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Numerical assessment of coaptation for auto-pericardium
based aortic valve cusps
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Abstract — Aortic valve disease accounts for 45% of deaths from heart valve diseases.An appealing
approach to treat aortic valve disease is surgical replacement of the valve leaflets based on chemically
treated autologous pericardium. This procedure is attractive due to its low cost and high effective-
ness.We aim to develop a computational technology for patient-specific assessment of reconstructed
aortic valve function that can be used by surgeons at the preoperative stage. The framework includes
automatic computer tomography image segmentation, mesh generation, simulation of valve leaflet
deformation. The final decision will be based on uncertainty analysis and leaflet shape optimization.
This paper gives a proof of concept of our methodology: simulation methods are presented and studied
numerically.
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Due to increase in life expectancy in high-income countries, heart valve disease

is now referred as the ‘next cardiac epidemic’ [3]. Aortic valve disease (AVD) ac-
counts for 45% of deaths from heart valve disease [3]. An appealing approach to
treat AVD is surgical replacement of the valve leaflets based on chemically treated
autologous pericardium. This procedure is attractive due to its low cost and high
effectiveness [19]. During the surgical procedure, surgeons excise the patch of the
patient pericardium, fix it with glutaraldehyde solution with a buffer for 10 minutes,
and construct the new leaflets of the aortic valve. The decision on the new aortic
leaflet design is made during the surgical procedure based on surgeon’s experience
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and expertise. Success of the operation relies on the valve competence under dia-
stolic pressure in terms of coaptation characteristics. Intra-operative testing of the
reconstructed valve in its diastolic state is demanded [2]. A surgical planning system
based on patient-specific modelling will allow surgeons to compare different aortic
leaflet designs, to choose optimal replacement strategies and to reduce duration of
surgery. This preoperative preparation stage in its turn can enhance significantly the
surgical outcome.

Model-based optimization of the valve leaflets is very important. Parametric
geometric models suggest an ‘ideal valve’ which optimizes coaptation and elimin-
ates regurgitation (see, e.g., [8,12]) disregarding patient’s geometry, i.e., the features
of patient’s anatomy. We aim to develop a computational technology for patient-
specific assessment of reconstructed aortic valve function that can be used by sur-
geons at the preoperative stage. The technological pipeline consists of four stages.
The first stage is medical image segmentation providing patient-specific geometry
of the aortic root and the aorta. The second stage is choosing trial valve leaflet design
based on geometric features of the aortic root. The next stage is simulation of those
leaflets closure and estimation of coaptation characteristics under the diastolic pres-
sure. The final stage is optimization of leaflets design and/or size based on computed
coaptation quantities. In this article we focus on the first and the third stages of the
pipeline, the problem of leaflet design and optimization will be addressed in our
future works.

Clinical application of the computational technology implies obtaining of simu-
lation results on-the-fly to be able to test different valve configurations. This imposes
specific restrictions on the most time-consuming part of the simulation: modelling
of leaflets deformation (valve closure) should be as fast as possible. Most of the
studies on the numerical modelling of the aortic valve (AV) do not report simulation
times. Computational complexity of a model correlates with its accuracy and detal-
ization. For instance, the fluid-structure interaction (FSI) model, the most realistic
computational tool describing AV functionality, is compared in [22] with the corres-
ponding structural finite element model (FEM) in terms of stresses, coaptation, AV
dynamics, etc. Two models shared the same aortic root and aortic valve geometry,
mechanical properties of the tissue and the kinematic boundary conditions. The AV
leaflets and the aorta were discretized by shell and linear elements, respectively,
and hybrid Eulerian-Lagrangian approach with penalty-based coupling was used
for FSI modelling. Dynamic simulations of one cardiac cycle were performed on
workstation with 12 processors by the commercial finite element solver LS-DYNA.
Although only the FSI model recovers AV transient motion and blood dynamics,
AV diastolic coaptation characteristics in terms of level and length were almost the
same in the structural and FSI models (the difference was 0.1 mm). Simulations
required 185 hours and 19 hours for the FSI model and structural FEM, respect-
ively. Computational complexity of structural FE modelling of the mitral valve is
reported in [25] for one closing cycle (13 hours on 16 processors) and in [18] for
systolic mitral valve closure (73–98 min on 16 processors). Although FE simulation
of valve closure is much faster than that of the whole cardiac cycle, the computa-
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tional time is still prohibitively high for the use in real-time patient-specific surgical
planning. The reasons for high complexity of FE simulations of the heart valves are
large deformations, complex constitutive relations, and high numerical stiffness of
the involved equations.

