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Mechanical model of the left ventricle of the heart
approximated by axisymmetric geometry

F. A. Syomin∗ and A. K. Tsaturyan∗

Abstract — An axisymmetric model is suggested to simulate mechanical performance of the left vent-
ricle of the heart. Cardiac muscle is treated as incompressible anisotropic material with active tension
directed along muscle fibres. This tension depends on kinetic variables that characterize interaction of
contractile proteins and regulation of muscle contraction by calcium ions. For numerical simulation of
heartbeats the finite element method was implemented. The model reproduces well changes in vent-
ricle geometry between systole and diastole, ejection fraction, pulse wave of ventricular and arterial
pressure typical for normal human heart. The model also reproduces well the dependence of the stroke
volume on end-diastolic and arterial pressures (the Frank–Starling law of the heart and Anrep effect).
The results demonstrate that our model of cardiac muscle can be successfully applied to multiscale
3D simulation of the heart.
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Computer modelling of the heart mechanics is a fast developing field of computa-
tional physiology. During the last two decades a number of electromechanical mod-
els of the whole heart or its left ventricle has been developed [26]. Such multiscale
models usually combine several models that describe electrical and chemical pro-
cesses at the level of a single cell with mechanical properties of cardiac muscle
tissue. Generally, a model of the heart consists of a model of ionic currents in the
cardiomyocytes, model of myocardial mechanics, model of blood circulation (hae-
modynamics model), and a geometrical approximation of the heart. In spite of the
presence of 3D models with patient-specific geometry of hearts and very detailed
description of ionic currents, those models do not provide accurate description of
cardiac muscle mechanics. The problem is that fine detailed models of actin-myosin
interaction that underlies development of active stress in cardiac muscle are spe-
cified by systems of partial differential equations, and thus they are too complicated
for numerical simulation. On the other hand, prevailed simple models that are set
by the systems of a few ODEs do not reproduce some major properties of cardiac
muscle.

To overcome the problem stated above, we have developed a mechanical model
of myocardium specified by a system of ODEs. The model is based on a kinetic
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model of muscle contraction and its regulation [21, 22]. The model reproduces a
series of different uniaxial experiments performed on striated muscles. Some of
them are steady-state shortening and lengthening at full activation, steady-state
force-calcium dependencies, responses of force or length to step-like changes in
muscle length or load, isometric and isotonic contractions at full activation and with
consideration of regulation processes. Later we have applied this model to the sim-
ulation of contraction of the left ventricle approximated by a thick-walled cylin-
der [23], describing blood circulation by a simple compartmental model (Windkes-
sel model). This approbation of the model has shown satisfactory results. We were
able to reproduce the time course of the major haemodynamical and geometrical
values during a heartbeat of an average ’healthy’ heart and under conditions that are
typical for hypertrophic and dilated cardiomyopathies. After improving our circula-
tion model, we have also investigated numerically the dependence of ventricular per-
formance (ejection fraction of the ventricle) on the ventricle preload (end-diastolic
pressure) and afterload (peripheral resistance or arterial pressure) [24]. The simula-
tion reproduces the Frank–Starling law of the heart, pressure-volume loops, and the
Anrep effect.

At the next step of 3D modelling of the heart with patient-specific geometry we
approximated the ventricle shape by a thick-walled body of revolution more similar
to real heart than a cylinder. Here we describe a finite element model of pumping
function of the ventricle based on our model of cardiac muscle.

1. Statement of the problem
1.1. Material and geometry

We approximated the ventricle by a thick-walled body of revolution with the shape
close to semi-ellipsoid. To set up the geometry we used curvilinear coordinate sys-
tem (γ , ψ) introduced in [17]. Here γ corresponds to the position of a point in the
wall of the ventricle: γ = 0 for inner points of the ventricle (subendocardium), and
γ = 1 for outer points of the ventricle (subepicardium). Coordinate ψ corresponds to
the position of the point between base (ψ = 0) and apex (ψ = π/2) of the ventricle.
These coordinates can be expressed in terms of cylindrical coordinates as follows

r =(rin + γ (rout− rin))(ε cosψ +(1− ε)(1− sinψ))

z =(hin + γ (hout−hin))(1− sinψ)+(1− γ)(hout−hin)
(1.1)

where rin and rout are the inner and outer radii at ψ = 0, hin and hout are the lengths
of the ventricle axis between the ventricular base and the inner and outer axial point,
respectively. Parameter ε sets the curvature of the ventricle. The shape is conic for
ε = 0, and when ε = 1 the shape is a body of revolution with ψ being inclination
angle of a point. We have chosen ε > 1 in order to approximate the region of tapering
from the widest part of the ventricle to its region of fibrous valve.

