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Maximum response perturbation-based control of virus
infection model with time-delays
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and D. S. Grebennikov∗

Abstract — A new method for constructing the multi-modal impacts on the immune system in the
chronic phase of viral infection, based on mathematical models formulated with delay-differential
equations is proposed. The so called, optimal disturbances, widely used in the aerodynamic stability
theory for mathematical models without delays are constructed for perturbing the steady states of the
dynamical system for maximizing the perturbation-induced response. The concept of optimal disturb-
ances is generalized on the systems with delayed argument. An algorithm for computing the optimal
disturbances is developed for such systems. The elaborated computational technology is tested on
a system of four nonlinear delay-differential equations which represents the model of experimental
infection in mice caused by lymphocytic choriomeningitis virus. The steady-state perturbations res-
ulting in a maximum response were computed with the proposed algorithm for two types of steady
states characterized by a low and a high levels of viral load. The possibility of correction of the infec-
tion dynamics and the restoration of virus-specific lymphocyte functioning of the immune system by
perturbing the steady states is demonstrated.
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The dynamics of human virus diseases is characterized by a variety of courses and
outcomes including acute-, chronic-, and lethal infections. The establishment of
chronic infection significantly increases the risk of development of other patholo-
gical states such as cancer, autoimmune diseases, concomitant infections and dam-
age of cardiovascular or nervous systems. The problem of studying the mechanisms
of the chronic virus infections development and approaches to their treatment was
postulated as one of the central task of mathematical modelling in immunology in
fundamental works of G.I. Marchuk [18, 19]. He proposed a new approach to cure
the chronic infections using the results of stability analysis of the steady-states of
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the basic mathematical model of infectious disease. The approach is based on per-
turbing the chronic infection via exacerbation, leading to transition of the infection
state from the chronic one to an acute with recovery. This paradigm of the system
performance analysis by means of the perturbation of its dynamics was later ex-
tensively utilized in mathematical analysis of immune processes in various virus
diseases, e.g., the human immunodeficiency virus (HIV) infection which is charac-
terized by chronic dynamics and lethal outcome [23, 25].

Nowadays, the ideas of systems analysis postulated in biomedicine as ‘system
biology’ [14] are widely used in mathematical immunology. The research focus of
systems immunology is on the dynamics, structure and regulation mechanisms of
immune processes. The property of robustness, i.e., the functional resistance of the
immune system to external perturbations, is considered to be the major principle
of its organization and functioning. In general, the robustness is a key feature of
any self-regulating biological system organization [9, 16]. For example, HIV in-
fection can be considered as a robust ‘virus—host’ system [15]. The robustness of
self-regulating system implies the fragility of the system to certain combination of
disturbances [9,26]. The search for proper disturbances of system parameters or sys-
tem states to develop effective treatment of the robust disease state can be performed
via the sensitivity analysis of the underlying mathematical model of disease.

This study is aimed to investigate the possibility for constructing the compens-
atory impacts on the immune system during a chronic phase of virus infection by
mathematical modelling methods. To this end, we consider previously developed
mathematical model of experimental murine infection with lymphocytic choriomen-
ingitis virus (LCMV) [1]. This model, formulated as a system of four non-linear
delay-differential equations (DDEs), is briefly described in Section 1 of the paper.

To perturb stable steady states of the system, we propose to use optimal disturb-
ances which are widely used in the aerodynamic stability theory for the mathem-
atical models without delays. In aerodynamics, the following two scenarios of the
laminar-turbulent transition (LTT) are considered: natural (at high Reynolds num-
bers) and bypass (at low Reynolds numbers) ones [5]. As the Reynolds number of
a nearwall shear flow increases, it usually reaches a critical value, above which the
flow loses its stability to infinitesimal disturbances that leads to its turbulization
(natural scenario). However, in practice LTT often occurs at subcritical Reynolds
numbers (bypass scenario) due to transient disturbances which consist of a large
number of essentially mutually non-orthogonal stable modes and whose develop-
ment is accompanied by a significant increase of their kinetic energy in finite time
intervals. Among them, the maximum energy increase is attributed to so-called op-
timal disturbances. They develop to quasi-stationary streaks which modify the basic
flow to a quasi-stationary linearly unstable state prone to LTT. Up to now, the ana-
lysis of bypass scenarios for systems with delays have not been carried out. For
such systems one needs to introduce physically justified analogues of optimal dis-
turbances. This new concept is described in Section 2 of the paper.

