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Stability indicatrices of nonnegative matrices and some of
their applications in problems of biology and epidemiology
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Abstract — The method of constructing a stability indicatrix of a nonnegative matrix having the form
of a polynomial of its coefficients is presented. The algorithm of construction and conditions of its
applicability are specified. The applicability of the algorithm is illustrated on examples of constructing
the stability indicatrix for a series of functions widely used in simulation of the dynamics of discrete
biological communities, for solving evolutionary optimality problems arising in biological problems
of evolutionary selection, for identification of the conditions of the pandemic in a distributed host
population.
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The most common structuring in problems of mathematical modelling of the dy-

namics of biological communities of species is the structuring by age. For example,
for a linear discrete model the dynamics of the population with age structure is de-
scribed by the Leslie model (see [4]), its exponential dynamics is determined by
properties of a nonnegative matrix (Leslie matrix) linking together the states of the
population at two consecutive steps in time. In this case the presence of growth or
decrease depends solely on whether the spectral radius of this matrix is greater than
or less than one. It turns out that to answer this question it is sufficient to calculate
some value specified very simply and called the stability indicatrix of the matrix
(potential growth indicator in the terminology of [6]). For the Leslie matrix this
value can be constructed on the basis of a suitable representation of its character-
istic polynomial. At the same time it has a meaningful biological interpretation as
the biological potential, i.e., the average number of births produced throughout the
life of one individual. An important feature of the biological potential is the ability
to serve as a selection functional in models of evolutionary optimality (see [7] for
formulation of problems of this kind).

The ability to construct the biological potential on the basis of the characteristic
polynomial of the original matrix only is also admitted for a number of generaliz-
ations of the Leslie matrix, these are the so-called Lefcovitch matrices [3] and the
Logofet matrix most general in this series [5]. In the models given by these matrices
the population is structured according to some ordered set of life stages passed by
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each individual in the direction of this order.
The aim of this paper is to study the possibility of constructing the stability in-

dicatrix for an arbitrary nonnegative matrix in the context of the use of this indicatrix
to realize the above-mentioned functions of biological potential.

It should be noted that if we restrict ourselves to stability issues only, then we
can use a large set of criteria establishing it, including the criteria of nondegeneracy
of M-matrices (see, e.g., [2]). Many of them are quite suitable for constructing sta-
bility indicatrices in the roles indicated here. However, there are such among them
as, for example, the positivity of leading principal minors, which in degenerate cases
can produce a function not suitable for the role of an indicatrix. The direction we
have chosen is aimed at construction of the most simple formulas from the coeffi-
cients of the matrix convenient for operating with them in their general form, which
allows us, as it seems, not to overload the presentation with well-known results.

Now we describe briefly the content of the paper. Section 1 presents the for-
mulation of the main result in the form of a theorem on ability to construct a poly-
nomial indicatrix for a nonnegative matrix. This is supplied with a brief draft of
its proof and detailed description of the algorithm and its application. The remain-
ing sections are mainly illustrative. Section 2 presents an example of the use of the
stability indicatrix in the case of a matrix participating in the classic population bio-
logy model of Logofet [5]. We consider its particular cases for the Lefcovitch and
Leslie matrices mentioned above. Section 3 presents one variant of discrete prob-
lems of evolutionary optimality where stability indicatrices can be used for selection
functionals. Section 4 presents the classical model of the spread of epidemic in the
conditions of distributed population of the host. The problem of emergence of the
pandemic and conditions associated with it can be solved in this case by construct-
ing stability indicatrices of suitable nonnegative matrices.

