filament. If the filament
has the shape of a circle, then the most common type of dynamics is the instability
and the drift of the sroll wave, which results in decreasing radius of the circle and
annihilation of the vortex [19].

The velocity of this drift has 2 components, the normal one in the plane of
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the filament and the binormal component in the orthogonal direction. In the first
approximation, the normal component of the drift vn is described by the equation

vn = b2 · k

where k is the curvature of the thread and b2 is a coefficient [13]. This equation
implies the following equation for filament length ` [3]:

d`
dt

=−b2

∫
k2(s)ds.

If the filament radius decreases, then the coefficient b2 is positive and the length of
the filament decreases. However, if the filament is not a closed curve, for example,
if its ends come out on opposite sides of the parallelepiped, then it takes the form of
a straight line orthogonal to the faces, i.e., the line of minimum length [20]. If the
thickness of the region is not uniform, then the filament also tends to take the form
of a line of minimal length, i.e., it stabilizes at the point of minimal thickness [24].
Note that the above formulas are valid only for a filament of large radius and without
torsion and in the absence of anisotropy of the heart tissue. If these factors are
present, for example, in an anisotropic case, the curvature of the filament between
two faces does not tend to zero, and the filament takes the form of a geodesic in a
space whose metric is determined by the anisotropy [40].

A scroll wave in the Aliev–Panfilov model considered here in an isotropic me-
dium of any thickness is also stable and has a straight filament. A spontaneous
drift of spiral waves in an isotropic medium was considered in our paper [24]. The
method of calculating the tension was proposed in [21]. We used it in [24, 26] and
obtained the filament tending to decrease its length and drifting to the domain with
a local minimum of depth of the medium. In this paper we study the drift of single
scroll waves induced by an external electrical stimulation from a small electrode
located in the myocardium. We use various anisotropy ratios and pacing periods.
Periods of stimulation demonstrating assimilation of the electrode rhythm, forced
drift and disappearance of the spiral wave form a segment. In this paper we study
the dependence of the boundaries of that segment on the parameters of the model.

1. Methods
The calculations were performed using monodomain reaction-diffusion equations
of the dimensionless Aliev–Panfilov model [1] with two phase variables u and v.
Equations and parameters were taken from [26], numerical methods were taken
from [29]. Let us present here brief information concerning the model. We solved
the system of two equations

∂u
∂ t

= div(Dgradu)− ku(u−a)(u−1)−uv+ Istim(r, t)

∂v
∂ t

= ε(u)(ku− v)
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where u = u(r, t) is the transmembrane potential at the point r at the time moment
t, D is the diffusion matrix, v = v(r, t) is the conductivity for ionic current, ε(u) = 1
for u < a, ε(u) = η otherwise, k, a, η are parameters of the model, Istim is the
stimulating current. The numerical parameters of the model were k = 8, a = 0.03,
η = 0.1.

The diffusion matrix D depends on the directions of fibres and diffusion coeffi-
cients along fibres D1 and across fibres D2. The directions of fibres were obtained
with the use of the model of LV of the heart [29] (see Fig. 1c). The LV model uses
a special local system of coordinates γ (position from the epicardium γ = γ0 to the
endocardium γ = γ1), ψ (position from the base ψ = 0 to the apex ψ = π/2), ϕ

(longitude from 0 to 2π).

The LV model has the following parameters: the height from base to apex epi-
cardium of zb+h= 60 mm, the wall thickness at the base of l = 12 mm, the outer ra-
dius of LV at the base of rb+ l = 33 mm, the conicity-ellipticity parameter ε = 0.85,
the angle of twist of the spiral surfaces ϕmax = 3π , γ0 = 0.1, γ1 = 0.9 (see details
in [29]).

We varied the wall thickness at the apex h = 6, 12, 18 mm, the degree of tissue
anisotropy, i.e., D1 = D2 = 1 for isotropy, D1 = 1/4, D2 = 1/36 for physiological
anisotropy, stimulation periods Pstim from 0.7 to 1.0 relative to the period of spiral
wave Tsw.