For real-time surgical planning system the method of modelling aortic valve
closure in its diastolic state should be computationally cheap and should provide
the results within a few minutes on a personal computer. In the present study we
consider and compare two efficient methods for computation of the AV closure.
The first approach is the very popular in computer graphics Mass-spring model
(MSM) [23]. MSM represents the deformable body by a set of point masses inter-
connected by elastic springs. Although stresses can not be recovered by MSM, in
some cases large deformations may be recovered satisfactorily. In particular, com-
parisons of the MSM- and FEM-based predictions of the coaptation zone of the
closed heart valve [10, 11, 18] demonstrate feasibility and efficiency of MSM. The
second approach is based on the hyperelastic nodal force method [21, 24], which
is a generalization of the triangular biquadratic springs method proposed in [5] for
St-Venant-Kirchhoff isotropic hyperelastic membranes. The method [5] establishes
a formal connection between FEM and MSM based on the variational principle
and interpolation properties of barycentric coordinates. The hyperelastic nodal force
method [21,24] expands the method [5] for other hyperelastic materials and obtains
easy-to-implement concise formulas for nodal elastic forces sacrificing correspond-
ing springs representation. In the scope of our study, we consider membrane formu-
lations (no resistance to bending loads) applicable to simulation of the AV diastolic
state since ‘the leaflets are operating in the regime, where in-plane stresses are rel-
atively large, at least an order of magnitude greater than bending stresses’ [10].

Patient-specific modelling implies personalized aorta geometry and material
models. We use an elaborated algorithm of medical image segmentation to retrieve
the patient’s aorta geometry. As the patient-specific pericardium material property
is unknown, in order to estimate the impact of material parameters and material
models on coaptation characteristics, we carry out the sensitivity analysis. Besides
the first application of the hyperelastic nodal force method, the novelty of the study
is experimental discovery that the coaptation profile is almost invariant to a type of
isotropic hyperelastic material and depends only on the elastic modulus, whereas
the coaptation heights are sensitive to both material model and elastic modulus.

The outline of the paper is as follows. In Section 1 we describe the techniques for
the geometric representation of the aortic valve. The efficient methods of modelling
valve closure are described in Section 2. The results of numerical experiments are
presented in Section 3.

1. Geometry of the aortic valve and its leaflets

A conventional image of contrast enhanced Computer Tomography Angiography
(ceCTA) is processed at the first stage of our computational technology. At this
stage we reconstruct the boundaries of the patient’s aortic root and detect the com-
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Figure 1. Segmented boundaries of aortic root and part of left ventricle: ascending aorta (AA), sinotu-
bular junction (STJ), commissure point (green dot), suturing path (yellow dashed line), ventriculo-
aortic junction (VAJ), part of the left ventricle (LV), aortic sinuses are between suturing path and
sinotubular junction.

missure points where the valve leaflets meet each other. Since we are interested in
assessment of the reconstructed valve with the new leaflets, we need only the aor-
tic root geometry. Positions of the future commissure points and suturing paths are
assigned by the surgeon.

The aorta segmentation algorithm [4] is based on the Hough Circleness filter [6],
the Isoperimetric Distance Trees (IDT) algorithm [7], and mathematical morpho-
logy operations. The Hough Circleness filter detects the biggest bright circle on the
topmost 2D slice of the image and assign it to the cross-section of the ascending
aorta. The center of that bright circle is the seed for the region growth by a high-
pass thresholding procedure. It results in an initial mask Mi containing the aorta,
the left ventricle and other bright parts of the ceCTA image. Mask Mi is processed
further by the IDT algorithm and mathematical morphology operations to produce
a mask Ma for the aorta and a top part of the left ventricle (see [4]). Having on input
mask Ma, ITK SNAP software [26] and CGAL library [20] generate a surface mesh
by the marching cubes algorithm. The surface mesh includes the boundaries of the
ascending aorta, the sinotubular junction, the aortic sinuses, the ventriculo-aortic
junction, and a part of the left ventricle (see Fig. 1). The surface mesh is used for
visualization of the patient-specific domain and manual assignment of the suturing
path for the replaced leaflets.

