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Spatially resolved modelling of immune responses following
a multiscale approach: from computational implementation
to quantitative predictions

D. S. Grebennikov∗†‡ and G. A. Bocharov†

Abstract — In this work we formulate a hybrid multiscale model for describing the fundamental
immune processes in human immunodeficiency type 1 (HIV) infection. These include (i) the T cell
migration in the lymphoid tissue, (ii) the replication cycle of HIV within an infected cell, (iii) the type
I interferon (IFN) response of the target cells, and (iv) the spatiotemporal dynamics of the HIV and
type I IFN fields. Computational implementation of the hybrid multiscale model is presented. It is
based on the use of semi-implicit first-order symplectic Euler method for solving the equations of the
second Newton’s law for cell migration and the alternating direction method for the initial-boundary
value problem for reaction–diffusion equations governing the spatial evolution of the virus and IFN
fields in 2D domain representing the lymph node (LN) tissue. Both, the stochastic and deterministic
descriptions of the intracellular HIV infection and the IFN reaction are developed. The potential of the
calibrated multiscale hybrid model is illustrated by predicting the dynamics of the local HIV infection
bursts in LN tissue.
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The immune system provides the defense of a host organism against foreign

pathogens and tumour development, and plays an active role in tissue and organ
regeneration. The modern era of research in immunology is characterized by an
unprecedented level of detail about its numerous components functioning together
as a whole network-type system [1, 8, 13, 14]. There is a demand for the devel-
opment of high-resolution detailed mathematical models and their integration into
experimental and clinical research to provide a mechanistic tool for the description,
analysis and prediction of immune process dynamics under specified conditions.

A multiscale framework in mathematical immunology turned out to be insight-
ful for understanding the pathogenesis mechanisms and identifying potential thera-
peutic targets for human infections with Mycobacterium tuberculosis [12,18]. Other
specific examples of immune system analysis based on multiscale models are the
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studies of early CD8+ T cell immune responses in lymph nodes (LN) [9] and im-
mune processes in LNs [3]. The practical development of a hybrid approach to
multiscale modelling of immune processes presents a number of challenges ran-
ging from the numerical accuracy and consistency of the different methods being
used to compute the system component dynamics on the one side to the risk of pro-
ducing modelling artefacts because of system complexity and parameter uncertainty
on the other side [5, 6]. In fact, one needs to have clear computational methodolo-
gies for the development of various mathematical modelling tools including simple
single-level resolution phenomenological models, large-scale multi-compartmental
models and high-resolution multiscale models amenable to validation using well-
documented infections, e.g., such as human immunodeficiency virus type 1 (HIV)
infection.

In Section 1, we present formulation, implementation in 2D and calibration of
the mathematical model of cell migration in lymphoid tissue based on the second
Newton’s law equation. In Section 2, we formulate the reaction–diffusion model
of extracellular dynamics of HIV virions and type 1 interferon (IFN) molecules
and stochastic model of HIV transmission in LN. In Section 3, the stochastic and
deterministic descriptions for the single-level processes, e.g., the intracellular HIV
life cycle and type I interferon response induction are formulated and numerically
implemented. In Section 4, we explore the hybrid model of the immune response to
HIV infection integrating two levels of resolution, i.e., the intracellular regulation of
infection and 2D spatial dynamics of cells, viruses and cytokines (IFN) in lymphoid
organs.

1. Calibrated model of lymphocyte motility in LN
Immune processes develop in highly organized spatial structures of the lymphoid or-
gans and the lymphatic system. Here we present the model of lymphocyte motility
in lymph nodes which was formulated and calibrated in [10]. The equations govern-
ing the motion of a system of N cells with coordinates xi and radii ri represent the
system of second Newton’s law equations:

miẍi = Fi = ∑
j 6=i

fi j + fmot
i −µ ẋi in Ω⊂ R2, i, j = 1, . . . ,N (1.1)

where the right-hand side includes (i) the cell-to-cell interaction force Fint
i =∑ j 6=i fi j,

(ii) the stochastic force of active intrinsic cell motility fmot
i , and (iii) the dissipative

friction force −µ ẋi.
The cell-to-cell interaction force fi j can be adhesive or repulsive depending on

the distance hi j from the center of cell i to the membrane of cell j:

fi j(hi j) =
xi−x j

hi j
·

−a · f adh
i

L−hi j

L
+b · f adh

i
(L−hi j)

3

L3 , hi j < L

0, hi j > L
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where hi j = |xi−x j| is the distance between centers of cells, L = ri + r j is the sum
of i-th and j-th cells radii. Coefficients a and b are set so that the following condition
is fulfilled: fi j(L) = 0, fi j(5L/6) = 0, f adh

i = min fi j(x), thus leaving the only free
parameter f adh

i , which represents the adhesive strength of the contact between cells
of certain type, estimated for nonspecific and specific contacts in [10].

