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Study of solutions of a continuous-discrete model of HIV
infection spread

N. V. Pertsev∗

Abstract — Equations of a continuous-discrete mathematical model describing the propagation of
HIV infection among the population of several regions are presented. The model equations take into
account the reproduction and migration of the population, the risk of infection of individuals from
different social groups, an impulse change in the number of individuals at discrete time moments
under the action of various factors. The results of the study of the model solutions are also presented.
We obtain conditions for the model parameters and initial data that provide the existence of solutions
interpreted as full eradication of HIV infection in all considered regions or maintenance of sizes of
groups of infected individuals at some acceptable level. The solutions analysis uses the monotone
operators method and properties of nonsingular M-matrices.
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1. Introduction

The study of the spread dynamics and control of socially significant infectious dis-
eases widely uses the method of mathematical modelling. Modern approaches to
construction of mathematical models of epidemic processes in the form of differen-
tial equations were presented in monographs [1, 8], in reviews [3, 5, 10], and other
papers. One family of such models has the form

dz(t)
dt

= ηz(t)+ f (t,z(t))− (µ +ν)z(t)−g(t,z(t))z(t), t > 0 (1.1)

z(0) = z(0). (1.2)

In equations (1.1), (1.2) the function z(t) = (z1(t), . . . ,zm(t))T specifies the sizes
of different population groups of some regions involved in the process of epidemic
spread at some time moment t > 0; z(0) denotes the initial size of groups of indi-
viduals, z(0)i > 0, i = 1, . . . ,m. In particular, the groups considered in the model may
include groups of susceptible, infected, sick individuals, and individuals being in
remission or on treatment as well. For example, such groups of individuals are used
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in SIRS models and their various modifications. The model presented in [2] uses
groups reflecting of the population of a major city and its small towns-satellites.

Equations of system (1.1) contain nonlinear and linear summands describing the
rates of changes in sizes of individual groups.

Nonlinear summands reflect contacts and interaction of individuals and are rep-
resented as the vector functions

f (t,z(t)) = ( f1(t,z(t)), . . . , fm(t,z(t))T

g(t,z(t))z(t) = diag(g1(t,z(t)), . . . ,gm(t,z(t)))z(t)

where diag(g1(t,z(t)), . . . ,gm(t,z(t))) is a diagonal matrix.
For fixed i = 1, . . . ,m the component fi(t,z(t)) specifies the growth rate of a cer-

tain ith group size, the component gi(t,z(t))zi(t) is the rate of decrease of a certain
ith group size. The components f (t,z(t)) may include separate summands entering
g(t,z(t))z(t). In addition, f (t,z(t)) is the rate of supplement of groups by the indi-
viduals used in an implicit or parametric form of description. We assume that the
functions fi(t,z) and gi(t,z), i = 1. . . . ,m, are determined and nonnegative on the set
t > 0, z1 > 0, . . . ,zm > 0.

The linear summands have the form ηz(t) and (µ + ν)z(t). The linear vec-
tor function µz(t) specifies the rate of decrease of the group sizes due to nat-
ural mortality of individuals and possible loss of individuals from disease, µ =
diag(µ1, . . . ,µm) is a diagonal matrix. The elements µi > 0, i = 1, . . . ,m, denote
the intensities of the processes of natural mortality and loss from disease for indi-
viduals.

The linear vector function νz(t) describes the rates of decrease of group sizes
due to processes of migration or due to transition of individuals from one group to
another under the action of the following factors: a spontaneous development of dis-
ease, a change of stage or severity of disease, an acquisition of immunity, a change
in socio-economic living conditions, etc. The elements νi > 0 of the diagonal matrix
ν = diag(ν1, . . . ,νm) mean the intensity of processes of migration and transition of
individuals between groups.

The linear vector function ηz(t) specifies the growth rates of groups due to
transition of individuals between groups, η = (ηi j) is a square matrix. The elements
ηi j > 0, i, j = 1, . . . ,m, mean the intensity of arrival of individuals into a particular
group from other remaining groups.

We assume that the matrices η and ν have the following structure:

νi =
m

∑
k=1,k 6=i

νik, i = 1, . . . ,m

η j j = 0, j = 1, . . . ,m, η jn = νn j, j,n = 1, . . . ,m, n 6= j.