The leaflet shape optimization procedure assumes that the shape is defined by a
parameterized template. In this work we use a tentative flat shape design shown in
Fig. 2. The symmetric shape of the template is based on the shape recommended by
Dr. S.Ozaki [17]. The boundary has a circular arc (B−C) at the bottom extended by
straight tangent segments (B−A and C−D). The top part of the leaflet (A−E−D)
represents the free boundary. The following parameters define a leaflet uniquely:
the radius of circular arc r, the circular arc angle ∠BOC α (in this paper it is fixed,
α = 160◦), the length of extension segments (B−A and C−D) a, the length of free
segments (A−E and E−D) b.

The total length of the sutured edge is equal to 2a+πrα/180, the total length
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Figure 2. Leaflet template: the sutured part of the boundary (A−B−C−D), the free part of the
boundary (A−E−D).

(a) (b) (c)

Figure 3. Quasi-uniform triangular meshes (mesh size h = 3mm) for different leaflets: (a) r = 11mm,
a = 11mm, b = 11mm; (b) r = 12mm, a = 13mm, b = 13mm; (c) r = 13mm, a = 13mm, b = 14mm.

of the free edge is equal to 2b. The distance between the commissure points on the
patient’s aortic wall should be smaller than the length of the free boundary edge of
the leaflet. The suturing path is chosen to fit the length of the sutured edge of the
leaflet.

The advancing front mesh generator [13] fits ideally for meshing such paramet-
erized domains. The leaflet templates and meshing algorithms are easily adjustable
for other shape designs. Several examples of unstructured meshes for different leaf-
let sizes and shapes are presented in Fig. 3.

In order to set the initial position of the user-defined leaflet inside the aortic
valve, we construct the plane passing through the corresponding pair of commissure
points parallel to the blood flow direction. The leaflet mesh is then mapped to this
plane so that points A and D coincide with the commissure points on the aortic
surface. All boundary nodes of the sutured edge (A−B−C−D) are distributed
uniformly along the suturing path on the aortic wall. Positions of the other mesh
nodes of the sutured leaflet are computed by Algorithm 2.1 (see Section 2) with
pressure P = 0.

2. Modelling of valve closure

The valve leaflet is represented by an oriented triangulated surface, whose position
in the 3D space should comply with the static equilibrium. The latter should be
satisfied for each free mesh node with index i as a point mass at which the resulting
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forces are applied:

Fres
i ≡ Fp

i +Fe
i +Fc

i = 0 (2.1)

where Fp
i , Fe

i , and Fc
i are the force of blood pressure, the elastic force, and the

contact force from other leaflets, respectively.
To find the static equilibrium, we apply the iterative process described by Al-

gorithm 2.1. Here Gn(rn
1, . . .r

n
N) is the oriented triangulated surface with N nodes

and M triangles at the nth iteration, rn
i is the position of the ith node at the nth

iteration, ∆rn
i is the shift of the ith node applied at the nth iteration, Fres

i (Gn) is
the resulting force applied to the ith node at the current state of Gn, δ is a small
coefficient converting the total force into the shift. The iterations terminate when
‖∆rn‖< 10−3‖∆r0‖.

Algorithm 2.1
Require: mesh G0(r0

1, . . .r
0
N)

1: for i = 1, . . . ,N do . initialization
2: set r0

i as initial position of the ith node
3: end for
4: set pressure P, const δ , n = 0
5: repeat . iteration
6: for i = 1, . . . ,N do
7: compute total force Fres

i ← Fres
i (Gn)

8: ∆rn
i = δ ·Fres

i
9: rn+1

i = rn
i +∆rn

i
10: end for
11: update mesh surface Gn+1(rn+1

1 , . . .rn+1
N )

12: n← n+1
13: until the process has converged

The pressure force Fp
i is defined by Fp

i = P∑T AT nT/3, where P is the applied
pressure, nT is the unit normal to triangle T with area AT , ∑T AT nT is the sum of
areas of all oriented triangles T sharing the ith node.