The active intrinsic cell motility force fmot
i is simulated as stochastic vector

sampled by rules of an empirical model of correlated random walk. It implicitly
accounts for the effects of T cell interactions with fibroblastic reticular cell net-
work, extracellular matrix fibers and chemokines, all guiding their migration. Every
∆t = 30 s the magnitude and direction of the force are sampled from the certain prob-
ability distributions, as described in [10]. After that, the sampled force is corrected
to account for contact inhibition of locomotion. The modification consists of shift-
ing the direction of the force vector away from the neighboring cells and decreasing
the magnitude of force proportionally to the number of neighboring cells (for de-
tails see [10]). The model above was calibrated by experimental data on lymphocyte
intranodal imaging and the estimated model parameters are provided in [10].

For numerical integration of the cell motion equations (1.1) the semi-implicit
first-order symplectic Euler method with ht

mot = 0.02 min time-step was used:

vn+1
i =

mivn
i +ht

mot ·
(
Fint

i (xn
i )+ fmot

i (tn)
)

mi +ht
mot ·µ

, xn+1
i = xn

i +ht
mot ·vn+1

i

where xn
i and vn

i are the coordinate and the velocity of cell i after n steps, respect-
ively, tn = t0 +ht

mot ·n.
In subsequent multiscale simulations, we consider square computational domain

Ω = [0,L]2, L = 412 µm, with periodic boundary conditions for cell movements.
We initialize 4489 squarely tiled T cells with ri = 3 µm (≈ 80% packing density)
and run 30 min of simulation time to randomly mix the cells to obtain the initial
configuration. Then, one productively infected dendritic cell with rDC = 6.5 µm is
introduced in the center of the domain.

2. Extracellular dynamics of HIV virions and IFN
2.1. Reaction–diffusion equations for extracellular fields

The dynamics of extracellular fields of free virions V (x, t) and interferon molecules
I(x, t) are modelled with reaction–diffusion equations (c = {V, I}):

∂c
∂ t

= Dc∆c+ sc−dcc in ΩD

c(x, t) = 0 on ∂ΩD, c(x,0) = 0 in ΩD

(2.1)

where Dc is the diffusion coefficient, dc is the degradation rate, sc is a source
term describing secretion of the virions or molecules by Nc(t) corresponding cells:
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sc(x, t)=∑
Nc(t)
i=1 ρc

∣∣
Ωk
(x) (the details of cell-specific production are presented in Sec-

tion 4), here |Ωk denotes the indicator function of the area Ωk = Ωk(xk(t)) = {x ∈
ΩD : ‖x−xk‖6 rk} occupied by the kth cell.

The actual boundaries of lymph node are not considered in the model. Instead,
we solve (2.1) in the extended domain ΩD = [−lm,L + lm]2 with zero Dirichlet
boundary conditions, where lm = 19 µm is the length of the margins around the
domain Ω. This approximation is suitable for the study of local effects of HIV trans-
mission by one infected cell. The boundary value problem (2.1) is solved numeric-
ally using alternating direction implicit (ADI) method on a uniform rectangular grid
(xi,y j, tn) = (−lm + ihx,−lm + jhy, t0 +nht), i, j = 1, . . . ,Nx: in the first substep we
implicitly discretize x-derivative, in the second — y-derivative,

cn+1/2
i, j − cn

i, j

ht/2
=

Dc

(hx)2 δ
2
x cn+1/2

i, j +
Dc

(hy)2 δ
2
y cn

i, j + sc(xi,y j, tn)−dccn+1/2
i, j

cn+1
i, j − cn+1/2

i, j

ht/2
=

Dc

(hx)2 δ
2
x cn+1/2

i, j +
Dc

(hy)2 δ
2
y cn+1

i, j + sc(xi,y j, tn)−dccn+1
i, j

where δ 2
x ui, j = ui−1, j − 2ui, j + ui+1, j, δ 2

y ui, j = ui, j−1 − 2ui, j + ui, j+1. To obtain
sc(xi,yi, tn) in the grid node x∗ = (xi,yi) we use the formula sc(x∗, tn) =

∑
Nc(tn)
k=1 ρcIΩk(x∗)(r2

k−||x∗−xk||2)
/

∑x∗∈Ωk
(r2

k −||x∗−xk||2). The resulting symmet-
ric tridiagonal systems are solved using tridiagonal matrix (Thomas) algorithm for
each substep. In numerical simulations, we use hx = hy = 1 µm, ht = 1min.

