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Multicomponent Gause’s principle in models of biological
communities
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Abstract — A generalization of the Gause competitive exclusion principle which guarantees the van-
ishing of at least one species in the community exceeding in number of species the number of available
resources is presented. Theorems which guarantee the vanishing of a greater number of components
under condition of the Malthusian vector function localizations in a set of smaller dimension are for-
mulated. The theory developed here is applied to the case of Volterra type systems for which such
vector functions are linear resource dependent and the number of resources is small.
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The Gause competitive exclusion principle [2] states that populations of two dif-
ferent species cannot coexist in a common ecological niche. In this case, the niche
means a set of conditions of existence of each species including the range of dietary
preferences. The principle is based on a model representation of the dynamics of the
community as a system of ordinary differential equations with vanishing right-hand
sides for zero values of variables standing in the left-hand side and characterizing
the population size of each species. The ratios of these right-hand sides to the in-
dicated variables are usually called the Malthusian functions of appropriate species,
and the vector composed of them is called the Malthusian community vector. The
essence of the Gause principle in terms of such models is that if two species have
the Malthusian functions differing only by a nonzero constant (in the biological
interpretation this could mean, for example, that the species occupy the same ter-
ritory and act synchronously against the same rations, but have different mortality
rates), one of the species will disappear in the course of time in the sense that the
lower limit of its population size must tend to zero. Note that in the case of com-
plete coincidence of the Malthusian functions the species become indistinguishable
in terms of their environmental behaviour, so from an ecological point of view they
can be combined into a single species (see the ecological definition of a species
comparing to, for example, the perfect definitions for bisexual species suggesting
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the absence of evolutionary forces shifting the frequencies of genotypes; see vari-
ants in [8, Chapter 4]). The indicated property of the Malthusian functions is just the
localization of values of the Malthusian vector of the considered community of two
species on a line with unit inclination and not including the origin. The latter prop-
erty of the two ones mentioned here for the line is principal for disappearance of
one of the species as well as the fact that its dimension is less than the total number
of species in the considered community.

For a community of an arbitrary finite number of species in the case when its
Malthusian vector is localized in a set of dimensions less than this number and not
including the origin we also have the situation when at least one of the species
disappears [1, Chapter 5]. This latter property is called the multidimensional Gause
principle. We consider it as a special case in Section 7 of the present paper.

Note that we deliberately ignore here the possibility of any mathematical inter-
pretation of the concept of ecological niche being meaningful from the biological
point of view and restrict ourselves with formulations of Gause’s principle in terms
of the Malthusian vector localization. This approach creates a possibility to use
the simplest mathematical construction leaving, however, a sense of incompleteness
caused mainly by the presence of logical lacuna in the construction of a mathemat-
ical model as a system of ordinary differential equations for a biological community
of species characterized, in particular, by those niches. A quite reasonable scheme
to fill this gap can be found in [3, Ch. 5], see also [6, Ch. VI] or [4, Ch. 8].

We would like to draw the attention of the reader to the correspondence of the
terminology used here with the terminology adopted in English-language publica-
tions. The phrase ‘the disappearance of at least one species’ in a community, where
the ‘disappearance’ is understood in the sense described above without specific ref-
erence to the disappearing species corresponds to the phrase ‘the absence of strong
persistence’ in that community. Concerning this issue, see [7, Ch. 3]. We do not
use such terminology because of its focus on the dynamics of the community as a
whole, which eliminates the ability to talk about disappearance of certain species.

In the present paper we demonstrate the result being a deep refinement of the
multidimensional Gause principle and formulated briefly in the following way. In
the rough case in the biological community of n species whose Malthusian vector is
localized in a set of dimension m, exactly n−m species will disappear.

A more detailed description includes the conditions of roughness; a counter-
example for their violation; the lower estimate for the number of disappearing spe-
cies for the known number of violated conditions of roughness; conditions providing
the ability to use the estimates for systems of lesser dimensions; and also applica-
tions of the constructed theory to a system of Volterra type with a Malthusian vector
function linearly dependent on the amounts of finite number of resources.