In Section 3 a direct algorithm for computing the optimal disturbances is pro-
posed for delay systems. This algorithm is not optimal. Previously developed meth-
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ods [3, 4, 22] allow one to compute optimal disturbances with a given accuracy for
non-delay systems of ordinary differential equations using the Schur decomposi-
tion and a low-rank approximation. In future, it is advisable to generalize these
significantly more efficient approaches, as well as the methods proposed in recent
paper [21] for systems with large sparse matrices, on the delay-systems.

Section 4 presents computational results obtained with the developed techno-
logy for the model of LCMV infection. The disturbances providing the maximum
response of the system were found for steady states of this model using proposed
direct algorithm. We considered two types of steady states characterized by a low-
and a high viral load, respectively [17]. The first type is relevant to the treatment of
persistent virus infections characterized by the number of viruses in the organism
below the conventional detection limit. Note that infections characterized by low
level viral persistence present difficulties for organ transplantations which are often
accompanied by exacerbation of latent infection due to immunosuppression. The
high viral load persistence is typically observed in infections with HIV, viral hepat-
itis C and B. Their treatment is a problem of critical importance for public health.
Both antiviral and immunomodulatory drugs which are used to control the infection
dynamics, have side effects. Therefore, the issue of minimizing drug dozes while
preserving the system response level is a crucial component of the efficient treat-
ment strategy development. Taking this into account, we investigated the possibility
for correction of LCMV infection dynamics and functional recovery of T lympho-
cyte responses by computing small perturbations of the steady states which result in
a maximal response of the model solution.

The overall results of our study are summarized in Section 5.

1. Mathematical model of LCMV infection and its steady states

The basic mathematical model of LCMV infection in mice proposed and analyzed
in [1, 17] is formulated as a system of non-linear delay-differential equations. The
system describes the dynamics of the following time-dependent variables: concen-
tration of viruses V (t), population densities of two LCMV-specific cytotoxic lymph-
ocytes (CTLs) — precursors Ep(t) and effectors Ee(t), and the cumulative viral load
W (t),

d
dt

V (t) = βV (t)
(

1− V (t)
Vmvc

)
− γV EEe(t)V (t)

d
dt

Ep(t) = αEp(E
0
p−Ep(t))+βpgp(W )V (t− τ)Ep(t− τ)−αAPV (t− τA)V (t)Ep(t)

d
dt

Ee(t) = bdge(W )V (t− τ)Ep(t− τ)−αAEV (t− τA)V (t)Ee(t)−αEeEe(t)

d
dt

W (t) = bWV (t)−αWW (t)
(1.1)
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Table 1. Biological meaning of the model (1.1) parameters.

Parameter Biological meaning

β Viruses replication rate constant
γV E Rate constant of virus clearance due to effector CTLs
Vmvc Maximum possible virus concentration in spleen
τ Typical duration of CTL division cycle
bp Rate constant of CTL stimulation
bd Rate constant of CTL differentiation
ϑp Cumulative viral load threshold for anergy induction in precursor CTLs
ϑE Cumulative viral load threshold for anergy induction in effector CTLs
αEp Precursor CTL natural death rate constant
αEe Effector CTL natural death rate constant
E0

p Concentration of precursor CTLs in spleen of unprimed mouse
τA Typical duration of CTL commitment for apoptosis
αAP Precursor CTL apoptosis rate constant
αAE Effector CTL apoptosis rate constant
bW Rate constant of cumulative viral load increase
αW Rate constant of restoration from the inhibitory effect of cumulative

viral load

where gp(W ) = 1/(1+W/ϑp)
2, ge(W ) = 1/(1+W/ϑE)

2. The biological meaning
of parameters is explained in Table 1.

To determine the solution of system (1.1) for t > 0, it is necessary and sufficient
to define the following initial functions: V (t) for−τA 6 t 6 0, Ep(t) for−τ 6 t 6 0,
and the values Ee(0) and W (0). However, we will assume for the sake of generality
that the initial conditions for all variables are specified on τA 6 t 6 0.