The parameter νik > 0 describes the intensity of transition of individuals of the ith
group to the kth group, i,k = 1, . . . ,m, i 6= k.

A typical example of a model of form (1.1), (1.2) is the model of HIV infec-
tion spread in the population of some region proposed in [9, 17]. Some properties
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of solutions of the model mentioned here and its multi-dimensional analogue were
presented in [12, 13]. The models presented in [9, 17] were constructed on the base
of rather detailed review [10] and the original approach connected with the consid-
eration of a variable risk of HIV infection of individuals depending on their level of
social adaptation (disadaptation).

The pandemic of HIV infection is developing since the beginning of the 80s of
20th century and is one of the most disastrous epidemics in the history of mankind.
The number of people infected with HIV and the number of people dying from HIV-
related causes are millions of individuals per year. In order to reduce the damage
caused by HIV infection, it is necessary to control the spread of this infection and
to carry out activities aimed at detection and treatment of infected persons and sick
individuals. The practical work in this direction involves an integrated approach to
the analysis of available statistical data at the level of individual cities, regions, and
countries. The analysis and processing of large amounts of statistical data require a
certain conception and formalization, which are possible only within the framework
of special and justified mathematical models. This determines the importance of
construction and study of high-dimensional mathematical models of HIV infection
spread.

This paper is focused on the development of mathematical models presented
in [9, 17, 12, 13] taking into account previously unconsidered factors, namely, (a)
migration of people between several regions; (b) abrupt changes in group population
sizes at discrete time moments due to various reasons.

The aim of the paper is the development of a continuous-discrete model taking
into account the factors indicated above and the study of properties of its solutions.
The aim also includes (1) the construction of equations of the model; (2) the cal-
culation of upper estimates for variables of the model allowing us to study their
asymptotic behaviour; (3) the determination of relations between the parameters of
the model such that the obtained solution can be interpreted as eradication of HIV
infection or maintaining the number of HIV-infected individuals at a certain low
level.

2. Equations of the basic model and properties of its solutions

2.1. Notations and equations of the model.

Let us consider the adult population in several regions (individuals older than 14
years). In order to describe the structure of population, we use the groups

S : S11, . . . ,S1m, . . . , Sr1, . . . ,Srm

I : I11, . . . , I1m, . . . , Ir1, . . . , Irm.

The groups I represent HIV-positive individuals, the groups S are for susceptible to
HIV individuals. The number of regions is r, the number of groups in each region
is m, the total number of groups is n = mr. Particular groups included in S and I
assume the classification of individuals according to a set of some common features.
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In particular, these groups include so-called groups of ‘risk’, i.e., chronic alcoholics,
drug addicts, etc. Below we use a continuous numbering of groups, i.e., S1, . . . ,Sn,
I1, . . . , In. By xi(t), y j(t) we denote the number of individuals in the groups Si, I j at
the time moment t, i, j = 1, . . . ,n. We write the system of equations of the model in
the form

dxi(t)
dt

=
n

∑
k=1,k 6=i

γkixk(t)−
n

∑
k=1

γikxi(t)−
n

∑
j=1

βi jy j(t)xi(t)+ fSi(t)

dyi(t)
dt

=
n

∑
k=1,k 6=i

αkiyk(t)−
n

∑
k=1

αikyi(t)+
n

∑
j=1

βi jy j(t)xi(t), t > 0

xi(0) = x(0)i , yi(0) = y(0)i , i = 1, . . . ,n.

In these equations the functions fSi(t) specify the rates of arrival of individuals
into the groups Si due to demographic processes (younger generation in the con-
sidered regions, migration of individuals from regions not included explicitly in the
model structure).

The parameters γik denote the intensities of transitions of individuals from the
groups Si to the group Sk including emigration of individuals of the group Si to other
regions. The parameters γii specify the intensity of natural mortality of individuals of
the group Si. The parameters αik have similar sense (for individuals of the groups Ii,
Ik) and αii includes the intensity of loss of individuals of the group Ii from diseases
caused by HIV infection.

