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Application of mutual information estimation for predicting
the structural stability of pentapeptides
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Abstract — A novel non-parametric method for mutual information estimation is presented. The
method is suited for informative feature selection in classification and regression problems. Perform-
ance of the method is demonstrated on problem of stable short peptide classification.
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Large amounts of experimental data used in modern scientific research and ap-
plied problems are heterogeneous. The heterogeneity is related to differences in
data sources and methods of their recording, noise and information redundancy due
to the lack of a model indicating factors uniquely related to the studied target in-
dicators. Such problems are also characterized by a high dimension of the feature
space. For example, when studying a cell or tissue sample by sequencing a new
generation, it is also possible to obtain information about the expression of almost
all protein-coding genes and also short and long non-coding RNA. The typical size
of the data set to be studied is negligible in comparison with the number of features.
The number of features is measured in thousands, and the number of samples is
hundreds at best [4].

The presence of a large number of features not only reduces the effectiveness
of solving the problem in terms of required computing resources and impairs data
visualization and interpretation, but also reduces the generation ability of the used
algorithm. In this case, the algorithm for solving the problem adapts to specific data
used in its tuning, but produces big errors when checking on independent material.

The following methods are used to improve the efficiency and reliability of data
analysis: methods for selecting features, highlighting patterns inherent to data, and
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clustering data into homogeneous groups. As the result, the dimension of the prob-
lem decreases, which is equivalent to an increase in the number of observations in
experimental data, the effect of random perturbations on the result is reduced, and
statistical reliability of the result increases.

Dimension reduction algorithms include RELIEF [6], FOCUS [1], methods
transforming the feature space, for example, the principal component analysis [5],
independent component method [2], the method for contrasting distributions [16].
The principle of selecting informative features according to the value of the correl-
ation coefficient with the target variable is widely used as well.

The value of the correlation coefficient may be close to zero in the case of using
it as a criterion for filtering out features under the presence of a significantly non-
linear relationship between values of features and the target variable. This may lead
to incorrect judgments about the significance of the feature and reduces the quality
of the algorithm. In this paper, we propose to use the mutual information estimation
over experimental data for select features, which, in contrast to the correlation coef-
ficient, allows us to highlight nonlinear dependencies. The results of application of
this approach in a real problem of selecting features are presented for the case of
predicting the stability in a pentapeptide conformation.

One of key problems in modern biology is the study of physical, chemical, and
functional properties of protein molecules and their design. Prediction what spatial
structure the protein takes in the process of its folding is important, in particular,
for development of drugs affecting the functioning of biological systems. Previ-
ously, the entropy of protein sequences was studied in [9]. It was shown that the
pentapeptide is the optimal size of a structural block. Using a description of proteins
with the use of structural blocks in terms of five amino acid residues, an algorithm
revealing the internal hierarchy in the protein sequence was developed [10, 12].

In [11], conformation-stable pentapeptides were found by methods of molecular
dynamics and the assumption was made that such peptides play an important role
in the formation of native spatial structure by proteins. Such structurally stable pep-
tides can initiate the formation of elements of the secondary structure of proteins
and thus ensure correct prefolding conformation of polypeptide chain.

In total, 205 = 3,200,000 different sequences of pentapeptides are theoretic-
ally possible. A molecular dynamic experiment requires very significant time and
calculation resources, therefore, the preliminary search for candidates for further
molecular dynamics study is relevant and in demand. In this paper we consider the
problem of predicting conformation-stable pentapeptides out of 3,200,000 possible.

1. Materials and methods
1.1. Sequence of pentapeptides

In the present paper we use the results of molecular dynamic modelling for 49745
pentapeptide sequences.

The algorithm for choosing sequences of pentapeptides was based on the as-
sumption that two or three interactions in the pentapeptide are sufficient for form-
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Figure 1. Graphs of RMSD of torsion angles (f, y) of the polypeptide backbone relative to the cen-
ter of cluster 5 for the IAFAE peptide [11] obtained in the process of molecular-dynamical (MD)
modelling. MD modelling was carried out for different start velocities of atoms and the same temper-
ature of 300K. The first 5000 points (5 picoseconds, i.e., 50% of MD-simulation time) correspond to
the peptide relaxation time from the initial conformal state. The arrow on graphs indicates the part of
MD-trajectory whose conformation was used in the clusterization of spatial structures of pentapeptide.

ation of structural stability. Therefore, three substitutions were introduced into the
alanine pentapeptide, one at the central position and two more for other positions.
Using this algorithm, 44860 sequences of pentapeptides were made. These peptides
were studied by the method of molecular dynamics. All technical details can be
found in [11].