We created a scroll wave using the S1S2 protocol. The first stimulus was applied
to the region 0.57 < ψ < 0.62, 0 6 ϕ < 0.24, the second one to the region 0 6
ϕ 6 π at the moment of 2160 ms (isotropy), 1960 ms (anisotropy). We observed its
spontaneous drift during 40 s and if the wave did not disappear by itself, we repeated
the calculations from the beginning adding the electrode stimulation with a certain
period from 6 s. The electrode was located in an area ψ > 1.4 at the apex of LV (see
Fig. 1c). We registered the propagation of plane waves from the electrode and the
type of their interactions with the scroll wave.

A spiral wave on a plane has a tip, or center of rotation, and it rotates around
the region called the core. Similarly, in a 3-dimensional medium, the tips of a scroll
wave form a line called the thread or filament. Based on the results of calculations of
the potential u, we found the position of the scroll wave filament using the method
described in [26].

The calculation parameters are listed in Table 1, where ∆t is the time step, ∆r
is the effective spatial step. The actual mesh size between grid nodes being uniform
in the curvilinear coordinate system, but not uniform in the Cartesian coordinates
was withing the range 0.5∆r . . .2∆r. The scale factors L and T are used to transform
the model units (MU) of length and time to mm and ms. We determined them from
one-dimensional calculation equating the duration of action potential at the level
90% (APD-90) and the wave velocity to their physiological values from [36]. The
stimuli S1 and S2 and stimulation from the electrode were implemented with the
use of the current Istim applied during the time period tstim.
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(a) (b) (c)
Figure 1. Model of LV. (a), (b): scroll wave in LV. View from the top. Colour encodes the potential
of cells. The apex thickness is h = 6 mm. (a): isotropy; (b): anisotropy. (c): cross section of the LV
model by vertical plane y = 0. Boundaries of the electrode are shown by dash-dotted line.

(a) (b)
Figure 2. Filaments of scroll waves in LV. The arrow indicates the direction of drift. The apex thick-
ness is h = 6 mm. Blue surface corresponds to endocardium. (a): isotropy; time moments 2.4–2.8 s.
(b): anisotropy, time moments 2.3–2.6 s.

Table 1. Parameters of the model and numerical method

Parameter Isotropy Anisotropy

∆t, MU 0.01 0.0004
∆t, ms 0.4 0.0016
∆r, mm 1.6 1
L, mm 16
T , ms 40
3D Tsw, MU 14.4 13.8
3D Tsw, ms 576 552

Tension b2 0.30
Stimulation current Istim, MU 100
Duration of stimulation tstim, MU 0.2

2. Results
2.1. Dynamics of scroll waves without external stimulation

A scroll wave in the LV model is presented in Fig. 1a, b. We see that the anisotropy
changes the form of the scroll wave. The beginning of the vortex is near the apex.
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Examples of the filaments of scroll waves are presented in Fig. 2. In the model
considered here the filament has a positive tension, therefore, it is straight in an
isotropic medium. The filament is curved in an anisotropic medium.

It is convenient to describe the dynamics of filaments in the LV model using
special coordinates ψ and ϕ . Figure 3 shows the graph of the coordinates ψ and
ϕ depending on time. If the thickness of the apex is h = 6 mm, the wave rotates
around the core and around the axis of LV, the degree of anisotropy affects the speed
of rotation, i.e., in an anisotropic medium the speed in ϕ is approximately 3.5 times
less than in an isotropic medium. In the isotropic LV for h = 12 mm and h = 18 mm,
the wave disappears after several rotations at the base of LV in approximately 4.5 s
(h = 12 mm), 7 s (h = 18 mm). These data allow us to conclude that the LVC is
necessary in the isotropic model only for h = 6 mm, and in the anisotropic model in
all the considered cases h = 6, 12, and 18 mm.

2.2. Effect of external stimulation on the drift of scroll waves

The superseding of a spiral wave passes through 3 consecutive phases [6]: 0 — as-
similation of the rhythm by the electrode, 1 — growth of the LV myocardial volume
stimulated by the electrode, and displacement of the wave annihilation zone from
the electrode and parts of the spiral wave distant from the core towards the core, 2
— forced drift of the spiral wave to the boundary of the medium, in this case, to
the base of the ventricle. The graphs show changes in the special coordinate ψ of
the filament depending on time (see Fig. 4). The spontaneous drift is replaced by a
forced one and the scroll wave approaches the base of LV and disappears there.