1. Definitions and preliminary results

We consider a component-wise subdivided system representing a sufficiently wide
generalization of the classic Lotka–Volterra system used in description of the dy-
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namics of biological communities

dxi

dt
= Fi(x, t), i = 1, . . . ,n, t > 0 (1.1)

and modelling the dynamics of a biological community with the vector x = (x1, . . . ,
xn)

T ∈Rn of sizes of particular species xi = xi(t)> 0, where Fi(x, t) = gi(xi) fi(x, t),
i= 1, . . . ,n, and f = ( f1, . . . , fn)

T is the vector of (generalized) Malthusian functions
with the components fi(x, t). A certain (not necessarily unique) nonnegative solution
x(t) to the Cauchy problem for system (1.1) with some initial condition x(t0) = x0 >
0 is taken as the solution to that system. We assume by default that the domain of its
definition is unbounded in the case of bounded range of its values. Just this solution
may participate in the conditions presented below.

We use standard notations for operations with sets V ⊂ Rn and vectors x ∈
Rn. Thus, for example, the scalar product in Rn is denoted by (x,y)n; Rn+1

+ ={
(x, t) : x ∈ Rn

+, t > t0
}

, where t0 is the initial moment for the considered solu-
tion; the expression ‘holds for t+’ is equivalent to the expression ‘holds for all
t > T with some T ’. We also use the following notations for basis vectors: e j =
(0, . . . ,0,1,0, . . . ,0)T ∈ Rn (the unit stands at the jth position). The other notations
and terms (as, for example, binomial coefficients Cm

n , support vector, kernel (preim-
age of the origin, denoted by Ker) of an operator or matrix, etc.) are standard.

We assume the following conditions on the functions entering (1.1).
(G) The functions gi(s) are determined and continuous for all s > 0; in addition,

gi(s)> 0 for s > 0.
(F) The functions fi(x, t) are continuous in Rn+1

+ and we have fi(x, t)> 0 for all
(x, t) with xi = 0 such that gi(0)> 0.

(C) There exist a vector c ∈ Rn and a constant δ > 0 such that the inequal-
ity ( f ((x(t), t),c)n > δ holds for t+ for the vector of Malthusian functions f =
( f1, . . . , fn)

T with the components fi = fi(x(t), t).
The following condition is considered as sufficient for (C):
(V) There exists a closed convex set V⊂Rn such that the origin 0∈Rn satisfies

the exclusion condition 0 /∈V and the inclusion f (x(t),t)∈V holds for t+.
We have the following result.

Theorem 1.1. Under conditions (G), (F), and (C) and for any pair (x0, t0) ∈
Rn+1
+ and any nonnegative bounded solution x(t) = (x1(t), . . . ,xn(t))

T to the Cauchy
problem for (1.1) with x(t0) = x0 there exist a number j(c) and a sequence tk→+∞

such that x j(c)(tk)→ 0.

Proof. In the alternative case of logarithmic boundedness of the solution x(t),
conditions (G) and (F) imply that this solution can be extended forward in time
infinitely far. For all t > t1 and some t1 > 0 from condition (C) we get

n

∑
i=1

ci

gi(xi)

dxi

dt
=

n

∑
i=1

ci fi(x, t)> δ
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so that after integration for any τ > t1 and T > 0 we have

n

∑
i=1

ci

xi(τ+T )∫
xi(τ)

ds
gi(s)

> δT. (1.2)

Inequality (1.2) cannot hold for sufficiently large T in the considered case. This
implies the assertion of the theorem.

Remark 1.1. An alternative to the assertion of the theorem for bounded solutions
is their logarithmic boundedness, the so-called ecological stability is its synonym in
the biological terminology. If it is absent in any solution, then the system is called
ecologically unstable. Theorem 1.1 presents sufficient conditions for such instabil-
ity.

Remark 1.2. Some generalizations and refinements of this theorem taking into
account the possibility of localization of the range of values of the tail of the Malthu-
sian vector function in a convex domain not separated from the origin and even the
possibility of such localization for its limit distributions can be found in [5].