The initial value problem for system (1.1) with non-negative initial conditions
and non-negative parameters has a unique non-negative solution in any finite time
interval [0,T ]. This can be proved using the technique described in [19], which is
based on the Bellman’s method of steps and makes use of a linear ordinary differ-
ential equations system majorizing the right-hand side of the DDEs system.

Let us denote the vector of system (1.1) state space variables as

U(t) = (V (t),Ep(t),Ee(t),W (t))T (1.2)

to express this system in the following compact form:

d
dt

U(t) = F(U(t),U(t− τ),U(t− τA)). (1.3)

As mentioned above, we assume that the vector of variables U(t) is defined for
−τA 6 t 6 0.

Model (1.3) has different steady states for different sets of parameters. In this
study we used two parameter sets for which the stable steady states were found. The
steady states were computed using Newton’s method applied to non-linear equa-
tion Φ(U) = 0, where Φ(U) = F(U,U,U). The numerical search of parameter sets
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Table 2. The parameter values corresponding to stable steady states U I and U II .

Parameter Units U I U II

β 1/day 1.2 0.08
E0

p cell/ml 106 103

bp ml/(particle·day) 7.73 ·10−5 1 ·10−5

bd ml/(particle·day) 7.73 ·10−4 5 ·10−4

ϑp particle/ml 3 ·106 10
ϑE particle/ml 1 ·105 1.8 ·106

γV E ml/(cell·day) 1.34 ·10−6

Vmvc particle/ml 4.82 ·107

αEp 1/day 0.5
αEe 1/day 0.1
τ day 0.4
τA day 5.6
αAP (ml/particle)2/day 7.5 ·10−16

αAE (ml/particle)2/day 4.36 ·10−14

bW 1/day 1
αW 1/day 0.11

which provide steady states of (1.3) with required properties, as well as the cor-
responding initial values for Newton’s method, was based on results of numerical
bifurcation analysis from [17]. The steady states representing two types of chronic
LCMV infection differing in the viral load were found by varying parameters in the
admissible region specified in [17] and are described below.

The first steady state represents the latent form of infection with a low viral
load and a high level of memory T cells [7]. The second one represents a sympto-
matic chronic infection with a high viral load and partial exhaustion/depletion of
virus-specific T lymphocytes [8, 20]. In the first case, the perturbation of the sys-
tem can be intended for the activation of infectious process with subsequent clear-
ance of virus reservoir by immune response or for a direct infection elimination.
In the second case, the perturbation-based treatment can be intended for the restor-
ation of responsiveness of exhausted components of the immune system followed
by decreasing the viral load. Both of these scenarios are relevant for HIV infection.
They correspond to different infection phenotypes observed in ‘elite-controllers’
and ‘progressors’, respectively (see [11, 13]).

The parameter values, corresponding to the stable steady states U I and U II , are
given in Table 2. The values of the model variables of these steady states are given
in Table 3.

2. Optimal disturbances of steady states
We are interested in the behaviour of system (1.3) near a stable steady state U .
Writing an arbitrary solution near the steady state as U(t) = U + εU ′(t)+O(ε2),
where ε is a real parameter with small magnitude, substituting this solution into
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Table 3. The values of steady state components and the maximum and minimum values of
disturbed ones corresponding to Figs. 1–6 (up to three decimal digits).