The myocardium was considered to be hyperelastic incompressible transversely-
isotropic medium with active stress caused by mechanochemical processes. The
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constitutive equation in its general form looks like

T = Tis− pE+

(
Fact +Ftit

Ls/Ls0

)
·B. (1.2)

Here Ls0 is a length of unstrained sarcomere, Ls is a length of deformed sarcomere,
T is Cauchy stress tensor, Tis is an isotropic part of passive stress tensor, p is a
Lagrange multiplier, or pressure, E is a unit tensor, B is a tensor of fibres orienta-
tion, which is equal to dyadic product of deformed unit vectors aligned with muscle
fibres. The scalar Fact is active tension of cardiac muscle, and Ftit is a component of
passive tension caused by non-linearly elastic titin fibres. Both tensions are caused
by the forces aligned with fibres and applied at the cross-section of a fibre. Passive
stress of hyperelastic material was expressed using strain energy function W , which
depends on the first and second invariants I1 and I2 of the right Cauchy–Green de-
formation tensor G:

Ti j
is =

∂W
∂εi j

W = c1
ise

Q(I1,I2)

Q = c2
is ·
(

0.25(I1−3)2−0.5(I2−2I1 +3)
)
.

(1.3)

Here εi j are the components of the Gauchy–Green strain tensor, c1
is and c2

is are the
material parameters. The strain energy function was based on that suggested in [5].
The general forms of expressions for the first and the second invariants are as fol-
lows:

I1 (G) = E••G = ∑
i

Gi
i, I2 (G) =

(
I2
1 (G)− I1

(
G2))/2

where ‘••’ is a notation for double tensor contraction. Titin force Ftit was specified
by so-called worm-like chain model [13], which is often used for description of
stresses in long molecular chains, and was set by equation

Ftit =
6kBT ρm

Lp
·

(
0.25(

1−0.5 · (Ls−Ls0)
/

Lc
)2 −0.25+

0.5 · (Ls−Ls0)

Lc

)
. (1.4)

Here Lc is a contour length of titin, Lp is a persistent length of titin, ρm is a number
of myosin filaments per unit of cross-section area of unstrained muscle, kB is a
Boltzmann constant, and T is an absolute temperature.

Active force Fact is defined by a kinetic model of cardiac muscle [21, 22] based
on the following concept. Muscle contraction is caused by relative sliding of two
sets of protein filaments in an elementary contractile unit of muscle—sarcomere.
These filaments are thick myosin filament and thin actin filament. Myosin heads
protruding from the backbone of thick filaments are molecular motors, which pro-
duce force during their interaction with actin molecules. During contraction these
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myosin heads go through Lymn–Taylor cycle. According to the cycle a myosin head
can be in detached from actin state (state 0), or it can attach to actin and form a
cross-bridge. A cross-bridge can attach actin weakly (state 1), or strongly (state 2).
In the latter case, it generates active force and/or causes displacement. Our model
of contraction is based on the Lymn–Taylor cycle and considers muscle activation
as well. In the absence of calcium ions, Ca2+, a complex of regulatory proteins
covers myosin binding sites on actin and causes muscle relaxation. The binding of
Ca2+ to regulatory protein troponin-C and formation of CaTnC (calcium-troponin
C) complex suspends the inhibition and opens actin filaments for myosin binding.
The formation and dissociation of the CaTnC complexes depends on a number of
factors. The affinity of the complexes to Ca2+ ions increases with an increase in sar-
comere length (length-dependent activation), a number of already formed CaTnC
complexes, and a number of strongly bound cross-bridges [4]. These cooperative
effects are also taken into consideration in our model. Main variables of our con-
traction model are:

1. n is a probability of a myosin head to be attached to thin filament.
2. ϑ is a fraction of strongly bound cross-bridges.
3. δ is an ensemble-averaged distortion of cross-bridges.
4. Ls is a sarcomere length.
5. A1 is a probability of formation of a CaTnC complex in the zone of overlap of

thick and thin filaments where cross-bridges can be formed.
6. A2 is a probability of formation of a CaTnC complex outside the overlap zone.
7. CCa is a concentration of free intracellular calcium ions.