2.2. Stochastic model of HIV transmission

The spread of HIV in lymphoid tissues is achieved through two mechanisms: (1)
cell-to-cell transmission of viral genomes by infected cells, (2) cell-free infec-
tion by extracellular virions secreted by productively infected cells after comple-
tion of intracellular replication stages [22]. We consider both mechanisms. The
CD4+ T cell can be infected with the rates k̂(i)free(t) = kfree · e−(t−t(i)inf)/td and k̂(i)cell(t) =

kcell ·e−(t−t(i)inf)/td , where t(i)inf is the moment of beginning of the infection process (i.e.,
when the cell first came in contact with free virion or infected cell), and td ≈ 0.7 h
is characteristic time of decay of infection rates due to downregulation of CD4 mo-
lecules expression on the cell membrane [7]. We model these rates proportional to
local numbers of free virions and infectious cells (instead of their global concentra-
tions, as defined in [7]):

r(i)free = k̂(i)free(t)
∫

Ωi

V (x, t)dx, r(i)cell = k̂(i)cell(t) ·N
(i)
neigh(t)

where N(i)
neigh is the number of infected cells contacting the cell (number of neigh-

bours). We estimate the rates from [22] as kfree = 1.68 ·10−3 h−1, kcell = 0.76 h−1.
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Figure 1. Distributions of integrated proviruses in the infected cell in different infection scenarios
(105 numerical realizations for each scenario). (a)–(c) Distributions of the numbers of integrated
proviruses Vint at time tinf + 5td . (d) Distribution of the times of provirus integration events since
the infection time tinf.

The probability that no new viral genome will be integrated in the nucleus during
interval (t∗, t∗+ τ) since the previous integration time t∗, is

P(τ|t∗) = exp
(
−
∫ t∗+τ

t∗
(kfreeVΩi(t)+ kcellN

(i)
neigh(t))e−(t−t(i)inf)/td dt

)

where VΩi(t) =
∫

Ωi
V (x, t)dx. At time t∗∗ = t∗+ τ , the number of integrated provir-

uses in cell i will be increased: V (i)
int =V (i)

int +1. This stochastic process is simulated
using Temporal Gillespie Algorithm [21], with VΩi(t) and N(i)

neigh(t) being updated
every ht and ht

mot minutes. To reduce computational complexity, the infection events
are tracked for each cell from time t(i)inf till time t(i)inf + 5td . The algorithm consists
of the following steps. First, we draw a normalized waiting time τ ′ = L(t∗∗|t∗) =∫ t∗∗

t∗ Λ(t)dt, Λ(t) = (kfreeVΩi(t)+kcellN
(i)
neigh(t))e

−(t−t(i)inf)/td , from a standard exponen-
tial distribution τ ′ ∼ Exp(1). The time t∗∗ when a next event will occur is given
implicitly by the equation L(t∗∗|t∗) = τ ′. To obtain t∗∗ numerically, we approximate
Λ(t) as constant over time-step ht

mot, assuming ∆Λ(t) · ht
mot� 1, where ∆Λ(t) is a

change of Λ(t) during time-step. For simplicity, let t(i)inf = t0. At each time-step n,
if L(tn|t0) = ht

mot ∑
n−1
l=0 Λ(t l) < τ ′, then algorithm advances to the next time-step.

Otherwise, the time of the next event is given by t∗∗ = tn +(τ ′−L(tn|t0))/Λ(tn).
Then, t∗← t∗∗, and the algorithm reiterates by drawing new normalized time τ ′, and
advancing through time-steps until L(tn|t∗)> τ ′, when the time of the next event t∗∗
is calculated, and so on. Statistical properties of provirus integration events obtained
numerically using the described algorithm are illustrated in Fig. 1.
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3. Intracellular regulation of HIV infection: combining deterministic
and stochastic formulations

In intracellular models presented below, we omit indices (i) for model variables
in cell i. We describe the deterministic model of HIV replication and stochastic
model of the antiviral IFN response. The deterministic model can be extended to a
stochastic model using a hybrid approach proposed in [17], but it is not considered
in this paper.