V Ep Ee W

Steady state U I 11.5 1.01 ·106 8.96 ·105 104

min 2.75 ·10−10 974 3.98 ·105 5.49 ·10−3

Fig.1 tmin 69.6 −0.92 −10−3 123
max 330 1.08 ·106 1.58 ·106 1.12 ·103

tmax 6.63 10.3 11.9 9.13

min 1.64 ·10−23 9.6 ·105 1.94 ·105 8.02 ·10−6

Fig.2 tmin 92 −0.46 −0.46 184
max 700 1.13 ·106 2.03 ·106 1.82 ·103

tmax 5.55 8.45 9.58 7.46

min 5.38 ·10−6 106 5.37 ·105 2.59 ·10−2

Fig.3 tmin 45.6 88.2 98.9 79.8
max 174 1.06 ·106 1.39 ·106 703
tmax 107 111 −10−3 110

min 9.44 ·10−11 106 4.4 ·105 7.48 ·10−4

Fig.4 tmin 58.9 119 132 111
max 272 1.08 ·106 1.6 ·106 947
tmax 139 143 −0.46 142

Steady state U II 1.35 ·105 103 5.95 ·104 1.23 ·106

min 6.4 ·103 103 9.45 ·103 1.8 ·105

Fig.5 tmin 8.92 −5.6 17.9 28.4
max 1.35 ·105 3.14 ·104 6.5 ·105 1.23 ·106

tmax −5.6 −10−3 1.57 −5.6

min 3.96 103 25.4 2.34 ·103

Fig.6 tmin 10.7 −5.6 34.4 65.4
max 1.35 ·105 1.53 ·105 2.45 ·106 1.23 ·106

tmax −5.6 −10−3 1.08 −5.6

(1.3) and requiring that the obtained equation holds for all ε in the neighbourhood
of zero, we obtain the following system of linear differential equations for U ′(t):

d
dt

U ′(t) = L0U ′(t)+LτU ′(t− τ)+LτAU ′(t− τA) (2.1)

where

L0 =


β − 2βV

Vvmc
− γV EEe 0 −γV EV 0

−αAPV Ep −αEp−αAPV 2 0 −2bpV Epgp(W )

ϑp+W

−αAEV Ee 0 −αEe−αAEV 2 −2bdV Epge(W )

ϑE+W
bW 0 0 −αW


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Lτ =

 0 0 0 0
bpEpgp(W ) bpV gp(W ) 0 0
bdEpge(W ) bdV ge(W ) 0 0

0 0 0 0

 , LτA =

 0 0 0 0
−αAPV Ep 0 0 0
−αAEV Ee 0 0 0

0 0 0 0

 .

System (2.1) is referred to as the linearized evolution equations for disturbances.
The initial functions of this system are specified, as well as initial functions of sys-
tem (1.3), for −τA 6 t 6 0.

For solutions of (2.1) we introduce the following family of local norms at time
t:

‖U ′‖D,t =

 t∫
t−τA

‖DU ′(ξ )‖2
2 dξ

1/2

(2.2)

where D is a given positive-definite diagonal matrix and ‖ · ‖2 is the second (Euc-
lidean) vector norm.

A solution U ′(t) =U ′opt(t) of system (2.1) providing the maximum amplification
of (2.2) (in comparison with its value at t = 0) will be referred to as the optimal
disturbance. According to this definition the optimal disturbance gives the value of

max
t>0

‖U ′‖D,t

‖U ′‖D,0
.

Since by definition the optimal disturbance is a solution of linear system (2.1)
and, hence, it is completely determined by its values for −τA 6 t 6 0, in construc-
tion of optimal disturbances along with the choice of norm, in which the optimiz-
ation is carried out, it is important to choose an appropriate subspace of functions
[−τA,0]→ R4 from which we take initial functions. This subspace will be denoted
by Q. For the correctness of considered optimization problems the subspace Q has
to be complete with respect to ‖ · ‖D,0. In practice it is sufficient to choose Q as
the linear span of some finite set of basic functions. This particularly ensures its
completeness.