An example of a scroll wave during the time of forced drift is presented in Fig. 5.

2.2.1. Isotropy. In this model with the apex thickness of h = 6 mm, the spiral
wave rotated stably, its filament did not lengthen and did not break up. Applying
the stimulation with the periods from 400 ms to 580 ms (i.e., with Pstim from 0.69
to 1.01 relative to Tsw) with the step 10 ms, we saw that the assimilation of the
stimulation and successful superseding were observed for the periods from 430 ms
to 520 ms. We did not observe dynamic instability or breakup of the scroll wave
caused by external stimulation.

2.2.2. Anisotropy. We found that the minimal periods of successful stimulation
are 440 ms (Pstim = 0.8) for h= 6 mm, 420 ms (Pstim = 0.76) for h= 12 mm, 400 ms
(Pstim = 0.72) for h = 18 mm. The maximal periods of successful stimulation were
540 ms (Pstim = 0.97) for all h. We did not observe any specific features during
superseding (dynamic instability, significant elongation of the filament, breakup).

An important parameter of the successful superseding is the time when the spiral
wave disappears. It is calculated as the time moment at which the filament searching
algorithm stops finding the filament. Graphs of variation of this indicator depending
on the stimulation period are presented in Fig. 6 for different periods of stimulation.
For convenience of comparing the results for different periods of scroll waves rota-
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(a)

(b)
Figure 3. Dynamics of filaments in LV without external stimulation (spontaneous drift). The apex
thickness is h = 6, 12, 18 mm. The arrow indicates the moment of applying stimulus S2. (a) isotropy:
the period of the spiral is Tsw = 576 ms. (b) anisotropy: the period of the spiral is Tsw ≈ 552 ms.

tion, we express the periods of stimulation relative to the period of the spiral wave
in the given medium, i.e., Pstim = Tstim/Tsw.

As seen from the graph in Fig. 6, the time of superseding non-monotonically
depends on the stimulation period. This is due to the fact that first several stimuli
are not assimilated by the medium. If the rhythm is further assimilated, then the
scroll wave is successfully superseded. Otherwise, the Wenckebach effect is ob-
served, every nth stimulus passes, where n > 1, and hence the period of waves from
the electrode becomes equal to nTstim, which actually exceeds Tsw and makes the
stimulation ineffective.
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Figure 4. Dynamics of filaments in LV in the presence of external stimulation: variation of coordinate
ψ of points of the filament (axis Y ) in time (axis X , ms). Until the moment of 6 s we have a slow
spontaneous drift of the filament to the apex, between 6 s and 9.5 s we have a fast forced drift to
the base of LV and, finally, at the moment 9.5 s the filament disappears. The thickness of the apex is
h = 6 mm, isotropy. The arrow indicates the moment of applying stimulus S2. The 6 s mark indicates
the beginning of the periodic stimulation. The period of stimulation is 460 ms.

Figure 5. An example of a scroll wave superseded by external source. Anisotropy, the thickness of the
apex is h = 6 mm, stimulation period is Tstim = 520 ms (Pstim = 0.94), time moments 10016, 10536,
11056 ms after beginning of the stimulation. The spiral wave is above, the wave from the electrode is
below.

Figure 6. The superseding time of a scroll wave depending on the absolute (left), relative (right)
period of stimulation. The moment of the start of stimulation is taken as 0.
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Table 2. Periods of successful stimulation.

Medium Anisotropy Absolute period, ms Relative period
ratio min max min max Tsw, ms

2D [15] 1 404 572 0.7 0.99 576
2D [9] 9 404 548 0.7 0.95 576

3D 1 430 520 0.75 0.90 576
3D 9 390–430 540 0.7–0.78 0.97 552

3. Discussion and conclusion

Let us consider the obtained boundaries of periods and compare the results of two-
and three-dimensional calculations (see Table 2). Considering the minimal and max-
imal periods, it is more important to determine the first one because it may depend
on a variety of factors: cell refractoriness period, minimum diastolic interval, the
size of the electrode, the duration and current strength of a single stimulus, and the
tendency of waves to dynamic instabilities. At the same time, the maximal period
is always slightly less than the period of the spiral wave. If the stimulation period
increases, the speed of advance of the zone where the waves from the electrode col-
lide with the scroll wave decreases, therefore, the maximal period is determined by
the time that we (and the doctor and patient in the clinic) are willing to wait while
the spiral is superseded to the boundary of the medium.