1. The main result
Let Ω be an open set in Rn = {x = (x1, . . . ,xn)}, xi ∈ R. We say that a certain
property is fulfilled zero-strongly almost everywhere on Ω if for any subset M ⊂
{1, . . . ,n} of cardinality |M|> 1 it is fulfilled on some open and everywhere dense
in ΩM = Ω∩

{
x : ∑i/∈M x2

i = 0
}

set Ω′M ⊂ ΩM for which the Lebesgue measure of
dimension |M| is reduced to zero, i.e., mesR|M|(ΩM\ΩM

′) = 0.
A function F(x), F : Ω→R, is called polynomially specified on the set Ω if there

exist N (n) ∈ N and a mapping PF : Ω→ RN(n), PF (x) =
(

PF
1 (x), · · · ,PF

N(n)(x)
)

,
such that

F(x) = max
j=1,...,N(n)

PF
j (x). (1.1)

Here PF
j (x) are polynomials of n variables xl ∈ R, l = 1, . . . ,n, such that x =

(x1, . . . ,xn) ∈ Ω with coefficients from R dependent on the function F only. The
minimal value N (n) is called the size of polynomial specification of the func-
tion F(x).
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Let r(A) be the spectral radius (or Perron root) of a nonnegative n× n matrix
A= (ai j). The stability indicatrix of this matrix on the set Ω⊂Rn2

+ =
{

ai j > 0; i, j =
1, . . . ,n

}
is said to be the function Φ(A) of its coefficients

{
ai j
}

, Φ : Ω→ R, such
that the sign of (Φ(A)−1) coincides with the sign of (r(A)−1). In particular, the
Perron root of the matrix is such an indicatrix. It is also evident that each strictly
monotone increasing function of the indicatrix taking the value one at the argument
one may serve as an indicatrix.

A polynomially specified indicatrix of a nonnegative matrix is called its polyno-
mial stability indicatrix.

Theorem 1.1. The polynomial stability indicatrix of size n of a nonnegative n×
n matrix zero-strongly exists almost everywhere for any n ∈ N on the set Rn2

+ of
coefficients of that matrix.

The idea of the proof (see [9]) consists in inductive reduction of the dimension
of the matrix from which the stability indicatrix is constructed. If Ak =

(
ak

i j

)
is a

k×k matrix and An = A, then, applying the indicative recalculations by the formulas

ak−1
i j = ak

i j +
ak

ikak
k j

1−ak
kk
, i, j = 1, . . . ,k−1 (1.2)

in the case of positive denominator we can construct for the known matrix Ak > 0 a
new matrix Ak−1 > 0 having the same location of the spectral radius relative to the
unit as for the matrix Ak.

Initially, for the indicatrix of stability we consider the value of the retrospective
solution to a discrete boundary value problem for a nonnegative n-dimensional vec-
tor in a strip infinite in inverse time, unit values are posed at all moments except for
the last one on the border of that strip. In this case the transition to the next moment
for non-fixed components of the vector is performed by a linear transformation with
the use of the original matrix. It occurs that in the case of its indecomposability
the last value for the selected component can serve as a stability indicatrix of the
original matrix if such solution exists. This can be easily seen if we interpret the
indicated transitions as a flow of some substance distributed over n cells with the
matrix coefficients as coefficients of transition. Truncation or supplement to the unit
value occurs in this case on the boundary of the strip. The actual action is determ-
ined by the last boundary value. Since it is obtained by summation of the flows
over all possible paths, we get an opportunity to obtain it by successive narrowing
the strip. Each next its contraction is equivalent to a loss of paths including trans-
itions between the remaining cells (ith and jth ones) and one removed cell (kth).
The delay on the removed cell may take an arbitrary number (say, m) of iterations
each of which changes the quantity of the substance in the kth cell by ak

kk times. This
explains the denominator in (1.2) determined by the sum of the series ∑

∞
m=0(a

k
kk)

m.
The numerator is responsible for the indicated transitions j→ k and k→ i. The result
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for the indecomposable case can be extended to the case of decomposable matrices
taking into account the absence of changes in blocks of the matrix corresponding to
cells not cyclically connected with the removed cell due to the graph of the matrix.

If we get the matrix A1 =
(
a1

11
)
, then the value a1

11 may serve as the stability
indicatrix of the matrix A. It has the form of a multilevel fraction of its coefficients.
Applying to it the procedure of reducing the levels based on replacement of the
fraction γl = αl−1/βl−1 by the fraction γl−1 = αl−1−βl−1+1, we can finally obtain
the indicatrix in the form of a polynomial of the coefficients of the matrix A.