It is convenient to find optimal disturbances in two steps. First we compute the
maximum amplification

Γ(t) = max
U ′

‖U ′‖D,t

‖U ′‖D,0
(2.3)

over all solutions of (2.1) with initial functions being non-zero and belonging to
Q. Then we find t = topt at which the function Γ(t) reaches its maximum value. If
there are more than one such t, then for definiteness we choose the smallest of them.
Thus,

topt = minargmax
t>0

Γ(t).
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Then we find

U ′opt ∈ argmax
U ′

‖U ′‖D,topt

‖U ′‖D,0
.

If D and Q are fixed, then any optimal disturbance provides the same maximum
value of the local solution norm. Usually the maximum amplification has only one
global maximum while the solution of the second optimization problem is unique
up to a non-zero multiplicative constant.

We will use optimal disturbances for perturbing the stable steady states of the
original non-linear model (1.3). To do that, we will take

U(t) =U + εŨ ′opt(t) (2.4)

for −τA 6 t 6 0 as an initial function where Ũ ′opt(t) means the normalized optimal
disturbance and ε is a real parameter. By varying this parameter, it is possible to
increase or decrease the initial perturbation of steady state. If absolute value of ε is
small, then it should be expected, that obtained solution U(t) of system (1.3) will
be close to (2.4) for t > 0. When absolute value of ε is large, due to influence of
non-linearity the solution of (1.3) will be significantly different from (2.4) for t > 0.
The sign of ε plays an important role as well. Depending on it density of the virus
population increases or decreases at t = 0. If the optimal disturbance in (2.4) is
normalized such that the first component of the vector

L0Ũ ′opt(0)+LτŨ ′opt(−τ)+LτAŨ ′opt(−τA)

is positive, then density of the virus population increases at t = 0 when ε > 0.

3. Computation of optimal disturbances
Optimal disturbances can be computed on the basis of any difference scheme suit-
able for solving initial value problems for systems of linear ordinary differential
equations with delayed argument. In the present work we use implicit scheme of the
second order BDF2 [12] on the uniform grid

{tk = δk : k =−mA +1,−mA +2, . . .}

built in (−τA,∞) with step δ > 0. Values m= [τ/δ ] and mA = [τA/δ ] are the discrete
analogues of delays τ and τA, respectively, where [·] denotes the integer part. After
discretization described above system (2.1) takes the following form

1.5Uk−2Uk−1 +0.5Uk−2

δ
= L0Uk +LτUk−m +LτAUk−mA , k = 1,2, . . . (3.1)

where Uk is a grid function which approximates U(tk). It is necessary to set U−mA+1,
. . . ,U0 as initial values for solving the initial value problem.
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Let us write equation (3.1) in the form

Uk =C1Uk−1 +C2Uk−2 +CmUk−m +CmAUk−mA (3.2)

where
C1 = 2(1.5I−δL0)

−1, C2 =−0.5(1.5I−δL0)
−1

Cm = (1.5I−δL0)
−1

δLτ , CmA = (1.5I−δL0)
−1

δLτA

and I means the identity matrix of order 4, and add to (3.2) the identities U j = U j,
j = k−1, . . . ,k−mA+1. The obtained system of mA equations can be written in the
form

Xk = MXk−1, k = 1,2, . . . (3.3)

where

Xk =

 Uk
...

Uk−mA+1

 , M =

 M11 · · · M1mA
...

...
MmA1 · · · MmAmA

 . (3.4)

Block matrix M in (3.4) is of block order mA with blocks of order 4. All blocks of
this matrix are zero except the subdiagonal blocks M j+1, j = I, j = 1, . . . ,mA− 1,
and the following four blocks M11 =C1, M12 =C2, M1m =Cm, and M1mA =CmA of
the first block row.

Due to (3.3) and (3.4), the grid analogue Γk of the maximum amplification (2.3)
of solution norm can be written as follows:

Γk = max
X0∈spanQ\{0}

‖HMkX0‖2

‖HX0‖2

where Q is a matrix of size 4mA× p ( p 6 4mA) whose columns form basis in a
grid analogue of subspace Q, span(Q) means the linear span of matrix Q columns,
H = ImA ⊗D, D is a diagonal matrix defining the local norm in which optimal dis-
turbances are computed and ⊗ means the Kronecker product.