The parameters βi j reflect of the intensity of contacts of individuals from the
groups Si and I j causing the appearance of new HIV-infected individuals. We as-
sume that in each particular region the individuals of the group Si are in contact
with individuals of at least one group I j of this region. Moreover, there are no con-
tacts of individuals of the groups Si and I j from different regions.

The values x(0)i and y(0)i determine the initial sizes of groups of individuals,
i = 1, . . . ,n.

We assume that the functions, parameters, and initial data entering the equations
of the model satisfy the following conditions:
H1) fSi(t) are nonnegative, continuous, bounded on [0,∞) functions, i = 1, . . . ,n;
H2) γik > 0, αik > 0, k 6= i, γii > 0, αii > 0, i,k = 1, . . . ,n;
H3) βi j > 0, i,k = 1, . . . ,n, βi j = 0 if the indices i, j correspond to different regions
and for each fixed i = 1, . . . ,n we have βi1 + · · ·+βin > 0;
H4) x(0)i > 0, y(0)i > 0, i = 1, . . . ,n.

We introduce the notations

x(t) = (x1(t), . . . ,xn(t))T , y(t) = (y1(t), . . . ,yn(t))T

fS(t) = ( fS1(t), . . . , fSn(t))
T , D(x(t)) = diag(x1(t), . . . ,xn(t))

A = (ai j), L = (`i j), B = (βi j)
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aii =−
n

∑
k=1

γik < 0, `ii =−
n

∑
k=1

αik < 0

aik = γki > 0, `ik = αki > 0, i,k = 1, . . . ,n, k 6= i

and rewrite the system of model equations in the vector form

dx(t)
dt

= Ax(t)−D(x(t))By(t)+ fS(t) (2.1)

dy(t)
dt

= Ly(t)+D(x(t))By(t), t > 0 (2.2)

x(0) = x(0), y(0) = y(0). (2.3)

2.2. Some properties of matrices entering the equations of the basic model

Let us present some facts from the theory of matrices of special form [4, 11]. By
E we denote the n× n identity matrix. Let S = (si j) be an n× n real matrix whose
elements satisfy the condition si j 6 0 for all i 6= j. It is called a nonsingular M-
matrix if S−1 exists and S−1 is nonnegative (all its elements are nonnegative). The
following assertions are equivalent:

(1) S is a nonsingular M-matrix;

(2) there exists ξ ∈ Rn, ξ > 0, such that Sξ > 0 (inequalities for vectors mean
component-wise inequalities);

(3) all eigenvalues of S have positive real parts;

(4) diagonal elements of the matrix S are positive and the spectral radius ρ(S∗)
of the matrix

S∗ = E−diag
(
s−1

11 , . . . ,s
−1
nn
)
S

satisfies the condition ρ(S∗)< 1.

Consider the matrices entering system of equations (2.1), (2.2). The matrices
A and L are quasi-nonnegative (their off-diagonal elements are nonnegative). The
matrices (−A) and (−L) are such that their off-diagonal elements are nonpositive.
Assume ξ = (1, . . . ,1)T . It is not too difficult to see that the inequalities (−A)T ξ >
0, (−L)T ξ > 0 hold (component-wise). This means that (−A)T and (−L)T are
nonsingular M-matrices. Therefore, all eigenvalues of the matrices (−A)T and
(−L)T have positive real parts. Thus, (−A) and (−L) are nonsingular M-matrices.
Moreover, all eigenvalues of the matrix A have negative real parts (the matrix A
relates to the family of the so-called stable matrices).

The quasi-nonnegativity of the matrix A implies that the matrix exp(At) is non-
negative for each fixed t > 0. The matrix B is nonnegative and has block-diagonal
structure. Each its block is an m×m matrix with nonzero rows.
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2.3. Properties of solutions to equations of the basic model

Relations (2.1)–(2.3) are a Cauchy problem for a system of nonlinear differential
equations. The solution to Cauchy problem (2.1)–(2.3) is said to be the functions
x(t), y(t) determined and continuous on a certain interval [0,δ ) and satisfying initial
conditions (2.3) and equations (2.1), (2.2) for all t ∈ [0,δ ).