2. Main result
Below we consider the particular case of fulfillment of conditions of Theorem 1.1
such that the dimension of the given set V including the values of the Malthusian
vector f (x(t), t) is less than the dimension of the entire phase space. For any vector
b ∈V the linear hull of the given set translated by this vector

LV = Lin {V −b}=

{
y =

N

∑
j=1

α jy j, N ∈ N, α j ∈ R, y j ∈V −b

}

forms a linear space parallel to V . In this case the dimension of V is defined as the
dimension of LV and is denoted by dimV = m 6 n.

Below we use the following condition instead of (V).
(VL) Condition (V) holds with V = b+ LV , dimV = m < n, and the support

vector b to V at the point b.
In particular, (VL) implies b /∈ LV and the vector b 6= 0 is orthogonal to V , i.e.,

the equality (v−b,b)n = 0 is valid for any v∈V . By PV we denote the projector onto
LV ⊂ Rn along b in the Euclidean space Rn (so that b ∈ L⊥V , where L⊥V = Ker PV ⊂
Rn is its kernel being the orthogonal supplement to LV in Rn). Since dimL⊥V =
n−m, then the intersection of L⊥V ∩L in Rn with any linear space L ⊂ Rn having
the dimension greater than m is not empty (i.e., its dimension is positive). We take
linear hulls of minimal number of basis vectors as appropriate ones.
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The conjecture presented further is the key technical condition for Theorem 2.1
formulated below. Let us assume Mm+1 = {M ∈ 2{1,...,n} : |M| = m+1} (as usual,
|A| is the cardinality of the set A, 2A is the set of all its subsets).

(Z) For any set of indices M ∈Mm+1 there exists a vector cM ∈ L⊥V ∩Lin {e j} j∈M
satisfying the condition (cM,b)n 6= 0.

Note that the fulfillment of conditions (Z) is the case of general position due to
relation of dimensions. The following assertion is valid.

Theorem 2.1. Under conditions (G), (F), (V L), and (Z) and for any bounded
nonnegative solution x(t) = (x1(t), . . . ,xn(t))

T to the Cauchy problem for (1.1) with
x(t0) = x0 there exist n−m indices i ∈ {1, . . . ,n} such that for each of them there
exists a sequence tk→+∞ such that xi(tk)→ 0.

Proof. The proof is reduced to selection of a certain set of vectors {c} satis-
fying the conditions of Theorem 1.1 so that the set of indices { j(c)} composed by
application of that theorem constitutes the required set.

Due to condition (VL), any vector c ∈ L⊥V satisfying the inequality (c,b)n 6= 0
satisfies condition (C) up to its sign. In fact, for the decomposition c = αb+c′ with
α 6= 0 and c′ such that (c′,b)n = 0, for any v ∈V we obtain (c,v)n = (αb+c′,v)n =
α(b,v)n, therefore, since the vector b satisfies this condition, it also holds for the
vectors c or −c. Leaving the first sign and checking the conditions of Theorem 1.1,
for the vector c we get that there exists the number j(c) satisfying the assertion of
the theorem.

We construct the set of vectors {c} from L⊥V in the following way: Fix some
set of indices M ∈Mm+1 and take a certain nonzero vector cM ∈ L⊥V ∩Lin {e j} j∈M
satisfying the condition (cM,b) 6= 0. The existence of such vector is provided by con-
dition (Z). It occurs that the set { j(cM)}|M|=m+1 assuredly has not less than (n−m)

elements, i.e., regardless of the relation c→ j(c).
The verification of the latter property has a purely combinatorial character. The

problem is posed in the following way. Given a set of n elements (in our case those
are the components), choose all possible subsets of size (m+1) (in our case this is
M) and mark one element in each of those subsets (in our case this is j(cM)). The
appearing question on the minimal possible total number of marked elements has
the unique answer, it equals (n−m).

In fact, mark some element J(M) ∈M in each set M ∈Mm+1. This set (we call
it marked) is represented by the pair [M,J(M)]. By MJ = {[M,J(M)] : M ∈Mm+1,
J(M) ∈M} we denote the graph of the particular mapping J : Mm+1→ {1, . . . ,n}
being the set of all marked sets, and by R(MJ) ⊂ {1, . . . ,n} we denote the range
of values of this mapping. In other words, the inclusion j ∈ R(MJ) holds for j ∈
{1, . . . ,n} if and only if the inclusion [M,J(M)] ∈MJ with j = J(M) holds for some
M ∈Mm+1.