Taking into account that HX0 = HQξ = Q̃ξ̃ , where Q̃ is a matrix obtained by
the orthonormalization of columns of HQ, ξ = Q∗X0 and ξ̃ = Q̃∗HX0, we have:

‖HMkX0‖2

‖HX0‖2
=
‖HMkH−1HX0‖2

‖HX0‖2
=
‖HMkH−1Q̃ξ̃‖2

‖Q̃ξ̃‖2
=
‖HMkH−1Q̃ξ̃‖2

‖ξ̃‖2

and, hence,

Γk = max
ξ̃ 6=0

‖HMkH−1Q̃ξ̃‖2

‖ξ̃‖2
= ‖HMkH−1Q̃‖2.

Thus, the computation of Γk reduces to computations of Y0 = H−1Q̃ and Yk with
recurrent formula Yk = MYk−1 and ‖HYk‖2.



10 G. A. Bocharov et al.

Let kopt be the value of k at which maximum of Γk is reached. Computing the
normalized right singular vector η of

HMkoptH−1Q̃ (3.5)

corresponding to its largest singular value [10], the initial value Xopt
0 of the grid

analogue Xopt
k of optimal disturbance can be found by formula Xopt

0 = H−1Q̃η .
It should be noted that to increase the effectiveness of the above algorithm mat-

rix M has to be saved and multiplied by vectors in sparse format.

4. Results of numerical experiments
We found optimal disturbances in subspace Q of piece-wise constant functions. To
this end we split [−τA,0] into l equal subintervals on which the functions take con-
stant values. The uniform grid with step δ = 10−2 was used for computing the op-
timal disturbances. We computed two optimal disturbances corresponding to l = 6
and 12 for the first steady state U I , and one optimal disturbance with l = 6 for the
second steady state U II . The local norm weights (diagonal entries of matrix D) for
the first two disturbances were taken equal to the inverse values of corresponding
components of U I . For the second steady state, the optimal disturbance was found
in the subspace Q of functions with zero components V (t) and W (t). As D it was
taken the identity matrix of order 4. In all three cases the maximum amplification
defined as the largest singular value Γ(topt) of matrix (3.5) and the second largest
singular value Γ̃(topt) of this matrix were well separated (see Table 4) that ensures
the uniqueness of the computed optimal disturbance up to some non-zero multiplic-
ative constant.

For integrating system (1.3) with initial functions (2.4) we use the same BDF2
scheme as for computing optimal disturbances with the grid step equal 10−3. Op-
timal disturbances were interpolated on a finer grid using the shape-preserving
piece-wise cubic interpolation. The absolute value of parameter ε was selected in
order to generate a strong response for a small initial disturbance. Note that the
authors of model (1.1) have used the code DIFSUB-DDE [2]. It was designed for
solving the stiff systems of nonlinear differential equations with constant delays.
The code implements a modification of the linear multistep Gear’s method based
on BDF schemes of variable order p 6 6. The derivative discontinuities up to order
p+1 are followed and the Nordsieck interpolation vector is used for approximating
the delayed components of the state vector. We used this code as well to verify our
computations based on BDF2, and the results were in a good agreement.

Table 4. The results of computing the maximum amplification.

Steady state l topt Γ(topt) Γ̃(topt)

U I 6 17.0 2.98 ·102 2.72
U I 12 17.0 4.19 ·102 3.83
U II 6 23.5 3.16 ·102 5.57 ·10−2
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Figure 1. The initial values (A) and the result of integration of perturbed steady state U I (B) for l = 6
and ε = 0.15.
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Figure 2. The initial values (A) and the result of integration of perturbed steady state U I (B) for
l = 12 and ε = 0.15.
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Figure 3. The initial values (A) and the result of integration of perturbed steady state U I (B) for l = 6
and ε =−0.15.
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and ε =−0.05.
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For steady state U I initial functions and the results of numerical integration of
the corresponding initial value problem are presented in Figs. 1–4. The red lines
correspond to the steady states, and the blue ones to the perturbed steady states. In
Table 3, the maximum and minimum values of the solution components shown in
Figs. 1–4 are displayed rounded to three decimal digits.