The system of ODEs for our contraction model is as follows

∂n
∂ t

= k01 (δ ) · (A1−n)− k10 (δ )n · (1−ϑ)− k20 (δ )nϑ

∂ (nϑ)

∂ t
= k12 (δ )n · (1−ϑ)− k21 (δ )nϑ − k20 (δ )nϑ

∂δ

∂ t
= L̇s−

k01 (δ ) · (1−n)
n

δ

∂A1

∂ t
=


α01 (CCa)(1−A1)−α101 (Ls,nϑ ,A1)A1,

∂WovA

∂ t
6 0

α01 (CCa)(1−A1)−α101 (Ls,nϑ ,A1)A1 +
∂WovA

∂ t
· A2−A1

WovA
,

∂WovA

∂ t
> 0

∂A2

∂ t
=


α01 (CCa)(1−A2)−α102 (Ls,A2)A2−

∂WovA

∂ t
· A1−A2

1−WovA
,

∂WovA

∂ t
6 0

α01 (CCa)(1−A2)−α102 (Ls,A2)A2,
∂WovA

∂ t
> 0

∂CCa

∂ t
= ICa(t)−YCa(CCa−C∗Ca)−CT n ·

∂ (A1WovA +A2(1−WovA))

∂ t
.

(1.5)
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The transitions between weakly and strongly bound states are much more faster
than other transitions. Therefore we excluded the second equation from (1.5) and
expressed ϑ from steady-state solution as function of δ

ϑ (δ ) =
k12 (δ )

k12 (δ )+ k21 (δ )+ k20 (δ )

and active tension was set by expression

Fact = EcbNcbρmWovn(δ +ϑh) . (1.6)

In equations (1.5) and (1.6) ki j are the rates of transitions of a myosin head from
state i to state j, α are the rates of CaTnC formation and dissociation, Wov and WovA
are the normalized in different ways lengths of overlapping zone, Ecb is a cross-
bridge stiffness, Ncb is the number of myosin heads per half of a sarcomere, h is
a cross-bridge strain during its transition to strongly bound state in the absence of
load, ICa is a time-function of calcium inflow, YCa is a calcium uptake constant, C∗Ca
is a small constant, and CT n is the total concentration of regulatory complexes.

Further we took into account some regional features of the ventricle. Firstly,
the region of fibrous ring of the ventricle (basal region) is much more stiff than the
rest of it because of circumferential fibres of collagen that are prevalent in the re-
gion [8]. This ‘fibrous skeleton’ is mostly concentrated in the inner part of the vent-
ricle, where the valves and their leaflets are located. Therefore we added a tensor Tb
of anisotropic passive stress. In order to describe the continuous variation in stiffness
caused by density of circumferential collagen fibres from equator (region with max-
imal radius according to (1.1)) to base and from subepicardium to subendocardium
we increased passive stiffness of myocardium respectively by a power function with
exponent pb. Secondly, we supposed, as it was confirmed by experimental data, that
fibres of cardiac muscle in the most part of the ventricle are oriented along spir-
als with angle to the base plane changing smoothly from 80o at subendocardium
to −55o at subepicardium [20]. However, in the apical region a number of muscle
fibres seem to be oriented randomly due to widely distributed transmural orientation
of the fibres and due to asymmetry of orientation distribution at the apex [7, 25]. To
describe this feature we considered additional isotropic Hookian-elastic stress with
stiffness coefficient depending on a number of cross-bridges as stiffness of activ-
ated muscle is proportional to the fraction of actin-bound cross-bridges. This term
increased continuously from equator to apex as a power function with exponent pap
and multiplier cap.
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The final form of constitutive equation is

T = Tis +Tb− pE+

(
Fact +Ftit

Ls/Ls0

)
·B

Ti j
is =


∂W
∂εi j

, ψ 6 ψ0

∂W
∂εi j

+ capF0
act

(
ψ−ψ0

π/2−ψ0

)pap

εi j, ψ > ψ0

F0
act = EcbNcbρmnhϑ (0)

Tϕϕ

b =

cb

(
ψ0−ψ

ψ0

)pb

(1− γ)pb

(
1
r

)2
(

1− 1√
Ls/Ls0

)
, ψ 6 ψ0

0, ψ > ψ0

Ti j
b = 0, i 6= ϕ, j 6= ϕ.

(1.7)

Here r is a radial coordinate, and ψ0 is a value of coordinate ψ at which maximal
value of inner radius of unstrained ventricle is reached.