Associate each graph MJ with its compacted image MC
J constructed in the

following way. Fix some order of elements j ∈ {1, . . . ,n}, where the elements
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from R(MJ) occupy the first positions (with an arbitrary order among them). Fur-
ther, according to a prescribed rule, we replace each marked number J(M) by
less possible Jmin(M). Therefore, if M = { j1, . . . , jm+1} is an ordered set (i.e.,
j1 < .. . < jm+1), then Jmin(M) = j1. In this case for any such M we have the in-
equality Jmin(M)6 J(M), which implies the lower estimate for the total number of
marked elements of the original graph |R(MJ)| > |R(MC

J )|. It remains to obtain the
lower estimate for |R(MC

J )|.
The compacted image MC

J has the following structure. The element with the
number one is marked in all sets M where it appears. The element with the number
j is marked in each set M to which it belongs, but elements with lesser numbers
do not belong. The estimate of the total number S j of sets of the compacted image
where the jth element is marked is determined by the number of possible remain-
ing sets of m elements (supplements in sets of (m+1) elements with a fixed first
element) under their choice from the remaining ones with the highest numbers (for
the number j there are (n− j) such ones). We finally get S j 6 Cm

n− j. In particular,
Sn−m 6 1 and S j = 0 for j > n−m. Since Cm+1

n = ∑
n
j=1 S j, where the left-hand side

contains the total possible number of sets and the right-hand side contains the same
value, but with partition over marked elements and Cm+1

n = ∑
n−m
j=1 Cm

n− j, then, due to
the obtained inequalities, in the compacted image we have S j =Cm

n− j for j 6 n−m
and |R(MC

J )|= (n−m).

3. Some sufficient conditions

The following constructively verified conditions are sufficient for fulfillment of con-
ditions (Z).

Let dimV = m < n, V = b + LV , and linearly independent vectors aT
j ∈ Rn,

j∈{1, . . . ,m} be known so that LV= Lin {aT
j } j∈{1,...,m}, and a nonzero vector b∈Rn

support to V be such that (b,aT
j )n = 0 for j ∈ {1, . . . ,m}. Let aT = (ai j) be a matrix

of size n×m and rank m composed of the columns aT
j . Its co-kernel Coker aT =

L⊥V coincides with the kernel of the adjoint m× n matrix a = (ai j)
T = (a ji). We

associate each ordered set M = {i1, . . . , im+1}, il ∈ {1, . . . ,n}, with the minor aM of
size m× (m+ 1) composed of the columns of the matrix a presented in the set M.
Let rank aM = k 6 m and aM′ be some nondegenerate minor of size k× k of the
matrix aM constructed on columns of the ordered set M′ = {i′1, . . . , i′k} ⊂M.

Suppose the vectors in the set {aT
j } j∈{1,...,m} are ordered so that the minor aM′

is positioned in the first k rows of the matrix aM. Note that, first, this assump-
tion holds always in the case k = m and, second, it does not restrict the general-
ity within consideration of a fixed set M. If we apply reenumeration to M so that
the elements from M′ stand at the first positions, then the matrix aM takes the form

aM =

(
aM′ aM\M′

am−k

)
, where aM\M′ is the matrix of size k×(m+1−k) composed of

(m+1−k) shortened (i.e., truncated to the first k rows) columns ai =
(
aM\M′

)
i ∈Rk
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of the matrix aM not contained in aM′ (i.e., i∈M\M′), and am−k is the matrix of size
(m− k)× (m+ 1) composed of the last (m− k) rows of the matrix aM. Order the
elements of the vector b ∈ Rn according to the choice of the set M so that the first
(m+ 1) positions were occupied by the elements with numbers from M according
to the order specified before for the set M, therefore, the vector b truncated to these
first (m+ 1) positions has the form bM = (bM′ ,bM\M′) ∈ Rm+1 with bM′ ∈ Rk and
bM\M′ ∈ Rm+1−k. As usual, by bi we denote the element of the vector b standing at
the position i∈M\M′ according to the indicated order. The condition corresponding
to the set M takes the form:

(ZM) for a given set M ∈Mm+1, corresponding to it rank aM = k 6 m, and the
order in M = {M′,M\M′} there exists a number i ∈M\M′ such that(

a−1
M′
(
aM\M′

)
i ,bM′

)
k
6= bi. (3.1)

It occurs that the fulfillment of condition (ZM) does not depend on particular
choice of the subset M′ ⊂ M providing the nondegeneracy of the matrix aM′ and,
moreover, the simultaneous fulfillment of all conditions (ZM) for M running over
Mm+1 is sufficient for fulfillment of condition (Z). More precisely, we have the
following result.