In modern implementations of the molecular dynamics method, particle traject-
ories correspond to equations of motion that differ from Newtonian ones by small
terms having a stochastic character. As a result, a bundle of trajectories is formed
on the Newtonian ‘leg’ instead of a unique solution to the Cauchy problem. Vari-
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ous modified versions of the method are widely used in the study of both macro-
molecular structures and monatomic systems, which distorts further the solution to
Newton’s equations.

In this paper, the ‘stability’ of a pentapeptide is understood as the presence of a
predominant conformations in a molecular dynamic experiment. We are interested
in the ensemble of equilibrium conformations of the peptide, but not the technique
they were obtained. The applicability of the molecular dynamics method for study of
structure and behavior of bipolymers were discussed in detail in a number of books
and papers [3, 4, 5, 7, 8, 9, 11, 10, 12]. In practice the conformational stability of the
biomolecular structure can be estimated from an experiment by equilibrium molecu-
lar dynamics excluding from consideration the conformations during the balancing
process and comparing the residence times of molecule in different conformations.
Figure 1 shows three different trajectories of the same IAFAE peptide calculated by
molecular modelling at different starting velocities of atoms and the same temper-
ature of MD simulation equal to 300K. Only the conformations observed after the
first 5 picoseconds of simulation were subject to clusterization. This area is marked
with an arrow on the presented trajectories.

We consider a pentapeptide to be conformation-stable if the largest cluster of
conformations includes more than 80% of all conformations. Supplementing this
set of 44860 pentapeptides with previously studied pentapeptides from real proteins,
we obtain a sample of 49745 pentapeptides, and 1705 of them are structurally stable
(3.43% of their total number).

1.2. Mutual information and its estimation

Mutual information serves as a measure of relationship between random variables
and has a wide range of applications. In information theory, it is taken as a measure
of the information contained in a random variable Y relative to a random variable X ,
it measures the amount of information contained in the received message about the
transmitted message. The mutual information is a statistics used in testing statist-
ical hypotheses. The mutual information is used in the analysis of empirical data
aimed to find dependencies between variables and classification factors, to con-
struct regression dependencies. Advantages of mutual information in comparison to
the correlation coefficient are in its universality not limited by linear dependencies.

An example of the usage of mutual information estimate was presented in [14]
for revealing the interconnections between biological processes and stimulating ac-
tions, the selection of features with the use of mutual information in the diagnosis
of acute pulmonary embolism was considered in [15], the application of mutual in-
formation when choosing the model of optimal forecast of stochastic systems was
given in [3].

Formally, the mutual information between random variables X and Y having the
joint distribution P(x,y) is defined by the relation

I(X ,Y ) =
∫

ln
dP(x,y)

dP(x)dP(y)
dP(x,y).
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If the distribution of random variables has the density p(x,y), then the mutual
information is representable in the form

I(X ,Y ) =
∫∫

p(x,y) ln
p(x,y)

p(x)p(y)
dxdy.

The definition implies that the mutual information equals zero for independent
random variables. There are various ways to estimate the value of mutual inform-
ation for a set of experimental data ((x1,y1), . . . , (xn,yn)). A simple method for
evaluating mutual information consists in replacing the integration over the distri-
bution P(x,y) by averaging over sample values

Î(X ,Y ) =
1

km

k

∑
i=1

m

∑
j=1

p(xi,y j) ln
p(xi,y j)

p(xi)p(y j)

where p(xi), p(y j), and p(xi,y j) are estimates of densities from experimental data.
Such estimates can be taken from the histogram estimation, i.e., as the portion

of sample elements falling into the cell with the number i, j of rectangular grid
consisting of k cells in the variable x and m cells in the variable y. Another technique
consists in the use of parametric, kernel estimators for the densities p(x), p(y), and
p(x,y) [7, 8].

The drawback of both approaches is the requirement for a large set of experi-
mental data for obtaining accurate density estimates.

1.3. Evaluation of mutual information by solving an integral equation

Mutual information can be written as the mathematical expectation of the difference
of entropies

I(x,y) = Ex [H(y)−H(y|x)]
where H(y) = −∑t={0,1} p(y = t) log2 p(y = t) is the entropy of the random vari-
able y, H(y|x) is the conditional entropy.