We use two approaches to analyze properties of solutions to Cauchy problem
(2.1)–(2.3). The first approach relates to application of the standard technique of
analysis of model equations. The second approach is essentially based on the struc-
ture of model equations admitting the construction of a system of majorant equa-
tions in an integral form.

2.3.1. Standard analysis. One of easily interpreted solutions to Cauchy problem
(2.1)–(2.3) appears for y(0)i = 0, i = 1, . . . ,n. In this case problem (2.1)–(2.3) admits
a solution where y(t)≡ 0 and x(t) is determined as a solution to an auxiliary Cauchy
problem for the system of linear differential equations

x(0) = x(0),
dx(t)

dt
= Ax(t)+ fS(t), t > 0.

As the result, we get that Cauchy problem (2.1)–(2.3) has the solution

x(t) = x(0)(t) = eAtx(0)+
∫ t

0
eA(t−a)fS(a)da

y(t)≡ 0, 0 6 t < ∞. (2.4)

Note that the matrices exp(At) and exp(A(t − a)) are nonnegative for 0 6 a 6 t.
The components of the vector x(0) are nonnegative. The components of the function
fS(a) are nonnegative and bounded from above, 0 6 a < ∞. The matrix A is stable.
Therefore, the function x(0)(t) is nonnegative and bounded from above for all t > 0.
The solution to problem (2.1)–(2.3) of form (2.4) can be interpreted as the absence
of HIV infection in the considered regions.

Further, let y(0) 6= 0. Note that the right-hand sides of equations (2.1), (2.2) have
continuous partial derivatives at each point (x1, . . . ,xn,y1, . . . ,yn) ∈ Rn×Rn. Based
on the structure of right-hand sides of equations of system (2.1), (2.2) and using
the methods of the theory of monotone and positive operators [6, 7], we can show
that Cauchy problem (2.1)–(2.3) has a unique, nonnegative, bounded from above
solution determined on the interval t ∈ [0,∞). The sketch of proof of this assertion
was given in [13].

2.3.2. Upper and lower estimates of solutions to the considered Cauchy prob-
lem. Let us consider the problem of construction of two-sided estimates for the
solution x(t), y(t) to Cauchy problem (2.1)–(2.3). We assume that inequalities
between vectors from Rn are understood as inequalities between their components.
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The notation ξ ∈ Rn, ξ > 0, is equivalent to the fact that all components of the vec-
tor ξ are positive. For functions z(1)(t) and z(2)(t) determined on a certain interval
[a,b) and taking values in Rn the inequality z(1)(t) 6 z(2)(t) means the inequality
between the corresponding vectors for each fixed t ∈ [a,b). The following estimates
were obtained in [13]:

0 6 x(t)6 u(0), 0 6 y(t)6 v(0), 0 6 t < ∞

where u(0),v(0) ∈ Rn, u(0) > 0, v(0) > 0. The vectors u(0) and v(0) are calculated as
solutions to some auxiliary systems of inequalities and equations. Further we seek
for two-sided estimates having the form

0 6 x(t)6 u(0), 0 6 y(t)6 ϕ e−ρt, 0 6 t < ∞ (2.5)

where ϕ ∈ Rn, ϕ > 0, ρ ∈ R, ρ > 0. Existence conditions for estimates (2.5) can be
interpreted as conditions of eradication of HIV infection in all considered regions.

Proceeding to Cauchy problem (2.1)–(2.3) written as an equivalent system of
integral equations, we introduce the following notations:

A0 = diag(|a11|, . . . , |ann|), L0 = diag(|`11|, . . . , |`nn|)

A1 = A+A0, L1 = L+L0

Q(y(a)) = A0 +diag
( n

∑
j=1

β1 jy j(a), . . . ,
n

∑
j=1

βn jy j(a)
)
, a > 0

G1(t,s,y) = e−
∫ t

s Q(y(a))da = diag
(

e−
∫ t

s Q1(y(a))da, . . . ,e−
∫ t

s Qn(y(a))da
)

G2(t,s) = e−L0(t−s) = diag
(

e−|`11|(t−s), . . . ,e−|`nn|(t−s)
)

0 6 s 6 t

F1(x,y)(t) = G1(t,0,y)x(0)+
∫ t

0
G1(t,s,y)

(
A1x(s)+ fS(s)