1.2. Finite elements model

We set a mixed problem for node displacements and pressure values that result
from incompressibility. It is known that the use of simplex triangle elements with
linear approximation causes troublesome effects for fully incompressible materials
such as volumetric and shear locking. In order to avoid these problems, but still use
simplex triangles we connected triangles by pairs and wrote down incompressibil-
ity equations for rings formed by rotation of each quadrilateral element. Unknown
pressures were also determined per quadrilateral. Model equations were based on
the equations of energy balance. For an element the equation takes form of∫

Ve

T̃i j
ε̇i jdV = pe,mu̇m

e (1.8)

where Ve is a volume of unstrained element, T̃ is the second Piola-Kirchhoff stress
tensor, pe,m is a vector of force applied at the node denoted by number m in local
numeration of element e, u̇m

e is a vector of displacement for the same node. The
equations were written down in cylindrical coordinates. To get the global form of
the equations for a node we summed the left and right hand sides of the equations
over elements adjacent to this node. As it was stated earlier, we also wrote down the
following incompressibility equations for each pair of triangular rings e1 and e2

d
dt

∫
Ve1

dV +
∫

Ve2

dV

= 0⇒ re1S0
e1
+ re2S0

e2
= Re1S1

e1
+Re2S1

e2
(1.9)
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where rei and Rei are the reference and deformed radial coordinates of centre points
of triangle elements in fixed coordinate system, and S j

ei are the areas of deformed
( j = 1) and undeformed ( j = 0) triangles.

The equations were rewritten in form of small increments, i.e., we linearized the
equations for small increments of displacements, forces, and pressures. We calcu-
lated integrals over elements by the Gaussian quadrature method with three integ-
ration points per triangle. At each time step we were solving the system of linear
equations for increments of displacements and pressure values. They were 3Nn en-
ergy balance equations for nodes, Ne/2 incompressibility equations (1.9) and an
equation for ventricular volume. Here we denoted the total node number and ele-
ment number by Nn and Ne, respectively. In addition, at each time step we were
searching for unknown variables of the kinetic model at every integration point,
and therefore we were solving 3Ne systems (1.5) of ODEs of the kinetic model by
the explicit Euler method. After computation of all model variables at integration
points we used method of superconvergent patch recovery [9] to find node values of
the variables for output.

The ventricle model was completed by haemodynamics model that is described
in detail in [24] and was originally based on compartment model [2]. The model
considers only systemic blood circulation, and pressure in the left atrium is set to
venous pressure.

1.3. Boundary and initial conditions

At base of the ventricle nodal axial and angular displacements were fixed to avoid
rigid body motion. Instead of these displacements nodal forces were set as unknown
variables. External forces at inner nodes of the ventricle were equal to forces of
ventricular blood pressure. Pressure on outer surface of ventricular wall was set to
zero. Initial conditions of haemodynamics model were set to provide normal volume
of blood in systemic circulation, their values are the same as those presented in
[24]. To avoid difficulties with zero initial conditions for the kinetic model (n is
in denominator in equation for δ in (1.5)) we set n, A1 and CCa to the values of
steady-state solution at δ = 0.

Expressions (1.1) for ventricular geometry are not appropriate for early dia-
stolic geometry, that is usually considered as unloaded configuration. They can not
fit well the taper region located above wide equatorial region up to fibrous ring.
Therefore we used (1.1) to set the end-systolic geometry, which was preliminar-
ily considered to be unloaded configuration. At that state sarcomeres had minimal
length of 1.7 µm, which was set as preliminary unstrained sarcomere length Ls0.
The geometrical parameters of (1.1) were chosen in order to fit experimental values
of the end-systolic ventricular dimensions and wall thickness. Then we were filling
the ventricle to the volume of 120 ml and were varying elastic parameter c1

is until
ventricular pressure was equal to 5 mm Hg at 120 ml volume. The second para-
meter of strain energy function, c2

is, was chosen on the basis of expression for strain
energy function from [11] and was fixed. It is known that sarcomeres in passive
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relaxed muscle have lengths of approximately 1.9 µm [16]. Streeter has shown in
his review [19] that sarcomere lengths in early diastole equal 1.9 µm throughout
ventricular wall. Taking into account these facts we chose ventricular geometry at
the moment when the major part of sarcomeres had lengths near 1.9 µm and set
it as the final reference unloaded state. Due to a small difference in titin passive
stress at sarcomere lengths of 1.7 and 1.9 µm we were able to reset unstrained
sarcomere length Ls0 = 1.9 µm. Thereafter we adjusted c1

is again to obtain the end-
diastolic pressure and volume of 5 mm Hg and 120 ml, respectively. Final value
of c1

is matched its value from [11] very well while end-diastolic ventricular dimen-
sions [12] and thickness of ventricular walls at various regions of the ventricle [10]
were in good agreement with experimental data.