Figure 1 demonstrates the evolution of infectious process as a result of steady
state perturbation by increasing the viral load, the cumulative viral load and simul-
taneously decreasing the T cell population. The steady state with a low level viral
load is considered. The perturbation is intended for activation of the infectious pro-
cess via exacerbation with its subsequent elimination. As illustrated in the figure,
the considered optimal disturbance provides the means to reach this goal. It results
in a significant increase (by several orders of magnitude) of the viral load followed
by clearance of viruses due to strong immune response (see Table 3). This scenario
of steady state perturbation corresponds to treatment regimen which temporarily,
i.e. for about one day, suppress the immunity and activate the virus growth.

Figure 2 demonstrates the effect of decreasing the duration of perturbation from
1 to 0.5 days and consisting of (i) a more complicated pattern of viral load disturb-
ance consisting of the combination of decline and successive rise of the viral load,
(ii) an increase of the cumulative viral load and (iii) a decrease of T lymphocytes
population. This type of optimal disturbance also reaches the goal, i.e., it results in
a significant increase (by several orders of magnitude) of the viral load with a minor
influence on the population of specific T lymphocytes, followed by the decrease of
viral population to the level corresponding to a complete clearance. This scenario of
perturbation can be viewed as a hypothetical regime of structured treatment of per-
sistent infection, consisting of initially decreasing the virus population and followed
by increasing the viral load and by suppressing the specific T cell reactions.

Figure 3 demonstrates the development of infectious process as a result of initial
steady state perturbation by decreasing both the viral load and the cumulative viral
load and in parallel by increasing the T lymphocyte population. The perturbation
of the steady state characterized by a low level viral load is intended for infection
elimination without exacerbation. The perturbation duration is 1 day. As the figure
shows, this type of optimal disturbance allows one to reach the goal of a significant
decrease of viral load to the level of a complete infection elimination. This scenario
of perturbation corresponds to the treatment regimen temporarily (for about 1 day)
reducing the virus population and in parallel increasing the level of specific T cells
(e.g., via to adoptive transfer).

Figure 4 illustrates the analysis of the influence of structured treatment regimen
on the infectious process development as a result of initial steady state perturbation
by combination of increasing and subsequent decreasing of viral load, reduction of
cumulative viral load and increase of T lymphocytes population level. The steady
state perturbation is intended for elimination of viruses. The duration of initial per-
turbation is two times shorter than in previous case (see Fig. 3). The figure shows
that this type of optimal disturbance permits of a significant decrease (by several
orders of magnitude) of the viral load having a minor impact on the level of specific
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T cells (see Table 3). This perturbation scenario corresponds to the treatment regi-
men eliminating viruses which persist below the detection limit without activating
the infectious process.

The steady state U II is characterized by a high viral load. The results of numer-
ical integration corresponding to the perturbed steady state are shown in Figs. 5–6.
In the lower part of Table 3 the values of the steady state components along with
the maximum and minimum values of the perturbed solution are presented roun-
ded to three decimal digits. Both figures illustrate the development of infectious
process caused by the perturbation of the high viral load steady state. The analysis
was intended for searching the optimal disturbances which result in activation of the
specific immunity and the decrease of viral load. The disturbance duration is set to
1 day.