The first occurrence of a negative denominator at the lth step (l = n− k+1) of
application of procedure (1.2) is equivalent to the inequality ak

kk > 1 implying the in-
equality r(A)> 1. In this case the value ak

kk also has the form of a multilevel fraction
of the coefficients of the matrix A, and the polynomial of those coefficients can be
also constructed according to the same scheme to compare it with the unit. The set
of n polynomials constructed for all ak

kk, k = 1, . . . ,n, can be used in the construction
of a polynomially specified stability indicatrix of the matrix A in accordance with
(1.1).

The degenerate cases ak
kk = 1, k = 2, . . . ,n, correspond to sets of coefficients of

the matrix A which are excluded by the conditions of the theorem.
For problems of pure computational nature we have no need to construct indica-

trices in form of polynomials. In this case the recalculation by formulas (1.2) gives
the required result if we use the following scheme.

1. The elements from {1, . . . ,n} are ordered arbitrarily (below we keep their
usual order).

2. Specify An = A with an
i j = ai j and Jn+1 = 0.

3. Apply induction over k decreasing from n to 2.
3.1. Specify Jk = max{Jk+1,ak

kk}.
3.2. In the case Jk > 1 we conclude that r (A)> 1.
3.3. In the case Jk 6 1 we calculate the elements ak−1

i j , i, j ∈ {1, . . . ,k− 1}, of
the new nonnegative matrix Ak−1 by formulas (1.2).

4. In the case Jk 6 1 for all k = n,n− 1, . . . ,2 the value J1 = max{J2,a1
11} is

taken as the stability indicatrix of the nonnegative matrix A.

Remark 1.1. If event 3.2 has occurred, we have no need to continue the calcu-
lations. If we forcibly continue calculations in accordance with case 3.3 without the
restriction indicated there, then the conclusion of case 4 remains valid independently
of their result without the restriction indicated in that case.

Remark 1.2. The case ak
kk = 1 results in the zero denominator in (1.2). To in-

clude it into the common scheme, it is convenient to assume that Jk takes values
on R∪+∞ nominally assuming that ∞×0 = 0/0 = 0. Other possible uncertainties
can take arbitrary values. The validity of these conventions is easily seen within the
above flow interpretation. Using them, we can remove the restrictions indicated in
the formulation of the theorem in its part related to the construction of the indicatrix
in the form of a polynomial for its variant in the form of a multilevel fraction.
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Remark 1.3. The detailed analysis shows that, changing the enumeration of
rows and columns of the matrix A to the opposite one, the expressions (1−ak

kk) in
(1.2) tested for positivity coincide with the diagonal elements of the LU-decomposi-
tion of the matrix (I−A) (see, e.g., [10]). Note that such positivity is sufficient for
this matrix to be a nondegenerate M-matrix.

Remark 1.4. A large number of stability criteria for nonnegative matrices (see,
e.g., [2]) can create an impression of triviality of solution of stability indicatrix
problems by expansion of the role of functions used in these criteria to the role
of indicatrices. Here we need an accurate verification of the degenerate cases. For
example, the fact that the leading minors of the matrix (I−A) turn to zero for A =
diag{1,2} does not mean that the spectral radius of the matrix A equals one.

2. Some examples
Logofet matrix (see [5]) of dimension n is given by its canonical (i.e., after appro-
priate simultaneous renumbering of rows and columns) form as

ALg =


a11 a12 . . . a1,n−1 a1,n
a21 a22 . . . 0 0
a31 a32 . . . 0 0

...
...

. . .
...

...
an,1 an,2 . . . an,n−1 ann


with ai j > 0 (so that ai j = 0 for j > i > 1).