Proposition 3.1. Let condition (ZM) hold for some M and an appropriate set
M′ ⊂ M. In this case it holds for the indicated M and any M′ ⊂ M such that the
matrix aM′ is nondegenerate.

Proof. The expression
(
a−1

M′ (aM\M′)i,bM′
)

k− b j determines the scalar product
(bM,si)m+1 of the vector bM and the vector si =

(
a−1

M′ (aM\M′)i,0, . . . ,0,−1,0,
. . . ,0

)
∈ Rm+1 such that its first k positions are occupied by elements of the vector

a−1
M′
(
aM\M′

)
j, and the other positions contain only one nonzero element standing at

the position with the number i ∈M\M′. Obviously, the vectors s j are linearly inde-
pendent and form a (m+ 1− k)-dimensional linear space Lin {si}i∈M\M′ being the
kernel of the matrix

(
aM′ aM\M′

)
of size k× (m+1). In fact, for any i ∈M\M′ we

get (
aM′ aM\M′

)
si =

(
aM′
(

a−1
M′
(
aM\M′

)
i

)
−
(
aM\M′

)
i

)
= 0.

The violation of inequality (3.1) for all i ∈ M\M′ is equivalent to the ortho-
gonality of the vector b to the entire (m+1− k)-dimensional kernel of the matrix(
aM′ aM\M′

)
and, hence, the same is valid for the matrix aM (because the lower

(m− k) rows in the representation aM =

(
aM′ aM\M′

am−k

)
are linear combinations of

the upper ones). But this orthogonality does not depend on the choice of the nonde-
generate minor aM′ of size k× k.
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Proposition 3.2. The fulfillment of conditions (ZM) for all M ∈Mm+1 is suffi-
cient for fulfillment of condition (Z).

Proof. For cM ∈ L⊥V ∩Lin {ei}i∈M with given M ∈Mm+1 we can take the vector
(si,0) ∈ Rn with the vector si ∈ Rm+1 for i chosen according to condition (3.1)
whose components are positioned corresponding to chosen M and are zero at other
(n−m−1) positions (in the representation cM = (si,0) we assume that the first
positions correspond to M and 0 ∈ Rn−m−1). In this case the inclusion cM ∈ L⊥V
follows from the inclusion si ∈ Ker aM (see the proof of Proposition 3.1) and the
supplement of si by zeros up to the vector cM of dimension n.

Since the nature of conditions (ZM) is the absence of equalities and their number
is finite, then the ‘probability’ when they do not hold equals zero, i.e., in the case of
general position these conditions and hence condition (Z) must hold. In accordance
with Theorem 2.1, this means that in the case of general position the localization
of the vector of Malthusian functions on a linear manifold of codimension d =
n−m not containing the origin leads to the disappearing (in the sense formulated
in Theorems 1.1 and 2.1) of not less than d components. Possible breaks in (ZM),
i.e., fulfillment of equalities instead of inequalities may lead, as is seen from the
example presented below, to decrease of the number of disappearing components.
In this connection, it is interesting to reveal the relations between the amount of
such decrease and the number of breaks. The theorem presented below is a formal
generalization of Theorem 2.1 where condition (Z) is replaced by the conditions of
Proposition 3.2.

Theorem 3.1. Let all the conditions of Theorem 2.1 hold except for condition
(Z) replaced by conditions (ZM) for M ∈ Q ⊂Mm+1 with the total number |Q| 6
|Mm+1|=Cm+1

n . In this case the assertion of Theorem 2.1 is valid for not less than
κ 6 n−m components, where κ = max{l ∈ N : Cm+1

n−l+1 >Cm+1
n −|Q|}.