The structure of perturbed steady state presented in Fig. 5 is characterized by
10-fold increase of the precursor CTLs number, a minor increase ( 1%) of effector
CTLs, and no perturbation of the viral- and cumulative viral loads results in the de-
velopment of strong immune response, i.e., the effector CTLs increase by 10-fold,
and 20-fold decrease of the viral load, which however is not enough for eradication
of infection. Figure 6 demonstrates the development of infectious process charac-
terized by 5-fold increase of the perturbation parameter ε . The corresponding per-
turbation results in the development of immune response which is strong enough for
4000-fold reduction of viral load. This solution can be interpreted as complete elim-
ination of viruses from the organism. Relevant quantitative details of the respective
solution are given in Table 3. Thus, we demonstrated the existence of optimal dis-
turbances of the high viral load steady state which lead to transient dynamics with a
high-amplitude variation of solution components (primarily, the virus concentration
component). This was exactly the main objective of applying external forcing to the
system steady state.

5. Conclusion

In this study we examined the response of the mathematical model of experimental
infection with LCMV to multimodal perturbation-based control. The primary aim
was to develop a computational algorithm for the initial perturbations of the steady
states of the system of delay-differential equations, which would result in the system
reaction dynamics characterized by a maximal deviation from the respective steady
state. This problem is considered to be of crucial relevance for systems immunology
as its solution will allow one to design more effective multicomponent treatment
regimens of virus diseases, in particular, the HIV infection [6].

To the best of our knowledge, it is the first study in mathematical immunology
focusing on implementation of the algorithm for constructing the initial perturba-
tion of the system steady state based on the methodology of ‘optimal disturbances’
developed in aerodynamics, which are characterized by maximum amplification of
the perturbation norm, as the system evolves in time. For two types of stable steady
states of the model corresponding to the biologically different phenotypes of virus
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infections: (i) low level viral persistence below the detection limit, (ii) chronic
virus infection with a high level viral load and T lymphocyte depletion/exhaustion,
we computed several structurally different types of the initial state perturbations and
analyzed their impact on the infection dynamics.

For the first steady state, the perturbations targeting (1) the infectious process
activation by means of viral load increase followed by subsequent clearance of the
virus reservoir, and (2) the subclinical elimination of infection, were considered.
For the second steady state, the perturbations were aimed to reduce the activity of
the infectious process with successive clearance of viruses from the host. It should
be noted, that in the cases presented above, there was a significant amplification of
the initial perturbations for the considered variants of the system steady state per-
turbations. Overall, we presented a proof-of-concept concerning the possibility of
identifying specially selected optimal disturbances with a small initial (local) norm
which have a maximal impact on the system dynamics in terms of some specified
criteria.

There remain important issues requiring further study: (1) the significance of
the perturbations with small amplitude in specific components of the steady state
of model, which are obtained as solution to the optimization problem as described
in Section 3; (2) the uniqueness of the solution to the problem of constructing the
optimal disturbances under given restrictions on the duration of the disturbances.
The definition of the subspace in which the disturbances are looked for must be
linked to the characteristics of reaction of infection- and immune processes to the
impact of antiviral and immunomodulating drugs and it will be formalized in our
future work.

The proposed methodology opens the possibility of developing novel thera-
peutic approaches in clinical immunology to treat the persistent and chronic infec-
tions with minimal dozes of multicomponent drugs having a maximal cure effect.
The practical complexity of this problem is caused by necessity to consider mul-
ticomponent medical drugs, their pharmacodynamics and pharmacokinetics, and the
need to parameterize their effects in models as certain functional relations. In turn,
this requires further multidisciplinary studies, including both the problem of devel-
opment of (1) biologically relevant mathematical models of ‘virus—host’ interac-
tions taking into account immunopathological processes of infection development,
and (2) robust algorithms for computing optimal disturbances of multiparametric
mathematical models with a large state space.

In closing, it is appropriate to quote one of the outstanding immunologists Wil-
liam Paul [24] concerning the expected role of mathematics in immunology: ‘...the
immune system offers challenges sufficient to test the growing power of mathem-
atical attack on a biological problem. It is to the quantitative prediction of the out-
come of given perturbations in the immune system that we envisage our mathemat-
ical/modelling colleagues will apply themselves’. This statement provides a strong
motivation for further studies on the development of mathematical methods and
models for immunology applications targeted to provide more effective and rational
approaches to the treatment of unfavourable courses of infectious diseases.
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