)
ds

F2(x,y)(t) = G2(t,0)y(0)+
∫ t

0
G2(t,s)

(
L1 +D(x(s))B

)
y(s)ds

assuming that x = x(t), y = y(t) are determined, nonnegative, and continuous on the
interval [0,∞). Rewrite (2.1), (2.2) in the form

dx(t)
dt

= A1x(t)−Q(y(t))x(t)+ fS(t) (2.6)

dy(t)
dt

= (L1 +D(x(t))B)y(t)−L0y(t), t > 0. (2.7)
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Integrating (2.6), (2.7) by the method of variation of constants and taking (2.3) into
account, we get the system

x(t) = F1(x,y)(t), y(t) = F2(x,y)(t), t > 0. (2.8)

The solution to system (2.8) is said to be the functions x(t), y(t) determined and
continuous on a certain segment [0,τ], τ > 0, and satisfying (2.8) for all t ∈ [0,τ].

By f (∗)S ∈ Rn we denote a vector such that

f (∗)S > 0, 0 6 fS(t)6 f (∗)S , t ∈ [0,∞).

Let x = x(t), y = y(t) be determined, nonnegative, and continuous on the interval
[0,∞). For all 0 6 t < ∞ we have the relations

F1(x,y)(t)> 0, F2(x,y)(t)> 0

F1(x,y)(t)6 H1(x)(t) = e−A0t
(

x(0)+
∫ t

0
eA0s(A1x(s)+ f(∗)S

)
ds
)
.

Assume that x(i) = x(i)(t), y(i) = y(i)(t), i = 1,2, are determined, nonnegative, and
continuous on the interval [0,∞) and, in addition,

x(1)(t)6 x(2)(t), y(1)(t)6 y(2)(t), 0 6 t < ∞.

In this case for each t ∈ [0,∞) we have

H1(x(1))(t)6 H1(x(2))(t), F2(x(1),y(1))(t)6 F2(x(2),y(2))(t).

In order to obtain estimates (2.5), we introduce the functions

u(0)(t) = u(∗) = const, v(0)(t) = ϕ e−ρt, 0 6 t < ∞ (2.9)

containing the parameters

u(∗) ∈ Rn, u(∗) > 0, ϕ ∈ Rn, ϕ > 0, ρ ∈ R, ρ > 0 (2.10)

and calculate the solution to the system of inequalities

H1(u(0))(t)6 u(0)(t), F2(u(0),v(0))(t)6 v(0)(t), 0 6 t < ∞.

Taking into account the equality u(0)(t) = u(∗), we obtain the inequalities

e−A0t
(

x(0)+
∫ t

0
eA0s(A1u(∗)+ f(∗)S

)
ds
)
6 u(∗) (2.11)

e−L0t
(

y(0)+
∫ t

0
eL0s(L1 +D(u(∗))B

)
ϕ e−ρs ds

)
6 ϕ e−ρt (2.12)
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and each of these inequalities is considered for 0 6 t < ∞ along with (2.10). Let
us consider (2.11) and recall that (−A) is a nonsingular M-matrix. Therefore, the
inverse matrix (−A)−1 exists, is nonnegative, and each its row contains at least one
positive element. Assume

u(∗) = (−A)−1 f (∗)S . (2.13)

Since f (∗)S > 0, we have u(∗) > 0. We assume x(0) 6 u(∗). In this case the vector
u(∗) ∈ Rn defined by (2.13) has positive components and satisfies (2.11). Let us
proceed to (2.12) and introduce the matrix

L(∗) =−(L+D(u(∗))B) = L0− (L1 +D(u(∗))B). (2.14)

The properties of elements of the matrices L1, B and the inequality u(∗) > 0 imply
that the matrix L1 +D(u(∗))B is nonnegative and has no zero rows. Suppose L(∗) is
a nonsingular M-matrix. Using the results of [14, 15], we get that inequality (2.12)
(taking into account (2.10)) has a solution and the parameters ϕ and ρ included into
the function v(0)(t) satisfy the relations

ρ ∈ R, 0 < ρ < min{|`11|, . . . , |`nn|} (2.15)