Proof. For the graph of the mapping J : Mm+1 → {1, . . . ,n} we compose its
compacted image in the same way as in the proof of Theorem 2.1. The main differ-
ence consists in the total number of sets M ∈ Mm+1 where marked elements are
chosen, in this case it is equal to |Q| 6 Cm+1

n so not all compacted image ele-
ments may be marked comparing to those marked in conditions of Theorem 2.1.
If their total number equals κ > 1, then by construction of the compacted image
for the number of sets with marked jth element we get S j = Cm

n− j for j < κ and
1 6 Sκ 6Cm

n−κ , and the equality |Q|= ∑
κ
j=1 S j is valid. The number of breaks is

q =Cm+1
n −

κ

∑
j=1

S j =
n−m

∑
j=1

Cm
n− j−

(
Sκ+

κ−1

∑
j=1

Cm
n− j

)
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therefore,

q =
n−m

∑
j=κ

Cm
n− j−Sκ =Cm+1

n−κ+1−Sκ.

Taking into account the above inequalities for Sκ , we obtain the chain of rela-
tions

Cm+1
n−κ =

n−m

∑
j=κ

Cm
n− j−Cm

n−κ 6 q =
n−m

∑
j=κ

Cm
n− j−Sκ 6Cm+1

n−κ+1−1

from which, given the value q = Cm+1
n − |Q|, we calculate the value of κ by the

formula indicated in the formulation of the theorem.
All other arguments including the use of the result obtained for the compacted

image as an estimate for the case of original graph repeat the corresponding argu-
ments in the proof of Theorem 2.1.

Remark 3.1. If the other (except for (Z)) conditions of Theorem 2.1 hold, then
the equality |Q| > 1 evidently holds (because otherwise the vector b were ortho-
gonal to all ei). This implies that the maximum is always attainable and localized
within κ ∈ {1, . . . ,n−m}. The sets M ∈ Mm+1\Q are said to be breaks and so
q=|Mm+1\Q|=Cm+1

n −|Q|>0 is the number of breaks. For marginal values we get
|Q|= 1 for κ= 1 (the case of Theorem 1.1) and q= 0 for κ= n−m (the case of The-
orem 2.1), respectively. According to the formula, for some other values we get that
q ∈ {1, . . . ,m+ 1} implies κ = n−m− 1, q ∈ {m+2, . . . ,(m+2)(m+3)/2−1}
implies κ = n−m−2, etc.

4. Necessity of the conditions. Counterexample
If the conditions of Theorem 2.1 are violated, some situations may occur so that a
lesser number of components disappears than that is indicated in Theorem 2.1.

Example 4.1. Let us consider the system

dxi

dt
= xi fi(x)

with x = (x1,x2,x3,x4), f1(x) = 1− x2, f2(x) = x1− 1, f3(x) = −1, f4(x) = 0, and
the initial conditions xi(0) > 0 for i = (1, . . . ,4). Independently of its argument,
the vector function f (x) = ( f1, f2, f3, f4) takes values in a two-dimensional plane
given parametrically as V = {x = (x1,x2,−1,0)}. The constructed system satisfies
conditions of Theorem 1.1. Concerning the conditions of Theorem 2.1, all of them
also hold except for condition (Z), and the latter one does not hold, taking into ac-
count Proposition 3.2, due to absence of only one condition (ZM) for M = {1,2,4}.
Such a break in conditions is quite sufficient for the disappearing of only one vari-
able (according to Theorem 1.1) instead of expected two variables (according to
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Theorem 2.1), namely, this is the variable x3(t) = x3(0)e−t → 0, whereas all other
variables remain bounded and separated from zero (because x4(t) ≡ x4(0) > 0 and
the variables x1,2(t) determine the solution to the Volterra ‘predator-prey’ system,
i.e., oscillate around a closed trajectory in the bounded domain of strictly positive
values 0 <C1 < x1,2(t)<C2 < ∞).