The rates of kinetic processes in our model of cardiac muscle contain a number
of parameters. The rates and values of the parameters were specified previously
[21, 22]. The parameters of blood circulation and their values are presented in [23,
24] The values of all parameters that are mentioned in this article are presented in
Table 3.

2. Results and discussion
In order to test our implementation of finite element method we used it for solv-
ing Lamé problems of thick-walled cylinder and sphere under inner pressure. These
bodies were considered to be made of isotropic hyperelastic material with strain en-
ergy function (1.3). We have obtained quite accurate results that closely fitted to the
analytical solution. The next test problem we set was the problem of contraction of
the left ventricle approximated by a cylinder. All model parameters were the same
as in [23]. Since we did not consider electrical activation, we just set influx of cal-
cium ions to a muscle cell as a periodic function of time based on ICa(t) function for
a single twitch contraction. Such activation was simultaneous for all elements. The
simulation was running until we got periodical solution with a prescribed accuracy.
Results of the simulation, namely the time-course of haemodynamic variables, in-
ner radial and axial deformation, and twist angle, were very close to the numerical
solution of one-dimensional problem obtained in [23].

Further we have simulated the contraction of normal human ventricle with geo-
metrical approximation (1.1). Time step was set equal to 0.1 ms. All results that are
shown below were computed with a mesh of 720 elements. The mesh had 11 nodes
(20 triangular elements) throughout ventricular wall (γ coordinate) and 37 nodes
along ψ coordinate. The computation of stiffness matrix was parallelized using
OpenMP API, and it took ≈ 45 minutes to simulate one second of heart-beat with

Table 1. Relative errors of peak values of ventricular pressure (PLV ) and ventricular volume (VLV ) at
the different time and space mesh steps.

Mesh ×2 time step ×2γ ×2ψ ×0.5γ ×0.5ψ

PLV 0.00022 0.00033 0.00015 0.00135 0.00091
VLV 0.0013 0.00017 0.00035 0.00043 0.0021
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Figure 1. Computed haemodynamic variables during a heart-beat simulation. The time-courses of
ventricular pressure (red, mm Hg), aortic pressure (blue, mm Hg), venous pressure (cyan, mm Hg),
and ventricular volume (green, ml) are presented. Horizontal axis is for time in seconds.

Figure 2. Time-course of geometric representative values during a heart-beat simulation. The left ver-
tical axis is for changes in normalized short axis ρ (red, solid line) and long axis λ (green, solid line)
dimensions. The right one is for time-course of typical twist angle D (blue, dashed line). Horizontal
axis is for time in seconds.

a 24 core workstation. Further we compared resulting typical values of haemody-
namical variables computed at various mesh sizes. The upper limit of a time step
was ≈ 0.125 ms because of the ’fast’ terms in equations (1.5) for the formation of
CaTnC complexes (equations for A1 and A2), so we did not consider lesser step sizes
than the default one. Table 1 contains relative errors for peak ventricular pressure
and volume obtained with different mesh size.

Figure 1 shows time-course of haemodynamic variables of the model during a
heart-beat. The results are in a good qualitative accordance with experimental data.
There is also quantitative match of the computed results and experimental data for
the representative values of pressures and volume that can be measured in humans.
Namely, those are the end-systolic, end-diastolic, maximal, and minimal values.
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Figure 3. Map of sarcomere lengths at end-diastole (right) and end-systole (left).

Table 2. Transmural radial strain distribution
(end-systolic with respect to end-diastolic).

region endo epi

basal 49% 33%
apical 31% 18%

Table 3. Parameter values.

rin 1.73 cm c1
is 5.5 kdyn/cm2

rout 2.78 cm c2
is 3

hin 6.93 cm ρm 1.42 ·10−3 nm−2

hout 7.68 cm Lc 0.35 µm
ε 1.1 Lp 8.38 nm
cb 103 kdyn/cm2 Ncb 150
cap 1.25 Ecb 1.75 pN/nm
pb 5 kBT 4 pH ·nm
pap 5 CT n 30 µM
h 10 nm C∗Ca 0.01 µM
Ls0 1.9 µm YCa 4500 µM/s