ϕ ∈ Rn, ϕ > 0, ϕ > y(0),
(
L(∗)−ρ E

)
ϕ > 0. (2.16)

The ways to calculate solutions to system of inequalities (2.15), (2.16) were de-
scribed in [14, 15]. In particular, let L(∗) be an irreducible matrix. In this case we
can take

ρ = ρ∗ =−λ∗, ϕ = ϕ
(∗) = α0 ξ

(∗)

as solutions to (2.15), (2.16), where λ∗< 0 is the Perron root of the quasi-nonnegative
matrix (−L(∗)), ξ (∗) > 0 is the normalized right eigenvector of this matrix corres-
ponding to λ∗, the number α0 > 0 is taken from the condition α0 ξ (∗) > y(0).

2.3.3. Main result. Based on above assumptions and applying results of the the-
ory of monotone operators and the principle of contracting mappings [6, 7] to sys-
tem (2.8), we get the following result.

Assertion 2.1 Let assumptions H1)–H4) hold for the functions, parameters and ini-
tial data of Cauchy problem (2.1)–(2.3). Assume that the vector u(∗) and the matrix
L(∗) given by (2.13), (2.14) are such that L(∗) is a nonsingular M-matrix and the in-
equality x(0) 6 u(∗) is valid. In this case the solution to Cauchy problem (2.1)–(2.3)
exists, is unique on any finite segment [0,τ], τ > 0, and the following estimates are
valid:

0 6 x(t)6 u(∗), 0 6 y(t)6 ϕ
(∗)e−ρ∗t, 0 6 t < ∞

where ρ∗ and ϕ(∗) satisfy (2.15) and (2.16), respectively.
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3. Equations of the continuous-discrete model and two-sided estimates
of its solutions

System (2.1)–(2.3) of basic model equations admits a modification that can take
explicitly into account an impulse (abrupt) variation of population of individuals.
Assume that such variation occurs at some discrete time moments and is caused by
the following factors:

• a seasonal migration of individuals of the groups S, I;

• transition or migration of individuals between the groups Si, Sk and the groups
I j, Ii due to abrupt changes in social and economic conditions, treatment
of chronic alcoholics and drug addicts, detection and registration of HIV-
infected individuals;

• emergence of individuals reaching the age of 14 who were HIV-infected at
birth;

• infection of individuals of the groups S living in a particular region due to
the mechanisms not related to their direct contacts with the individuals of the
groups I of this region;

• infection of individuals of the groups S in their short-term stay in other regions
and contacts with HIV-infected or sick individuals.

Define the sequence {tk,δ (tk),ε(tk)} describing the impulse (abrupt) variation
of the population size of the groups S, I at some time moments tk, where

0 < t1 < t2 < .. . < tk < .. . , k = 1,2, . . .

δ (tk) = (δ1(tk), . . . ,δn(tk))T , ε(tk) = (ε1(tk), . . . ,εn(tk))T .

For fixed tk each component of the vectors δ (tk), ε(tk) can take both nonnegative and
negative values, but these two vectors are not zero at the same time. For example,
the inequality δ1(tk)> 0 means that the variable x1(t) increases abruptly at the time
moment t = tk due to an impulse arrival of individuals from regions not considered
explicitly in the model. The relations δn(tk)< 0, εn(tk) =−δn(tk)> 0 are interpreted
as an abrupt change in the size of the groups Sn and In due to infection of several in-
dividuals from the group Sn in their short-term stay in one of the regions and contact
with HIV-infected individuals there. The relations ε j(tk) < 0, εi(tk) = −ε j(tk) > 0
describe the situation of abrupt variation of population size in the groups I j and Ii
due to the fact that some individuals of the group I j pass examination and are detec-
ted as HIV-infected (fall into the group Ii of detected HIV-infected individuals). We
assume that each fixed time interval contains a finite number of elements {tk} and
limk→∞ tk = +∞. In addition, we assume that negative values of the components of
the vectors δ (tk), ε(tk) do not lead to negative values of sizes of the groups S j, I j,
j = 1, . . . ,n.
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Denote t0 = 0 and consider system (2.1), (2.2) in time intervals t ∈ [tk−1, tk),
k = 1,2, . . . , supplementing it with initial data for t = tk−1. Take into account that
on each interval t ∈ (tk−1, tk) we have no abrupt variations of the variables of the
model. The notations dx(t)/dt, dy(t)/dt mean right-hand derivatives. Assume that
the hypothesis of Assertion 2.1 is valid.