5. The case of truncated system
The following result may be interesting in connection with the possibility to use,
instead of original system (1.1), a truncated one, i.e., that constructed on the base of
the original system and its known solution satisfying the conditions of Theorem 2.1
relative to only a part of variables and whose equations coincide with equations of
the original system for this part with the only difference that the other variables are
considered there as the known functions of time obtained from the solution. The
application of such procedure may change the conditions of Theorems 2.1 and 3.1.
As we will see below, these changes decrease their efficiency. Such decrease does
not occur if the projection of the set of the Malthusian function values onto the phase
space of the truncated system satisfies the conditions of Theorem 2.1 (see condition
(VP) below). In this case both variants give the same results.

As above, let m = dimV < n. We fix some subset Mh⊂{1, . . . ,n} so that |Mh|=
h>m+1 and assume Mh

m+1=
{

M∈Mm+1 : M⊂Mh
}

. Let Ph = PMh , where PM is the
projector onto the space spanned on the basis vectors {ei}i∈M along the others, i.e.,
PM (∑n

i=1 xiei) = ∑i∈M xiei. Denote Rh = Ph (Rn) and consider instead of (VL) the
following stronger condition meaning the fulfillment of condition (VL) for a part of
variables only:

(VP) Condition (VL) holds with m = dimV < n, where the exclusion 0 /∈ V is
replaced by the exclusion 0 /∈ PhV .

The fact that 0 /∈ PhV implies 0 /∈V is a corollary of the equality Ph0 = 0, there-
fore, if condition (VP) holds, then along with the vector b 6= 0 there exists a unique
vector bh 6= 0 determining the projection 0 ∈Rh onto PhV (i.e., being support to the
set PhV at the given point bh ∈ PhV ).

Proposition 5.1. Under conditions (V P) and for given M ∈ Mh
m+1 condition

(ZM) is equivalent to itself with the replacement of the vector b by bh.

Proof. The proof is reduced to verification of inequality (3.1) with the cor-
responding replacements. As we have seen (see the proof of Proposition 3.1),
inequality (3.1) is equivalent to the inequality (s,b)n 6= 0 for some appropriate
s ∈ PM (Rn)∩ L⊥V . In order to verify the declared equivalence, it is sufficient to
prove the equivalence of this inequality to the inequality (s,bh)n 6= 0 for any
s ∈ PM (Rn)∩L⊥V .

Let LPhV ⊂ Ph (Rn) be a linear space spanned on PhV − bh, which gives PhV =
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Figure 1. The case n = 3, m = 1, P = Ph with Mh = {1,2}.

bh+LPhV . Since b∈V , then Phb∈PhV , which implies Phb= bh+λ , where λ ∈ LPhV .
Further, (s,b)n = (s,Phb)n +(s,(E−Ph)b)n, where E is the identity operator in Rn.
Since M ∈ Mh

m+1, then PM (Rn) ⊂ Ph (Rn) and the second summand vanishes in
the case s ∈ PM (Rn). Substituting the expression for Phb into the first summand,
we obtain (s,b)n = (s,Phb)n = (s,bh)n +(s,λ )n. Since LPhV ⊂ LV ⊕ (E−Ph)(Rn)
(because for v = Ph(b1)−Ph(b2) ∈ LPhV with b1,2 ∈V we get ξ = b1−b2 ∈ LV such
that v = Phξ ), due to the previous arguments and the inclusion s ∈ L⊥V we get the
equality (s,λ )n = 0, and, hence, we finally obtain (s,b)n = (s,bh)n.

Taking the part of variables satisfying condition (VP) equivalent to condition
(VL) for the truncated system and applying Proposition 5.1, we get the following
theorem.

Theorem 5.1. The assertion of Theorems 2.1 and 3.1 remain valid in the case
of validity of their conditions for solutions considered as solutions to the truncated
system relative to a certain part of variables.

Figure 1 illustrates the case n = 3, m = 1, P = Ph with Mh = {1,2}.