The leaflets can not interpenetrate, they interact with each other forming a coapt-
ation zone to be evaluated. The coaptation zone, the coaptation profile, and other
basic notions for one leaflet are schematically represented in Fig. 4. To describe the
contact interaction, we introduce the contact forces which are similar to the reaction
forces [18]. To this end, for each surface triangle T with vertices ri, r j, rk, and the
external unit normal nT we define its barycenter as rT = (ri + r j + rk)/3, and for
the current mesh G we define the threshold

d = 1.1M−1
∑

T∈G
max(‖rT − ri‖,‖rT − r j‖,‖rT − rk‖).
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Figure 4. Characteristics of the coaptation zone.

For each grid node ri from the d-vicinity of triangle T (i.e., ||ri− rT || < d) we
compute the new tentative position r̃i neglecting the contact forces from the other
leaflets. We also compute the signed distance to the plane of the triangle dπ

i,T =

(r̃i− rT ,nT ). If the signed distance dπ
i,T is below the threshold dπ = 0.7 mm, then

we apply the contact force

Fc
i,T =

||Fi||exp

(
−

k1dπ
i,T

||Fi||

)
nT , dπ

i,T > 0

(||Fi||− k2dπ
i,T )nT , dπ

i,T 6 0

(2.2)

where Fi = Fp
i +Fe

i , and k1 = 0.8 N/m and k2 = 20 N/m are the empirically selected
constants. The total contact force at the node of the leaflet grid is the sum of all
contact forces from surrounding triangles forming the other leaflets.

We still need to define the nodal elastic force Fe
i . We use two methods for com-

putation of Fe
i .

The first method is based on the simple mass–spring model (MSM) [23]: Fs
i =

∑ei j Fi j, where the summation is taken over all mesh edges ei j incident to the mesh
node i. The elastic force Fi j of a virtual spring connecting the ith and jth nodes
depends on the spring deformation:

Fi j = ki j(
∥∥r j− ri

∥∥−Li j)
r j− ri∥∥r j− ri

∥∥ , ki j =
E(ε,α0)HAi j

L2
i j

(2.3)

where H is the average surface thickness, Ai j is the surface area of the two triangles
sharing the edge ei j of length Li j, Ai j and Li j are computed on the flat undeformed
grid, E = E(ε,α0) is the elastic modulus of the leaflet tissue depending on the strain
ε and structural characteristics α0. An example of E(ε,α0) for a nonlinear aniso-
tropic material is given in [10]:

E(ε,α0) =
√

E2
f (ε)sin2 α0 +E2

c f (ε)cos2 α0 (2.4)

where E f (ε) and Ec f (ε) are the parameters based on the experimental stress–strain
curves in the fiber and cross-fiber direction, respectively, ε is the relative elongation
of the spring, α0 is the angle between the spring initial orientation and a preferential
direction of the collagen fibers within the leaflet tissue.
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Figure 5. Triangle before and after deformation.

The second method is the hyperelastic nodal force (HNF) method suggested
in [21, 24]. It defines the elastic nodal force for arbitrary (isotropic or anisotropic)
hyperelastic material with given elastic potential U . We assume that each triangle T
of the undeformed flat grid with area AT , edge lengths Lm and angles αm, m = 1,2,3
(see Fig.5), is mapped by the leaflet deformation to a triangle T ′ with vertices ri,r j,rk
and edge lengths lm and that the discretized counterpart Ud(ri,r j,rk) of the elastic
potential U is known. Then the hyperelastic nodal force is

Fe
i (T ) =−AT

∂Ud(ri,r j,rk)

∂ri
. (2.5)

For general elastic potentials given in terms of invariants of the right Cauchy–Green
tensor, the authors of [21,24] derived easy-to-implement concise formulas for nodal
elastic forces (2.5).