A meaningful interpretation of the population dynamics model with such a mat-
rix can be represented as a motion of each individual specimen over stages of devel-
opment in one direction (i.e., the stages are ordered and the transition from a later
stage to an earlier one is prohibited). The transition is not necessarily sequential and
can admit jumps over several stages at once (see about this in [6]). A partial return
to the initial stage from later ones is interpreted as the birth of new individuals by
parents being at those later stages.

The calculation of the stability indicatrix for the Logofet matrix can be per-
formed based on its characteristic polynomial. It has the form

P(ALg,λ ) =
n

∏
j=1

(λ −a j j) ·
(
1−Q(ALg,λ )

)
(2.1)

with

Q(ALg,λ ) =
n

∑
i=2

a1i

∑
mi

kmi

∏
l=1

apmi
l ,pmi

l−1

i
∏
j=1

(λ −a j j)

(2.2)
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where the numerator in (2.2) contains under the sign of sum the products of all
ordered (so that pmi

l > pmi
l−1) subsets mi =

{
pmi

l

}
of the set {1, . . . , i} with the be-

ginning equal to one (so that pmi
1 = 1) and the maximal value equal to i (so that

pmi
kmi

= i). In this case we nominally assume apmi
1 ,pmi

0
= 1 for any mi.

For a j j < 1 the function Φ(ALg) = Q(ALg,1) may serve as a stability indicatrix
because in this case the function Q(ALg,λ ) decreases strictly and monotone in λ

for λ > maxa j j and the first summand in the right-hand side of (2.1) is positive.
As was shown in [8], the Logofet matrix is the ‘maximal’ nonnegative matrix up to
simultaneous renumbering of rows and columns which admits in these conditions
a stability indicatrix expressed by its characteristic polynomial. This maximality is
understood in the sense of the number of admissible nonzero elements.

It is not difficult to check that in the case of the order providing the canonical
form of the Logofet matrix the successive application of the recalculation by for-
mulas (1.2) keeps all elements of the matrix except for the elements of the first row.
Moreover, the recalculation by these formulas leads to the relation a1

11 = Φ(ALg),
i.e., the algorithm proposed here leads to formulas obtained from characteristic
polynomials. In particular, using this algorithm, one can obtain classic formulas
for stability indicatrices of some particular cases of the Logofet matrix.

Leslie matrix ALes (see [4]) is obtained from the Logofet matrix under the as-
sumption that only the age-specific fertility rates bi = a1i and rates of survival
si = ai+1,i ∈ (0,1] for an individual of age i to live to the age i + 1 are distinct
from zero. In this case the stage is the age; the stability indicatrix coincides with the
biological potential of the population Φ(ALes) = ∑

n
i=1 bi ∏

i
j=1 s j−1.

Lefcovitch matrix ALf (see [3]). In this case an individual passes the stages se-
quentially but, in contrast to the Leslie model, can stay in those stages. In addi-
tion to nonzero coefficients of the Leslie matrix, the coefficients of delay at the
ith stage ri ∈ [0,1) can be positive in this case. The biological potential equals
Φ(ALf) = ∑

n
i=1 bi ∏

i
j=1 s j−1/(1− r j) here.

Note that, due to the indicated above property of preservation of elements posi-
tioned not on the first row in calculation by formulas (1.2), the form of both these
matrices is also preserved.

3. Evolutionary optimality in distributed discrete systems
We consider a biological community with the dynamics described by the following
discrete dynamical system: {

xm+1 = A(xm,ym)xm

ym+1 = B(xm,ym).
(3.1)

Here m ∈ N is the discrete time; xm = (wm
1 , . . . ,w

m
L ) is the community vector com-

posed of the collection of population size vectors wm
l = (um

l,1, . . . ,u
m
l,nl

) structured
according to a certain discrete set of indicators (those may be the age stage of life
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of population individuals, habitat, etc.); nl is the number of indicators in the lth type
of community, l ∈ {1, . . . ,L}); ym = (ym

1 , . . . ,y
m
Y ) is the vector of external factors;

A is a block-diagonal (in blocks of vectors wm
l ) nonnegative N×N-matrix of state

changes in the community under passing from the time moment m to the moment
m+1; N = ∑

L
l=1 nl; B is a Y -vector.