6. A model with lesser amount of resources
Let the dynamics of a biological community be described by nonnegative solutions
to the following system of equations:

dxi

dt
= gi(xi)

(
βi +

m

∑
j=1

αi jR j(t)

)
, i ∈ {1, . . . ,n} (6.1)

where the functions gi(s) determined for all s > 0 are continuous and positive for
s > 0, and gi(0) = 0. The functions R j(t), j ∈ {1, . . . ,m}, m < n, are arbitrary con-
tinuous functions of time describing the dynamics of resources. All other coeffi-
cients in (6.1) are real constants. Without loss of generality, we assume that the
n×m matrix A = (αi j) has the rank m and its minor M = (αi j) for i, j ∈ {1, . . . ,m}
is nondegenerate. In the rough case for m < n the vector of Malthusian functions
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with components from the expressions in parentheses in the right-hand side of (6.1)
does not vanish and, hence, does not leave a certain linear manifold of dimension m
separated from zero; therefore, according to Theorem 1.1, the boundedness of the
solution implies the disappearing of at least one its component. Just this case was
studied in [1]).

It occurs that Theorem 2.1 allows one to assert more in connection with system
(6.1), in the rough case not one, but (n−m) species will disappear. More subtle
cases are described by Theorem 3.1 so that Theorem 5.1 presented below is valid in
the general case. For its formulation we introduce the following notations.

For the coefficients from (6.1) we assume β = (β1, . . . ,βn)
T, ai j =α ji, and AT =

(ai j). Assume also that β /∈ Ker AT. The matrix AT can be represented in the form
AT =

(
MT N

)
, where N is some m× (n−m) matrix supplementing MT to AT.

Consider the extension of the matrix A to the n× n matrix An and the auxiliary
matrix B of the form

An =

(
M −

(
MT
)−1 NT

N E

)
, B =

(
MT 0T

0 E

)
where E is the (n−m)× (n−m) identity matrix and 0 is the m× (n−m) zero mat-
rix. The matrix BAn+(BAn)

T is positive definite and the matrix B is nondegenerate,
hence, the matrix An is nondegenerate as well. This implies the uniqueness of the
solution to the equation Anu = β relative to the vector u =

(
u1 u2

)
∈ Rn with

u1 ∈ Rm and u2 ∈ Rn−m. It is not difficult to check (here we actually expand the
vector β over the range of values of the operator A and its co-kernel) that the vector

b =
(
−
(
MT)−1

NTu2 u2
)
∈ Rn (6.2)

is orthogonal to the linear manifold β +Ran A containing all possible values of the
Malthusian vector and ends at it, i.e., is a support vector appearing in the formulation
of Theorem 2.1.

Formulate condition (ZM) relative to system (6.1). As before, for a set M =
{i1, . . . , im+1} the subscript corresponding to this set and standing at a matrix or a
vector denotes their restriction in rows and columns onto this set.

(ZM) Given a set M = {i1, . . . , im+1} and the corresponding to it matrix AT
M of

rank k 6 m and the set M′ = {i′1, . . . , i′k} ⊂M with a nondegenerate k×k-minor AT
M′ ,

there exists a number i ∈ M\M′ such that the inequality
(
(AT

M′)
−1(AT

M\M′)i,bM′
)

k
6= bi holds for b from (6.2).

Theorem 6.1. Let r 6 Cm+1
n conditions from (ZM) hold for the vector b from

(6.2) and the matrix AT. Then any bounded nonnegative solution to system (6.1) has
not less than κ = max{l ∈N : Cm+1

n−l+1 >Cm+1
n − r} disappearing components xi(t),

i.e., there exists a sequence tk→+∞ such that xi(tk)→ 0 (vanishing).
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Remark 6.1. The proof of the theorem directly follows from Theorems 2.1 and
3.1 for the case r = |Q|.

Remark 6.2. Equations in system (6.1) are formally independent. Their inter-
relation has sense only in connection with conditions (ZM). Taking into account
Theorem 5.1, instead of this system we can consider its truncated variant where
i ∈Mh = {i1, . . . , ih} ⊂ {1, . . . ,n} with m < h < n and the unique condition that for
the vector β and matrix A truncated onto Mh and given as Ah = (αi j)i∈Mh, j∈{1,...,m}
and β h = (βi1 , . . . ,βih)

T the condition β h /∈Ker AT
h holds. In this case under the con-

ditions of the theorem (only those rh 6 min{Cm+1
h ,r} conditions of (ZM) are suffi-

cient that relate to subsets of the set Mh) bounded solutions to system (6.1) have the
disappearing components from elements of Mh and their number is determined by
calculations presented in the formulation of the theorem with the change of n by h
and r by rh.
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