The value of ventricular ejection fraction (the fraction of the end-diastolic volume
of blood that was ejected into aorta per systole) equals approximately 62%, that is
also in the range of values measured for healthy human hearts [3]. Figure 2 shows
changes in the ventricle geometry during a heart-beat. We denoted the relative ra-
dial strain of the inner node that is the most distant from the axis at diastole by
ρ = Rmax/rmax, where rmax and Rmax are the radial coordinate of that node in un-
deformed and deformed state, respectively. We denoted the relative axial strain of
the inner axial node of the ventricle apex by λ = Hmax/hmax. Here Hmax and hmax
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are the inner length of the ventricle in deformed and undeformed state, respectively;
D = arctan(uϕr/(r + ur)) is for the twist of one of the outer nodes in the middle
of apex region (at axial distance of ≈ 1.5 cm from apex); ur and uϕ are the radial
and angular displacements of the node, and r is its radial coordinate in undeformed
state. Since the angular displacements of the basal nodes of the model ventricle were
fixed, one can consider D as the ventricular twist angle and compare it with experi-
mental full twist (apex rotation + basal rotation). Again end-systolic, end-diastolic,
maximal, and minimal values, as well as the changes in thickness of ventricular wall
are in agreement with clinical data [10,12,18]. New geometrical approximation also
allowed us to compare local strains in the different regions of ventricular wall with
experimental data. Longitudinal strains in basal region, mid-wall and apical regions
were approximately equal to 21%, 17%, and 13%, respectively. We should notice
that ‘basal’ region in experiments is quite far away from stiff fibrous ring and con-
sidered to be located near equatorial region of our simulated ventricle. These values
are close to experimental values measured in human hearts [1]. Transmural distri-
bution of longitudinal strain in ‘basal’ region was compared with data from [27].
Strain values were equal to 16% at subendocardium and 14% at subepicardum. We
also calculated radial strains at subendo- and subepicardium in the different regions
of the ventricle. The values are shown in Table 2. The results are in good agreement
with data from [27]. Figure 3 shows the ventricle geometry and a map of distri-
bution of sarcomere length over ventricular wall at end-systole and end-diastole.
Taking into account that sarcomere lengths in unloaded ventricle equal 1.9 µ m one
can estimate local relative fibre strains.

To examine performance of the model ventricle and influence of length-depen-
dent activation and cooperative effects in our muscle model on pumping function
of the ventricle we simulated ventricle contraction at various preload and afterload.
The dependences of major haemodynamic variables are presented in Fig. 4. The
results show an increase of stroke volume with the increase in preload, which val-
idate the Frank–Starling law for the model. For typical experimental curves one can
see [15]. We also plotted pressure-volume diagrams (pressure-volume loops), which
are often analyzed in medical practice. The loops are shown in Fig. 5. ESPVR (end-
systolic pressure-volume relationship) line, which connects end-systolic points of
pressure-volume loops, has a high slope typical for the Frank–Starling law. Similar
pressure-volume loops for pig hearts can be found, e.g., in [6]. Figure 6 shows de-
pendences of haemodynamic variables on peripheral resistance, which characterizes
afterload. One can see that ejection volume slowly decreases with threefold increase
in peripheral resistance while ventricular and aortic pressures increase drastically.
The results are evidence of compensation process called the Anrep effect. Tables
with experimental data can be found in [14].

3. Conclusion

We have performed numerical simulation of contraction of the left ventricle ap-
proximated by axisymmetric body, while material of the ventricle, myocardium,
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(a) (b)
Figure 4. Dependence of ventricular performance on preload. (a) Dependence of stroke volume (VEJ)
on end-diastolic pressure (PED). (b) Dependence of ventricular pressure (PLV ), maximal systolic aortic
pressure (PAS) and minimal diastolic aortic pressure (PAD) on end-diastolic pressure (PED).

Figure 5. Pressure-volume diagrams at the different preload values.

(a) (b)
Figure 6. Dependence of ventricular performance on afterload. (a) Dependence of stroke volume
(VEJ) on peripheral resistance (Rper). (b) Dependence of ventricular pressure (PLV ), maximal systolic
aortic pressure (PAS) and minimal diastolic aortic pressure (PAD) on peripheral resistance (Rper).
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was modelled by quite accurate mechanical model with low computational cost.
Suggested model reproduces features of ventricular geometry and blood circulation
during heart-beat under various haemodynamic conditions including local geomet-
rical changes. The results of simulation are promising and encourage us to use our
myocardium model for more complex problems like 3D modelling of heart with
patient-specific geometry.
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