In particular case of an isotropic hyperelastic St.Venant–Kirchhoff membrane,
the hyperelastic nodal force is computed as the sum of reactions of deformed trian-
gular biquadratic springs (TBS) [5]:

Fe
i (T ) = ∑

j 6=i
κT

k ∆
2lk (r j− ri)+∑

j 6=i

(
cT

j ∆
2li + cT

i ∆
2l j
)
(r j− ri)

∆
2li = l2

i −L2
i =

∥∥r j− rk
∥∥2−L2

i

κT
k =

2cot2 αk(λ +µ)+µ
16AT

=
E(2cot2 αk +1−ν)

16(1−ν2)AT

cT
k =

2cotαi cotα j(λ +µ)−µ
16AT

=
E(2cotαi cotα j +ν−1)

16(1−ν2)AT

(2.6)

where λ and µ are Lame coefficients, E is Young’s modulus, ν is Poisson’s coeffi-
cient, indices i, j, k form the even permutation, stiffnesses of springs κT

k and cT
k are

defined with respect to the undeformed geometry. It is worth noting that the TBS
forces are applicable to 2D isotropic St.Venant–Kirchhoff material only, whereas
the hyperelastic nodal forces are applicable to any 2D or 3D hyperelastic material
(isotropic or anisotropic).
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(a) (b)

Figure 6. Three closed cusps in benchmark problem proposed in [16] (a); the coaptation area of the
leaflet and its profile (b).

3. Numerical results
We present verification of the numerical models for an aortic valve closure bench-
mark and their sensitivity study for a real anatomy geometry. All our simulations
were run on a laptop Intel Core with i5-8250U CPU 1.60 GHz.

3.1. Aortic valve closure benchmark

We verify the mass-spring model (MSM), the triangular biquadratic spring (TBS)
method and the hyperelastic nodal force (HNF) method by the benchmark prob-
lem [16]. We consider an aortic healthy valve with aortic annulus (AA) diameter
dAA = 24 mm and three symmetric leaflets with thickness H = 0.3 mm shown in
Fig. 6a (it corresponds to the base geometry, Fig. 1 in [16]). Four coaptation char-
acteristics are calculated in [16]: hE , hC−C, havr, and NCCA. The effective height
hE is defined as the valve height of the closed valve at pressure load of 3 mm Hg.
The value hC−C is the coaptation height measured in the C−C plane which is ortho-
gonal to one of the coaptation planes, is parallel to the AA axis and is distanced from
the AA axis by 5 mm. The average coaptation height havr is defined as the ratio of
the coaptation area (bounded by the yellow-red curve in Fig. 6b) and the free-edge
length (the red curve in Fig. 6b) under the diastolic pressure of 80 mm Hg. The nor-
malized cusp coaptation area NCCA is defined as the ratio of the coaptation area and
the total cusp surface area (bounded by the green-red curve in Fig. 6b). The hE was
calculated in [16] from so-called dry static models ignoring the blood flow, the other
parameters were calculated from a general fluid-structure interaction (FSI) model.
The material of the leaflets is assumed in [16] to be linear elastic with E = 1 MPa
and ν = 0.45.

We compare the coaptation characteristics computed by MSM (linear elastic
material with E = 1 MPa, ν = 0.45), TBS method (St.Venant–Kirchhoff material
with E = 1 MPa, ν = 0.45), HNF method (incompressible neo-Hookean material
with E = 1 MPa, µ = E/3 and incompressible Gent material with E = 1 MPa,
µ = E/3, Jm = 2.3). For the last two materials the elastic potentials are

UNH = Hµ/2(I1 +1/I2−3) (3.1)

UGent =−HJmµ/2ln(1− (I1 +1/I2−3)/Jm) (3.2)
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Table 1. Comparison of the coaptation heights hE , hC−C, havr and normalized cusp coaptation area
NCCA.

Model hE , mm hC−C, mm havr, mm NCCA, % CPU time, sec

FSI, lin.elasticity [16] 10.5 1.5 2.7 21 n/a
MSM (2.3) 10.8 3.8 3.3 25 44
TBS (2.6) 10.8 3.1 2.9 24 58
neo-Hookean (2.5)–(3.1) 10.4 3.0 2.5 21 136
Gent (2.5)–(3.2) 10.8 3.4 3.1 24 203

where I1 and I2 are 2D strain invariants, H is the thickness before the deformation,
µ is the shear modulus, Jm is a material constant.