In model (3.1) we also assume that the elements of the matrix A(x,y) whose
row and column relate to different l are equal to zero. This means that in the process
described by the dynamics considered here the species are not transformed to each
other, but reproduce only their own kind. In this case the matrix A(x,y) is split into
diagonal blocks Al(x,y) so that each its block determines the character and rates of
transitions for a particular population subject to possible birth and death processes.
The rates of all those processes depend on the state of the community as a whole
including the current set of external factors. The dynamics specification rules for
the latter ones can be quite arbitrary.

Let us suppose that system (3.1) has a stable equilibrium position (x̄, ȳ) with x̄ =
(0, . . . ,0, w̄K+1, . . . , w̄L) and w̄l > 0 (component-wise inequality) for l =K+1, . . . ,L
and 0 < K < L. This means that the spectrum of the Jacobian J = J(x̄, ȳ) of the
right-hand side of the system calculated at this equilibrium position is localized in
the unit circle of the complex plane. Assuming the block (K,L−K,Y ) form in the
components (ζ ,ξ ,y) with ζ =(w1, . . . ,wK), ξ =(wK+1, . . . ,wL), this Jacobian takes
the form

J =

 Aζ (x̄, ȳ) 0 0
Aξ

ζ
(x̄, ȳ) · ξ̄ Aξ

ξ
(x̄, ȳ) · ξ̄ +Aξ (x̄, ȳ) Aξ

y (x̄, ȳ) · ξ̄
Bζ (x̄, ȳ) Bξ (x̄, ȳ) By(x̄, ȳ)

 .

Here ξ̄ = (w̄K+1, . . . , w̄L), Aξ (x̄, ȳ) is the restriction of the operator (corresponding
diagonal block of the matrix) A onto the components ξ (and similarly for ζ ), the
subscript means the calculation of the corresponding Jacobian of the mapping into
the space of matrices at the point (x̄, ȳ), the dot after the derivative means the place
of substitution of the corresponding component of the vector under the action of the
matrix as an operator (the absence of dot means the substitution from the right).

The triangle form of J and the assumed stability imply that the following in-
equality for the spectral radius holds for any l 6 K:

r(Al(x̄, ȳ))6 1. (3.2)

On the other hand, since w̄l =Al′(x̄, ȳ)w̄l is positive, for l′>K we have r(Al′(x̄, ȳ))
> 1, and for the matrices Al′(x̄, ȳ) with nonnegative components we have the equal-
ity because for nonnegative matrices only a Perron eigenvalue can have a positive
eigenvector.

Taking into account (3.2), for such matrices we obtain the relation

1 = r(Al′(x̄, ȳ)) = maxr(Al(x̄, ȳ)) (3.3)
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where l can run over all possible L values and l′ runs over last L−K ones cor-
responding to nonzero components of the vector x̄. The second equality in (3.3) is
called the principle of evolutionary optimality (see, e.g., [7]), which allows us to
calculate the characteristics of species survived in the equilibrium in the solution of
the extreme problem in (3.3).

The solution of problem (3.3) is often far from simple and in any case is not
formalized analytically in the general formulation. A noticeable advance in its study
with the aim to use it for analytical constructions is possible with the availability to
replace the function optimized in (3.3) by a simpler one. Such a possibility appears
in the case of replacement of the spectral radius r(Al(x̄, ȳ)) by the stability indicatrix
of the matrix Al(x̄, ȳ) calculated in the stable equilibrium position (x̄, ȳ).