The expression I(x,y) can be rewritten in the form

I(x,y) = ∑
t={0,1}

∫
p(x,y = t) log2

p(x,y = t)
p(x)p(y = t)

dx.

A method of direct evaluation of the mutual information in the problem of bin-
ary classification was proposed in [17], the variable y takes the values 0 or 1 in
this method. Let xy

1, . . . ,x
y
`y

be a sample from the class y, y = 0,1. Write down the
empirical mutual information, the derivation of equation (1.1) is presented in [17],

Ie(x,y) =
1

`0 + `1
∑

t={0,1}
p(y = t)

(
`0

∑
i=1

rt(x0
i ) log2 rt(x0

i )+
`1

∑
i=1

rt(x1
i ) log2 rt(x1

i )

)
(1.1)
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where rt(x) = p(x, t)/p(x).
By definition, the ratio of densities is the solution to the integral equation

A rt(x) =
∫

I{x > u}rt(u)dF(x) = Ft(x). (1.2)

The solution to integral equation (1.2) can be obtained by approximation of the
right-hand side of the equation and the operator:

Ft(x) =
1
`t

`t

∑
i=1

I{x > xt
i}

Aert(x) =
1

`0 + `1

(
`0

∑
i=1

I{x > x0
i }rt(x0

i )+
`1

∑
i=1

I{x > x1
i }rt(x1

i )

)
, t = 0,1.

Equation (1.2) is an ill-conditioned first kind Fredholm equation. It is solved by
regularization, the metric is defined through a special V -matrix [17] which preserves
geometrical properties of the sample.

1.4. Evaluation of mutual information with the use of a quadratic functional

An estimation of mutual information without preliminary estimation of distribution
densities was proposed in [14]. The ratio of densities w(x,y) = p(x,y)/(p(x)p(y))
is sought by minimizing the functional

J (ŵ) =
1
n2

n

∑
i, j=1

(ŵ(xi,y j)−1)2

in the space of estimators of the form ŵ(x,y) = ∑
m
j=1 a jϕ j (x,y), where ϕ j (x,y) are

nonnegative independent functions. m is the parameter of the algorithm. As func-
tions ϕ j (x,y) it is proposed to take some kernel functions, for example, Gaussians
whose centers are taken from a random set of experimental points.

In this paper we propose to construct the estimation of the ratio of densities by
minimizing the functional

J0(ŵ) =
1
2

∫∫
(w(x,y)− ŵ(x,y))2 p(x) p(y)dxdy.

in a reproducing kernel Hilbert space (RKHS). The problem of choosing the location
of kernels and their number disappears in this case. This functional can be rewritten
as

J0(ŵ) =
1
2

∫∫
ŵ2(x,y) p(x) p(y)dxdy−

∫∫
ŵ(x,y) p(x,y)dxdy+C
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where the constant C does not depend on the approximation ŵ and will be omit-
ted below. The empirical estimator of the functional J0(ŵ) over a sample of pairs
((x1,y1), . . . ,(xn,yn)) of experimental data has the form

Je(ŵ) =
1

2n2

n

∑
i=1

n

∑
j=1

ŵ2(xi,y j)−
1
n

n

∑
i=1

ŵ(xi,yi). (1.3)

In order to minimize functional (1.3) with respect to ŵ, we may assume a certain
model dependent on a finite number of parameters. The parameters of the model are
determined by minimization of (1.3) in a finite-dimensional space.

Another approach consists in non-parametric evaluation of ŵ. The following
regularized functional is minimized in this case in the infinite-dimensional Hilbert
space L:

Je(ŵ,λ ) = Je(ŵ)+
λ

2
‖ŵ‖2

L (1.4)

where the parameter λ > 0, and ‖ · ‖L denotes the norm in the Hilbert space L. The
regularizing term added to functional (1.3) provides the uniqueness of the point of
minimum and increases the stability of solution to random perturbations in experi-
mental data. If functional (1.4) is minimized in a reproducing kernel Hilbert space,
then by the representer theorem [13] the approximation ŵ minimizing the functional
Je(ŵ,λ ) under fixed λ is representable in the form

ŵ(z) =
n

∑
i=1

αiK(z,zi) (1.5)

where z = (x,y), zi = (xi,yi), and the nonnegative definite function K(z, t) is the
kernel corresponding to the scalar product in the space L, the coefficients αi are
determined by minimization of functional (1.4). Any nonnegative definite function
can be taken as a kernel, for example,

K(z, t) = exp(−σ
−2‖x− t‖2).