Let t ∈ [t0, t1] and the equations of the model have the form

dx(t)
dt

= Ax(t)−D(x(t))By(t)+ fS(t) (3.1)

dy(t)
dt

= Ly(t)+D(x(t))By(t), t0 6 t < t1 (3.2)

x(t0) = x(0), y(t0) = y(0). (3.3)

We study relations (3.1)–(3.3) as a Cauchy problem for a system of nonlinear differ-
ential equations on a finite time interval. The properties of solutions to this problem
are obtained from an equivalent system of integral equations considered on the seg-
ment t ∈ [t0, t1]. If we consider system (3.1)–(3.3) on the interval t ∈ [t0,∞) without
impulse variation of the model variables, then the estimates presented in Asser-
tion 2.1 are valid for it. The same estimates are valid for the solution x(1)(t), y(1)(t)
to problem (3.1)–(3.3).

Let t ∈ [t1, t2]. We suppose the following inequalities hold:

0 6 x(1)(t1)+δ (t1)6 u(∗), y(1)(t1)+ ε(t1)> 0. (3.4)

Rewrite the system of equations of the model in the form

dx(t)
dt

= Ax(t)−D(x(t))By(t)+ fS(t) (3.5)

dy(t)
dt

= Ly(t)+D(x(t))By(t), t1 6 t < t2 (3.6)

x(t1) = x(1)(t1)+δ (t1), y(t1) = y(1)(t1)+ ε(t1). (3.7)

We study relations (3.5)–(3.7) as a Cauchy problem for a system of nonlinear differ-
ential equations on a finite time interval. The properties of solutions to this problem
are obtained from an equivalent system of integral equations considered on the seg-
ment t ∈ [t1, t2]. Move the initial integration point to the point t1 by introducing the
new independent variable t ′ = t− t1. If we study problem (3.5)–(3.7) on the interval
t ′ ∈ [0,∞) not taking into account the impulse variation of the model variables, then
the estimates from Assertion 2.1 are valid from it due to (3.4). The same estimates
are valid for the solution x(2)(t), y(2)(t) to problem (3.5)–(3.7).

Applying the approach described above for k = 2,3, . . . and assuming that the
following inequalities hold:

0 6 x(k)(tk)+δ (tk)6 u(∗), y(k)(tk)+ ε(tk)> 0 (3.8)
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we come to the Cauchy problem

dx(t)
dt

= Ax(t)−D(x(t))By(t)+ fS(t) (3.9)

dy(t)
dt

= Ly(t)+D(x(t))By(t), tk 6 t < tk+1 (3.10)

x(tk) = x(k)(tk)+δ (tk), y(tk) = y(k)(tk)+ ε(tk). (3.11)

Based on (3.1)–(3.8) and using the method of mathematical induction, we can prove
that the solution x(k+1)(t), y(k+1)(t) to the Cauchy problem (3.9)–(3.11) exists, is
unique, and satisfies the estimates presented in Assertion 1. As the result, we have
got the following statement.

Assertion 3.1 Let the conditions of Assertion 2.1 hold. In this case Cauchy problem
(3.1)–(3.3) has the unique solution x(1)(t), y(1)(t) satisfying the estimates

0 6 x(1)(t)6 u(∗), 0 6 y(1)(t)6 ϕ
(∗)e−ρ∗(t−t0), t ∈ [t0, t1],

where ρ∗ and ϕ(∗) satisfy (2.15) and (2.16), respectively. Moreover, for each k =
1,2, . . . we have

0 6 x(k+1)(tk) = x(k)(tk)+δ (tk)6 u(∗)

y(k+1)(tk) = y(k)(tk)+ ε(tk)> 0.