3.1. HIV replication

After HIV provirus is integrated in infected cell, it can remain latent (which is not
considered in this model) or become productively infected, in which case the later
stages of HIV replication are activated. The model for these replication steps is de-
rived from [11, 15]. It describes the generation of genomic RNA transcripts VgRNAn
and their splicing to VdsRNAn, their export from the nucleus to cytoplasm to become
VgRNA and VdsRNA, and maturation of new virions Vmat proportional to VgRNA. The
model includes the dynamics of proteins [Tat] and [Rev], which are crucial for regu-
lation of transcription, splicing, and export processes. The deterministic formulation
of the model is given by the following ODE system:

dVgRNAn

dt
= [TR] ·Vint− (2ksp (1−β fRev)+ kexp fRev +dRNA)VgRNAn

dVdsRNAn

dt
= ksp (1−β fRev)VgRNAn− (kexp +dRNA)VdsRNAn

dVdsRNA

dt
= kexpVdsRNAn− (dRNA + kISG bISG)VdsRNA

d[Tat]
dt

= rTatVdsRNA−dTat[Tat],
d[Rev]

dt
= rRevVdsRNA−dRev[Rev]

dVgRNA

dt
= kexp fRevVgRNAn− (2 · kmat +dRNA + kISG ·bISG)VgRNA

dVmat

dt
= kmatVgRNA− (kρV +dHIV)Vmat

(3.1)

where [TR] = [TRcell]+ fTat · [TRTat] is a transcription rate, and the effects of Tat and
Rev are parameterized as fx = x/(1+ x+KxVint),x = {Tat,Rev}. The effect of bISG
on VgRNA and VdsRNA will be described below.

3.2. Antiviral IFN response

Intracellular IFN-I response against HIV consists of paracrine and autocrine sig-
naling pathways. Autocrine pathway involves the recognition of viral RNA by the
pattern recognition receptors and invoking IFN production. The result of this path-
way is considered only for infected dendritic cell characterized by a constant IFN
secretion rate, because in infected CD4+ T cells this pathway is largely suppressed
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Figure 2. Intracellular HIV replication in productively infected cell with Vint = 2 integrated provir-
uses. Solid lines correspond to the absence of IFN response. The effect of IFN response on the number
of viral RNA in cytoplasm VdsRNA,VgRNA and mature virions Vmat is shown with dashed lines (medi-
ans) and uncertainty areas (interquartile ranges). Parameters of the model (rate constants are given in
h−1 units): dHIV = 0.5,dDNA = 0.2, [TRcell] = 15, [TRTat] = 1500, KTat = 11000 molecules,KRev =
40000 molecules,ksp = 2,β = 0.9,kexp = 2.3,rTat = 6.55,rRev = 52.4,dTat = 0.04,dRev = 0.06,kmat =

0.5,kρV = 0.15,rSTAT = 0.1,KI = 1.23 ·107 molecules,rISG = 0.1,kISG = 0.1.

by HIV protease, Vif and Vpr proteins [20]. Paracrine signaling involves activation
of STAT1/2 pathway (modelled as binary variable bST ) by extracellular IFN-β IΩi ,
that leads to expression of interferon stimulated genes (ISGs) (modelled as binary
variable bISG), which increase degradation rates of HIV RNA in cytoplasm VgRNA
and VdsRNA (see (3.1)). The stochastic model of paracrine antiviral IFN response in
infected T cells is based on work [16]. We consider the following cell states and
transitions between states:

{bST = bISG = 0} aSTAT−−−→ {bST = 1,bISG = 0} rISG−−→ {bST = 1,bISG = 1}

where aSTAT (t) = rSTAT IΩi(t)/(KI + IΩi(t)) and rISG are propensity rates of trans-
itions, IΩi(t) =

∫
Ωi

I(x, t)dx. The reverse transitions are considered to be negli-
gible for 48h-long simulations [16]. The resulting stochastic processes with time-
dependent rates are simulated using temporal Gillespie algorithm as described in
Subsection 2.2. The intracellular dynamics of HIV replication and the effect of an-
tiviral IFN response in an infected cell harboring Vint = 2 genomes is presented in
Fig. 2.