The coefficients αi in expression (1.5) are calculated by the formula

α
∗ = (H +λK)−1h

where the elements of the matrix H are calculated by the formula

Hlm =
1
n2

n

∑
i=1

n

∑
j=1

K(xi,y j,xl,yl)K(xi,y j,xm,ym)

and the elements of the matrix K are calculated by the formula Ki j = K(xi,yi,x j,y j).
The derivation of formulas is presented in Appendix A.
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1.5. Sliding control for selecting optimal parameters

To choose the parameter λ and the window width σ in expression (1.5), an estimator
for the value of the functional J0(ŵ) for given parameters is required. To compute
it, we use the procedure of sliding control, which is the following:

• the experimental data sample is divided into K parts Zk,k = 1, . . . ,K, by Z−k
we denote the part of the sample without Zk;

• for each Z−k we calculate ŵ(x,y), and on the set Zk we calculate the value of
the functional

Ĵk =
1
2 ∑

x,y∈Zk

ŵ2
k(x,y)
n2

k
− ∑

(x,y)∈Zk

ŵ(x,y)
nk

;

• for given parameters λ and σ the value of the functional J0(ŵ) is estimated
by the mean value Ĵ = 1

K ∑k Ĵk;

• searching over the values of λ and σ , we determine the best values of para-
meters such that the functional Ĵ being the unbiased estimator of the func-
tional J0(ŵ) takes the minimal value.

2. Results
Two classification methods were compared to predict the stability of short proteins:
the nearest neighbor method with feature selection based on the value of mutual in-
formation (implementation in the R language from the fastknn package with prox-
imity estimation inversely proportional to the distance of a neighbor from the de-
sired point) and the implementation of a random forest in the R language from the
ranger package.

With a random choice of pentapeptides from a training sample of 49745 penta-
peptides, the probability of detection of a structurally stable one was 3%.

Table 1 presents the result of predicting the stability of pentapeptides on a test
sample using the nearest neighbor method. We have chosen the number of neigh-
bors and mutual information resulting in the maximum of F1 on the test sample. The
accuracy of detection of stable pentapeptides equal to 0.443 is high taking into ac-
count their small presence in the data of molecular dynamic modelling and a small
training sample size.

The random forest algorithm suits well for processing large-size data. Each tree
in the forest is trained on a small random subset of the entire feature set. The implicit
selection of features works by selecting optimal partitions based on an information
criterion and due to limited depth of trees. Table 2 presents the results of stability
prediction for short proteins by the method of random forest with the dimension
parameter mtry = 20 of the random subspace showing the highest value of F1 on
the test sample.

The comparison of tables shows that the choice of informative features by the
value of mutual information allowed us to achieve the quality of classification of
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Table 1. Accuracy of the method of k nearest neighbors on the test sample.

Set of features Accuracy Completeness F1 k

All features 0.213 0.200 0.214 2
Informative features 0.443 0.485 0.463 4

Table 2. Accuracy of the method of random forest calculated by the out-of-bag method.

Set of features Accuracy Completeness F1

All features 0.490 0.564 0.525

Table 3. Informative features for the method of nearest neighbors (mutual information) and random
forest (permutation importance).

Position in pentapeptide Method of nearest neighbors Random forest

Position 1 A, D, E, G, K, P, Q, R A, D, E, K, P, R
Position 2 D, E, G, K, M A, D, E, K
Position 3 E, P, Q, R D, E, K, P, R
Position 4 C, D, E, G, H, P, Q, R D, E, G
Position 5 C, D, E, G, H, K, P, R, S D, E, K, P, R

the simple nearest neighbor method close to that of the more complex and resource-
intensive random forest algorithm.

To identify the priority pentapeptides for calculations, we classified all 3,200,000
possible pentapeptides except for the training sample. The models were retrained on
the full data set.

The method of k nearest neighbors predicted 6.9% of structurally stable penta-
peptides from the total number, and the random forest method predicted 4.3%. The
second result is closer to the percentage of required desired class in the training
sample.

The result is easily explained. The method of k nearest neighbors uses only in-
formative features. Therefore, the transformation translating pentapeptides into the
feature space loses its mutual unambiguity. This means that different pentapeptides
sometimes get the same feature representation. Due to this fact, the percentage of
pentapeptides classified as structurally stable will be higher.