If Φ(Al(x̄, ȳ)) is such indicatrix, then problem (3.3) can be replaced by the prob-
lem

Φ(Al′(x̄, ȳ)) = maxΦ(Al(x̄, ȳ)). (3.4)

If we use polynomial indicatrices, problem (3.4) becomes essentially simpler
than problem (3.3). In the rough case we do not need to take into account all poly-
nomials in formula (1.1) except for the last one corresponding to a1

11. This relates
to the assumption of the stability of the equilibrium state excluding in this case the
expansion of the spectral radius of the matrices Ak obtained in intermediate stages
of iterative process (1.2) out of the inner part of the unit circle. As the result, the cal-
culation of the selection function in (3.4) requires only elementary operations. The
situation when the stable equilibrium state of the community has been formed so
that the information about extinct species was lost the solution of problem (3.4) al-
lows us to obtain values of evolutionary significant (i.e., those used in the selection)
parameters for the steady state distribution and those parameter can take values from
an infinite-dimensional space (for example, they can be species-specific functions
of intra- and inter-population interaction).

4. Model of the epidemic in the presence of migration

Suppose the population is distributed over several regions numbered by the index
i = 1, . . . ,n, while Ni is the total population of the ith region, Ii(t) is the number of
infected individuals in it at the time moment t, Si(t) is the number of susceptible
ones, Ri(t) = Ni− Ii(t)−Si(t) the number of removed ones.

It is assumed that the residents of each region spend a part of their time outside
sharing it for other regions. By εi j > 0 we denote the part of time spent by the
residents of the ith region in the jth region so that εii is the time spent at home and
∑

n
j=1 εi j = 1.

Under these assumptions the dynamics of the epidemic is described by the
following system of 2n equations generalizing the classic Kermack–McKendrick
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model [1]):
dSi

dt
=−αSi

(
n
∑

k=1
εik

n
∑
j=1

ε jkI j

)
+ γ (Ni−Si) , i = 1, . . . ,n

dIi

dt
= αSi

(
n
∑

k=1
εik

n
∑
j=1

ε jkI j

)
− (β + γ) Ii, i = 1, . . . ,n

(4.1)

where α > 0 is the coefficient of contagion defined as the probability for the sus-
ceptible individual to get infected within the unit of time from a contact with an
infected person, γ > 0 is the renewal rate equal to the natural mortality rate (it is
calculated as the inverse of life expectancy), β > 0 is the coefficient of recovery
(inversely proportional to the duration of the disease in its active, i.e., contagious
phase).

System (4.1) implies the following equation for the dynamics of removed ones

dRi

dt
= β Ii− γRi

and the invariance of the domain

U = {Si > 0, Ii > 0, Si + Ii 6 Ni, i = 1, . . . ,n} .

The probability of a pandemic is associated with the instability of the ‘trivial’
equilibrium position {S∗i = Ni, I∗i = 0, i = 1, . . . ,n}.

The case of its stability corresponds to the localization of all 2n (taking into
account the multiplicity) eigenvalues of the Jacobian J of the right-hand side of
system (4.1) calculated at this equilibrium position in the left complex half-plane. It
has the form

J =

(
−γ1 −αdiag(N)EET

0 α diag(N)EET− (β + γ)1

)
(4.2)

where the cells correspond to n× n blocks, 0 is the zero and 1 is the identity n× n
matrices, N = (N1, . . . ,Nn)

T , diag(N) is the diagonal matrix with the vector N on
the main diagonal, E = (εi j) is the n×n matrix of correspondence.

Since the Jacobian J has a block-triangular form, its spectrum coincides with
the union of spectra of its diagonal blocks. The first of them is diagonal with the
value −γ < 0 so that the stability of the equilibrium position {S∗i , I∗i , i = 1, . . . ,n}
corresponds to localization of eigenvalues of the second diagonal block in (4.2)
in the left complex half-plane. It is equivalent to the localization of the spectrum
of the nonnegative n× n matrix A′ = α/(β + γ)diag(N)EET with the coefficients
a′i j = αNi/(β + γ)∑

n
k=1 εikε jk inside the unit circle, i.e., to the inequality r (A′)< 1.

The use of the indicatrix of the matrix A′ constructed in accordance with the
scheme presented above instead of the spectral radius solves the problem of emer-
gence of a pandemic within this model.
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