In this case we have the estimates

0 6 x(k+1)(t)6 u(∗), 0 6 y(k+1)(t)6 ϕ
(k+1) e−ρk+1(t−tk)

t ∈ [tk, tk+1], k = 1,2, . . .

where the parameters ρk+1 ∈ R and ϕ(k+1) ∈ Rn satisfy the relations

0 < ρk+1 < min{|`11|, . . . , |`nn|}
ϕ
(k+1) > 0, ϕ

(k+1) > y(k+1)(tk),
(
L(∗)−ρk+1 E

)
ϕ
(k+1) > 0.

4. Conclusions

In this paper we present a new variant of a mathematical model of HIV infection
spread. The novelty of the model is in the structure of its equations taking into ac-
count the migration of people between regions and the impulse (abrupt) change in
the sizes of different population groups. From the mathematical point of view, the
model is a Cauchy problem for a high-dimensional system of nonlinear differential
equations having special structure. The model admits solution (2.4) interpreted as
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the absence of HIV infection in all considered regions. Upper estimates of the num-
ber of susceptible and infected individuals are obtained for all population groups
(Assertions 2.1 and 3.1). Exponential estimates determine the dynamics and rate of
decrease of the number of HIV-infected individuals. The existence of such expo-
nential estimates is expressed in terms of the matrix L(∗) = (`

(∗)
i j ) given by formula

(2.14). Note that the approach proposed in the paper to the study of properties of
solutions to the model of HIV infection spread can be extended to the family of
models of form (1.1), (1.2).

One of the basic conditions of containment or complete eradication of HIV in-
fection within the framework of the model is the condition that L(∗) should be a
nonsingular M-matrix. This condition is provided if, for example, the following re-
quirements hold true: a) diagonal elements of the matrix L(∗) are positive; b) the
spectral radius ρ(L∗) of the matrix

L∗ = E−
(
diag(`(∗)11 , . . . , `

(∗)
nn )
)−1L(∗)

is such that ρ(L∗) < 1. The number R0 = ρ(L∗) may be considered as a standard
indicator used in the study of models of epidemic processes. Note that the result
obtained here is in accordance with the results of study of the stochastic model of
HIV infection spread from [16].

Considering L(∗), recall that the matrix (−L) is a nonsingular M-matrix. The
matrix D(u(∗))B continuously depends on u(∗), on elements of the matrix B and, in
addition, D(0)B = 0. Therefore, in order to get a nonsingular M-matrix L(∗), we
may require a certain ‘smallness’ of components of the vector u(∗) specifying the
potential number of individuals of the groups S, or some ‘smallness’ of elements of
the matrix B describing the intensities of contacts of individuals from the groups S
and I.

From the practical viewpoint the main result obtained from the study of the
model is the following. In order to suppress the spread of HIV in the considered
regions we have to carry out activities to reduce the potential sizes u(∗)1 , . . . ,u(∗)n of
some groups of individuals from S1, . . . ,Sn. Such groups may be

S(∗)k = {Si1 , . . . ,Sik}

which potential sizes u(∗)k = {u(∗)i1 , . . . ,u(∗)ik } lead to a violation of the condition that
L∗ is a nonsingular M-matrix.

Therefore, one of the areas of struggle against HIV infection involves the work
related to search of groups entering S(∗)k . It is necessary to evaluate as the potential
sizes u(∗)k , so the elements of the matrix B determining the intensity of contacts of
individuals from these ‘adverse’ groups. In order to reduce the sizes of ‘adverse’
groups, we need an implementation of a set of measures to change (improve) socio-
economic conditions of individuals.
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It should be noted that in the conditions of uncertainty of the composition of
the groups in S(∗)k these measures would be actually aimed at all individuals of
the studied regions. Obviously, the measures for treatment and support of detected
HIV-infected and sick individuals look more visual and relatively effective. Since
the number of such individuals is known, we can estimate total financial costs for
their treatment and support. Using the methods of statistical data processing, we can
construct short-term forecasts for the dynamics of detected HIV-infected and sick
individuals and plan the corresponding financial costs. However, in the long term
perspective, the indicated financial costs may significantly increase and exceed per-
missible values. Therefore, we will inevitably face the challenge of suppression of
HIV infection spread and search for conditions ensuring a steady decrease of the
number of HIV-infected individuals. One of the variants for determination of the
indicated conditions has been obtained in this paper.
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