Table 3 shows the informative features selected in the classification methods
used in the paper. They are the most important for searching for structurally stable
pentapeptides. The results of both methods are consistent. The features selected by
the random forest are almost completely included in those selected according to the
mutual information.

Each pentapeptide position contains any of 20 canonical amino acid residues.
The use of only informative features significantly reduces the dimension of the space
in which the classification occurs.

The set predicted by the k nearest neighbor method contains 218,362 pentapeptides.
The set predicted by the random forest method contains 137,300 pentapeptides.
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3. Discussion

Most short peptides have no stable structural states. However, such stable states are
observed in a very small part of peptides (1.7–7.2% according to various estim-
ates). Such stable states are observed. These peptides can play the role of centers in
protein folding. These peptides are the subject of our research. The molecular dy-
namic experiment requires very much time and significant computational resources.
Given the huge number (3,200,000) of possible pentapeptide sequences, the relev-
ance of development of mathematical methods for predicting the presence of struc-
tural stability is evident. The prediction method proposed here allowed us to select
pentapeptides for further checking their structural stability by other methods.

Let us try to explain why at this stage of research we used the method of mo-
lecular dynamics instead of analyzing pentapeptides from experimentally defined
protein structures. In experimental structures, in addition to local interactions, the
interactions with residuals distant in sequence, but close in space play an import-
ant role. Such interactions provide a common topology for laying the polypeptide
chain. Local interactions form the initial points of folding, but in the process of fur-
ther laying the conformations of these sections may change to ensure low overall
energy. In addition, each experimental method for determining the structure has an
error due to the specific features of the method. The study of occurrence of struc-
turally stable pentapeptides in experimental structures of proteins is the goal of our
further research.
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Appendix A. Nonparametric estimation of mutual information
Substituting representation (1.5) into functional Je(ŵ,λ ), we get

Je(ŵ,λ ) =
1

2n2

n

∑
i=1

n

∑
j=1

(
n

∑
l=1

αlK(xi,y j,xl,yl)

)2

− 1
n

n

∑
i=1

n

∑
l=1

αlK(xi,yi,xl,yl)

+
λ

2

∥∥∥∥∥ n

∑
l=1

αlK(xi,yi,xl,yl)

∥∥∥∥∥
2

L

+C.

The first summand is transformed to the form

1
2n2

n

∑
i=1

n

∑
j=1

(
n

∑
l=1

αlK(xi,y j,xl,yl)

)2

=
1

2n2

n

∑
i=1

n

∑
j=1

n

∑
l=1

n

∑
m=1

αlK(xi,y j,xl,yl)αmK(xi,y j,xm,ym)

=
1

2n2

n

∑
l=1

n

∑
m=1

αlαm

n

∑
i=1

n

∑
j=1

K(xi,y j,xl,yl)K(xi,y j,xm,ym) =
1
2

n

∑
l=1

n

∑
m=1

αlαmHlm

where Hlm = 1
n2 ∑

n
i=1 ∑

n
j=1 K(xi,y j,xl,yl)K(xi,y j,xm,ym).

The second summand is transformed to the form
1
n

n

∑
i=1

n

∑
l=1

αlK(xi,yi,xl,yl) =
1
n

n

∑
l=1

αl

n

∑
i=1

K(xi,yi,xl,yl) =
n

∑
l=1

αlhl

where hl =
1
n ∑

n
i=1 K(xi,yi,xl,yl).
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Calculate the last summand

λ

2

∥∥∥∥∥ n

∑
l=1

αlK(xi,yi,xl,yl)

∥∥∥∥∥
2

L

=
λ

2

〈 n

∑
l=1

αlK(xi,yi,xl,yl),
n

∑
m=1

αmK(xi,yi,xm,ym)
〉

=
λ

2

n

∑
l=1

n

∑
m=1

αlαm
〈
K(xi,yi,xl,yl),K(xi,yi,xm,ym)

〉
=

λ

2

n

∑
l=1

n

∑
m=1

αlαmK(xl,yl,xm,ym).

The calculation uses the property of the scalar product in the Hilbert space with
the reproducing kernel K(z, t), namely,

〈
K(z,u),K(t,u)

〉
= K(z, t). Denoting the

matrix with the elements Ki j =K(xi,yi,x j,y j), by K, we finally obtain the expression

Je(α,λ ) =
1
2

α
T Hα−α

T h+
λ

2
α

T K α +C .

The minimum of the later functional is attained at the vector

α
∗ = (H +λK)−1h.