Table 2 shows that the minimal absolute period does not depend on the aniso-
tropy of two-dimensional medium, but it depends on the dimension of the medium
and thickness of the heart wall in the three-dimensional anisotropic model. In the
most complex case of three-dimensional medium with rotational anisotropy (the last
row) the minimal period also depends on the wall thickness at the apex of LV where
the electrode is located. The number of nodes for the entire apex of thickness h for
all three experiments h= 6, 12, and 18 mm was the same and could affect the course
of the 0th and 1st phases of the scroll wave superseding (see Subsection 2.2). The
qualitative result of stimulation and the speed of forced drift which can be estimated
from the time of spiral wave superseding are most dependent on the period of stim-
ulation. This allows us to conclude that two-dimensional calculations are a fairly
accurate tool for studying the qualitative characteristics of LVC.

In the case of the same Aliev–Panfilov cell model, the spiral wave supersed-
ing time in an anisotropic square was minimal for the minimal assimilated period
of stimulation Pstim = 0.7 [9]. However, we considered previously that in two-
dimensional media, the minimal periods should probably be avoided in practice
because of the risk of wave breakup and appearance of new spiral waves, which
corresponds in the heart to transition from tachycardia to fibrillation being a more
dangerous type of arrhythmia. It is advisable to use periods close to the middle of
the interval of effective periods. In the three-dimensional medium considered in this
paper, this conclusion is also true because the lowest superseding time was observed
for average stimulation periods close to Pstim = 0.85.

The time of the superseding was determined in our paper [25] for ionic cell
models. In particular, for the LR-I model [17] in a 100 mm square the superseding
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time was less than 10 s [25, Fig. 3]. In this work we observed the superseding time
in the range of 5–25 s. Note that the typical path that the contact zone of electrode
waves and spiral waves should pass in the case of stimulation from the apex, can be
estimated from above as the length of the ventricular arc from the apex to base. In
the order of magnitude, it is 100 mm, i.e., close to the superseding path in [25], so
the drift speed in the LR-I model is close to the drift speed observed in LV in this
paper. The minimal superseding time observed in the LR-I model and in LV in this
paper was attained at the same relative stimulation period 0.85–0.90. Note that in
the case of anisotropy with circular fibres, the most rapid superseding in the LR-I
model was observed with a relative stimulation period of about 0.88–0.9 [7,8]. This
type of anisotropy in LV is not studied in this paper.

At the same time, the minimal superseding time in the TP06 model [36] in a
160-mm square was much longer (about 50 s) for the relative stimulation period of
0.97 [25, Fig. 5]. This is due to the fact that the spiral wave period in the TP06 model
is close to the refractory period. Therefore, the stimulation with a relative period of
0.85–0.90 was impossible in TP06, but it was most effective in LV in this study.

Realistic three-dimensional modelling of low-voltage defibrillation in atrial ar-
rhythmia [38] has shown that the optimal stimulation period is Pstim = 0.75−0.80,
although other authors report different ranges with a union of 0.69–1.07, and the
periods of 0.94–0.95 were effective for all [38, Table 1].

Two-dimensional simulation predicts well the range of periods of successful
LVC. Since two-dimensional calculations are performed much faster than three-
dimensional ones, the estimation of LVC efficiency can be performed on a two-
dimensional medium. However, if we need to calculate the time necessary to stop
the arrhythmia, a full three-dimensional modelling is required.

This study did not take into account mechanical processes in the heart, in par-
ticular, mechanoelectric feedback. In order to perform such calculations, one can
use various software packages such as Chaste [18], Ani3D [16], or LeVen package
developed in our group [32]. Such simulation would be interesting and important to
conduct in the future because mechanical deformations can affect the dynamics of
excitation waves in the myocardium.

Calculation of the spontaneous dynamics of scroll waves with the more real-
istic T06 cell model [23] has shown that such sources of arrhythmia persist in LV,
therefore, some therapy is required, for example, LVC. Further directions of our re-
search in this area will be calculations with biophysical models of heart cells and
personalized models of heart ventricles.
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