Table 2. Elastic modulii
derived from experimental
data for treated human peri-
cardium [27] (λ ∗1 = 0.175,
λ ∗2 = 0.3).

E1 (kPa) E2 (kPa) E3 (kPa)

Longitudinal direction (E f ) 137 568 968
Transverse direction (Ec f ) 63 570 1400
Average isotropic case 106 569 1200

Table 3. MSM-based values of the
coaptation heights h and hc (mm) for
three templates and three anisotropy
directions (↑,→,↗ are cases of ver-
tical, horizontal and diagonal direc-
tion of anisotropy, respectively).

Leaflet template Isotropic ↑ → ↗
a h 14.3 14.3 14.2 14.2
b h 16.4 16.2 16.3 16.6
c h 16.8 16.2 17.0 16.9

a hc 0 0 0 0
b hc 11.6 10 10.1 12.2
c hc 11.9 13.4 12.7 13.2

Table 4. Sensitivity of MSM-based coaptation
heights h and hc to elastic modulii E1 and E2. E1 (kPa) E2 (kPa) h (mm) hc (mm)

50 300 18.4 13.6
50 569 17.2 10.9

106 300 17.3 12.9
106 569 16.4 11.6
106 700 15.7 11.6
180 569 15.6 9.7
180 700 15.4 9.2

The obtained coaptation characteristics are given in Table 1. The grid for each
leaflet contains 1313 triangles. Further mesh refinement does not change the results
except for the TBS model where hE = 11 mm, hC−C = 3.6 mm, havr = 3.5 mm,
NCCA= 28% on the mesh with halved mesh size. This implies slower mesh con-
vergence of the TBS scheme compared to the other methods. The FSI-based value
of hC−C is less than hC−C from our structural simulations, although profiles of the
coaptation area (see Fig. 6b) are similar to the profile presented in Fig. 4 [16]. In
the literature, the comparison of the coaptation characteristics for FSI-based models
and dry static models is controversial: in [15] dry models overestimate the coapta-
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Table 5. Sensitivity of coaptation heights h, hc, and hC−C to elasticity model and values of elastic
modulii.

CPU
Model h, mm hc, mm hC−C, mm time, sec

MSM E = 10 MPa 15.4 7.3 13.1 282
TBS E = 10 MPa, ν = 0.5 15.4 8.3 15.1 578
Neo-Hookean E = 10 MPa, µ = E/3 13.0 7.3 12.9 527
Gent E = 10 MPa, µ = E/3, Jm = 2.3 15.5 8.4 13.5 2072

MSM E = 1 MPa 17.3 10.7 16.0 143
TBS E = 1 MPa, ν = 0.5 16.7 12.1 16.2 426
Neo-Hookean E = 1 MPa, µ = E/3 17.4 8.2 15.8 464
Gent E = 1 MPa, µ = E/3, Jm = 2.3 16.3 10.5 15.9 2612

MSM E = 0.1 MPa 21.5 19.6 20.3 166
TBS E = 0.1 MPa, ν = 0.5 23.7 19.7 23.4 191
Gent E = 0.1 MPa, µ = E/3, Jm = 2.3 23.6 19.0 23.2 546

tion heights, whereas in [22] they are almost the same. The discrepancy stems from
different boundary conditions (see [22, Sect. 4.1]).

In general, the coaptation heights due to the dry static models deviate by no more
than 2 mm, they match hE , havr from [16] within 0.6 mm tolerance and overestimate
hC−C from [16] by 1.5–2.3 mm.

3.2. Sensitivity analysis on realistic geometric data

Here we consider the case of patient-specific geometry based on the ceCTA data of
a real patient. We examine leaflet templates presented in Fig. 3. In our simulation
we calculate under the diastolic pressure 80 mmHg the maximal coaptation height h
and the central coaptation height hc defined in Fig. 7a. These coaptation character-
istics are thought to be the main geometric criteria for further optimization of leaflet
designs.