4. Numerical simulations of HIV infection dynamics in LN
In this section we describe some details of the implementation of the multiscale
model. The following T cell subtypes are considered: CD4+ T cells (infected and
uninfected), CD8+ T cells (nonspecific and HIV-specific effector cells, i.e., CTLs).
We initialize the random spacial configuration of 1257 CD4+ T cells, 3232 CD8+
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Figure 3. The local dynamics of HIV transmission in lymphoid tissue by one productively infected
dendritic cell. (a)–(c) An example of extracellular fields of (a) HIV virions, (b) IFN molecules, and (c)
spatial distribution of the immune cells (subtypes are indicated in color legend) 48 hours after infection
of dendritic cell. (d) The dynamics of number of virions in the domain under normal conditions (black
solid line), when CTL frequency is increased from 1% to 5% (blue lines), and when IFN response is
switched off (dash lines). Lines correspond to median values of results of 3 numerical simulations.

T cells (32 of them are CTLs) in the domain Ω. The T cell lifespan is modelled as
exponentially distributed with death rates γCD4 = 0.008/day, γCD8 = 0.009/day [2].
Infected CD4+ T cells can be killed upon contact with HIV-specific CTLs. It is im-
plemented by removing the infected cell after prolonged (>1min) contact or after
multiple contacts with CTLs within 1 min. New T cells are introduced into the com-
putational domain with rates λCD4 = 9 cells/day, λCD8 = 30 cells/day. When a new
CD8+ T cell is introduced, it is set to be a CTL with probability p < f , where
f = 0.01 is the characteristic HIV-specific CTL frequency. If a newly placed cell
overlaps with any other cell so that hi j < 5L/6, then the placement attempt is rejec-
ted and the position of cell is resampled. We allow no more than 5 rejections. This
procedure allows for nearly constant packing density of the domain and the long-
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term homeostatic T cell subtype maintenance if there is no infection. We do not con-
sider activation and division of cells in 48-hour simulations. To initiate local spread
of infection, one productively infected dendritic cell is introduced into the domain
and kept alive throughout the simulation. This dendritic cell secretes virions and IFN
molecules with constant rates kDC

ρV
= 500 virions/h, kDC

ρI
= 1.6 ·104 molecules/h [4],

respectively, and participates in the cell-to-cell transmission of HIV. Virions are
secreted by infected cells with the per cell rate ρ

(i)
V = kρV V (i)

mat. Virions and molecules
diffuse and degrade with the diffusion constants DV = 0.01,DI = 0.34 mm2/h and
decay rates dV = 0.5,dI = 0.012 h−1, respectively (see [4, 16]).

Figure 3 illustrates the results of numerical simulation of the evolution of infec-
tion process over 48 hours. One can see extracellular fields of (a) HIV virions, (b)
IFN molecules, and (c) the spatial distribution of cells (dendritic cell, infected and
uninfected CD4+ T cells, specific and nonspecific CD8+ T cells) 48 hours postin-
fection. In Fig. 3d we present the dynamics of viral load, i.e., total number of virions
in the whole domain Ω, in the absence of IFN response, for CTL frequency in LN
ranging from 1% to 5%, and at combination of these perturbations.

5. Future work: multiscale modelling in 3D
In this study we developed the computational approach to mathematical modelling
of immune processes in humans and animals following a multiscale hybrid frame-
work. We presented the formulation and numerical implementation of multiscale
mathematical model describing some of the key physical, biochemical, biological,
and physiological processes which underlie the response of the immune system to
HIV infection. Mathematically, the hybrid model is built by using various types
and classes of equations, including ODEs, stochastic differential equations (SDEs),
reaction–diffusion equations (RDEs), and Markov chain-based models (MCM).
A computationally consistent and verified methodology for integration of various
types of models representing specific modules of the immune system into global
integrative models is elaborated. The following essential features constitute the core
elements of our framework:

• for intracellular processes of immune cell fate regulation, both deterministic
and related stochastic models are developed in pairs;

• the spatial population dynamics of immune cells and humoral factors in
lymphoid organs is modelled with Newton’s second law and reaction–diffusion
equations, respectively, calibrated using experimental data for 2D considera-
tion.

The existing studies in mathematical immunology on hybrid modelling are
mostly restricted to the projection of immune processes on the 2D or 3D regular lat-
tices which is a severe simplification of the physiology and anatomy of the immune
system. The embedding of the multiscale models into the 3D spatially resolved geo-
metrical model of LN is the direction of our future work.
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