To be as close as possible to the clinical application, we assume that the leaflets
are cut from the treated human pericardium. There is no consensus on mechanical
properties of fresh and treated human pericardium. According to the review [1],
human pericardium is isotropic (both fresh and treated) whereas animal pericar-
dium is anisotropic. However, according to the experimental work [27], the human
pericardium is anisotropic (both fresh and treated). For this reason we estimate the
influence of anisotropy using the mass–spring model and the stress–strain data ap-
proximated by function [27]:

E(ε) =

E1, ε 6 λ ∗1
E2, λ ∗1 < ε < λ ∗2
E3, ε > λ ∗2

(3.3)

with parameters defined in Table 2 and strain ε represented by the relative elong-
ation. We use equation (2.4) to calculate the elastic modulii and consider different
directions of anisotropy represented by fibers orientation. The calculated coaptation
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(a) (b)

Figure 7. Definitions of the coaptation zone, maximal coaptation height h and the central coaptation
height hc (a); position of leaflets inside the aorta (b).

heights are presented in Table 3. Each triangulated leaflet has about 400 elements.
Thickness of the pericardium H is equal to 0.3 mm. An example of the computed
coaptation zone is shown in Fig. 7b. The maximal coaptation height h does not de-
pend on anisotropy direction whereas the central height hc is slightly sensitive to the
anisotropy.

To study the sensitivity of the coaptation heights to the material parameters, we
vary elastic modulii in the range recovered for 44 patients [27]. We consider the
mass-spring model and the template (b) shown in Fig. 3. The material is considered
to be isotropic with the stress–strain relationship (3.3) where E3 = 1200 kPa, λ ∗1 =
0.175, λ ∗2 = 0.3. The impact of the elastic modulii E1 and E2 on the coaptation
heights is essential, the deviations may achieve 4 mm (see Table 4).

We also study the influence of the material model on the coaptation heights h,
hc, hC−C. We consider MSM, TBS, neo-Hookean, Gent models with different elastic
modulii, E = 105, 106, 107 Pa. The coaptation heights are shown in Table 5 and the
coaptation profiles are shown in Fig. 8a. The coaptation profile here is the boundary
of the coaptation zone projected to the undeformed flat triangulation. The profiles
are non-symmetric since the aortic annulus is non-symmetric (see Fig. 8b). Surpris-
ingly, the coaptation profiles are not sensitive to the material model but depend on
the elastic modulus E. However, the variations of h, hc, hC−C among different mod-
els with the same elastic modulus E are considerable since the deformation of cusps
is model-sensitive. For different elastic modulii or elastic models the variations in
the coaptation heights may reach 3–10 mm (rf. Tables 4 and 5).

4. Conclusions
We presented the numerical framework for computing the coaptation characteristics
of the reconstructed aortic valve. We analyzed different approaches for modelling
of the AV closure. The approaches are appealing in clinical applications since they
require only a few minutes of computations on a laptop. The coaptation zone is the
main factor for decision making in leaflet shape optimization. The shape optimiz-
ation targets the coaptation zone only, and we address the static equilibrium of the
closed reconstructed valve under the diastolic pressure. Our numerical results for
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(a)

(b)

Figure 8. Coaptation profiles for different elasticity models and elastic modulii (a), suturing paths
and commissures on the aorta (b).

the coaptation zone are in good agreement with the benchmark problem [16]. To
develop the computational patient-specific aortic valve reconstruction, we elabor-
ated the algorithm for automatic aorta segmentation and meshing and carried out
elastic models sensitivity analysis within the range of human pericardium mechan-
ical properties [27]. We found that the coaptation profile is insensitive to the elasti-
city models with the same elastic modulus. However, the variations of the coaptation
heights may achieve 3–10 mm for different modulii and models. This is large vari-
ation since the coaptation heights must be at least 3–4 mm to avoid regurgitation
(backward blood flow). The sensitivity to anisotropy of the pericardium was as-
sessed for the mass-spring model: the variations of the heights are about 1 mm that
is not essential for the application.

The practical outcome of our research is the conclusion that optimization of the
coaptation profile on the leaflet does not require the model specification, only the
geometry and the elastic modulus matter. On the other hand, optimization of the
coaptation heights requires specification of the pericardium elastic model.

In our future work, we plan to compare our numerical model with real surgical
cases of valve reconstruction and obtain more experimental data on mechanical data
for fresh and treated pericardium.
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