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Fitting the SEIR model of seasonal influenza outbreak to the
incidence data for Russian cities

V. N. Leonenko∗ and S. V. Ivanov∗

Abstract — In this paper we present a computational algorithm aimed at fitting a SEIR populational
model to the influenza outbreaks incidence in Russian cities. The input data are derived from the
long-term records on the incidence of acute respiratory diseases in Moscow, St. Petersburg, and Nov-
osibirsk. It is shown that the classical SEIR model could provide a satisfactory fit for the majority of
employed influenza outbreak incidence data sets (R2 > 0.91 for the 64 curves out of 67). Neverthe-
less, the model fitting algorithm in its current implementation has a number of drawbacks, which are
discussed in the paper along with the ways of overcoming them.

Keywords: Mathematical modelling, epidemiology, influenza, model fitting.

MSC 2010: 37N25, 65C20, 92C60

Seasonal acute respiratory infections (ARI) are among the oldest and the most com-
mon human infectious diseases. The most dangerous of these infections is influenza,
which causes repetitive outbreaks both in temperate and tropical regions resulting in
high worker/school absenteeism and productivity losses. The outbreaks of influenza
result in 3 to 5 million cases of severe illness annually worldwide, and the mortality
is from 250 to 500 thousand individuals [23]. Unlike influenza, most of the ARIs
affect the human population throughout the year and do not cause distinct epidemic
outbreaks. At the same time, the symptoms of severe cases of ARI are very similar
to those of influenza, and the laboratory analysis is required to tell one disease from
another. That is why in most of the healthcare surveillance systems, including the
Russian one, the statistics on ARI and influenza incidence is calculated cumulatively
as ‘ARI incidence’.

The problem of foremost importance connected with the research on influenza is
to predict the epidemic outbreak dynamics, which could facilitate the fight with the
disease and its possible negative consequences (such as increases of heart attacks
and strokes [5]). Although the seasonality of influenza outbreaks is widely known,
its mechanism still does not have satisfactory explanation. A lot of factors are named
that may influence the starting moment of the outbreak and its dynamics over time,
but the extent of influence of each factor on the outbreak parameters is arguable.
In the contemporary works on the topic, most authors incorporate into their models
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the dependence between the temperature (humidity) and the force of infection [8,
21, 24]. During the last years the social reasons that could increase or decrease the
infection spread were also taken into consideration [16].

In one of the pioneering papers on influenza propagation, written by Baroyan
and Rvachev, the authors assumed and demonstrated with the help of simulations
[3, 20], that the speed and direction of the propagation of influenza epidemics are
connected mostly with the peculiarities of the contact patterns of individuals and the
level of their immunity, whereas the weather factor does not play the leading role
and thus could be left beyond scope. The Baroyan–Rvachev model, despite its sim-
plicity, appeared capable of making plausible predictions of the influenza spread
in the USSR in 1971–1980. Nevertheless, since 1980’s the predictive abilities of
the model were seriously undermined due to the growing herd immunity in urban
populations and the consequent changes in the influenza A virus propagation pat-
terns [10]. This fact, combined with the socio-economical instability in the USSR,
followed by its collapse and the corresponding problems in the Soviet (later Rus-
sian) healthcare, stopped the employment of the predictive modelling approach.

As a part of our research, concerning the modelling of seasonal acute respirat-
ory infections dynamics, we aim at finding out whether the dynamics of influenza
outbreaks in the Russian cities could be satisfactorily described by a simple general
populational model without considering the weather and behavioural effects and
how this model could be possibly modified to better fit the epidemic data. This is
considered as a first step towards the prediction of country-wide influenza epidemics
in the same fashion that it was made by Baroyan and Rvachev.

1. The model

In order to describe the dynamics of influenza epidemic process, we have chosen
a simple populational model based on classical Kermack–McKendrick formulation
[1]. Since the flu has an incubation period and the individuals recovered from the
illness acquire the immunity from the particular virus strain [23], the population
of an urban area under consideration is represented by the set of four groups of
individuals: susceptible (vulnerable to flu infection), exposed (asymptomatic and
non-infectious), infectious (symptomatic, spreading the flu), and removed (immune
to the flu). The sizes of groups are measured in ratios of total population N:

S — ratio of susceptible individuals;

E — ratio of exposed individuals;

I — ratio of infectious individuals;

R — ratio of removed individuals.

Following [3, 20], we state that a certain ratio of population of every city un-
der consideration is not vulnerable to flu — that includes the people with immunity



SEIR model of seasonal influenza outbreak 3

gained from the previous infections and those who are not immune by themselves
but are protected by the herd immunity. The ratio of the population which is vulner-
able to flu infection is denoted by α ∈ (0;1).

The dynamics of the group sizes over time is specified by a system of ordinary
differential equations:

dS
dt

=−βSI

dE
dt

= βSI− γE (1.1)

dI
dt

= γE−δ I

dR
dt

= δ I

S(t0) = S0 > 0, E(t0) = E0 > 0, I(t0) = I0 > 0
S0 +E0 + I0 = α (1.2)
R(t0) = 1−α.

The term βSI corresponds to the process of infection of susceptible individuals.
The term γE corresponds to the process of acquiring of infectivity by the exposed
individuals. The term δ I describes the recovery process of the infectives. We con-
sider the intensity coefficients β , γ , and δ non-negative. Since the duration of the
epidemic process is relatively short, we assume the influence of birth and migration
processes on the disease dynamics negligible and do not include these processes
into the model.

Further without loss of generality we assume t0 = 0.

2. Outbreak incidence data

The original data-set provided by the Research Institute of Influenza [19] contains
weekly ARI incidence (including flu) in three Russian cities from 1986 to 2014.
Before we start the model fitting, we have to refine the incidence data by restoring
the missed values and fixing under-reporting. Also we need to extract the flu in-
cidence from the cumulative ARI incidence data. The corresponding algorithms are
described in detail in [14], here we introduce briefly the sequence of operations.

• Under-reporting correction. Since during the holidays the infected people
avoid visiting healthcare facilities, the corresponding weekly incidence is
lower than the actual number of newly infected. This under-reporting bias,
along with the missing data, could be corrected by means of cubic interpola-
tion [3].

• Bringing the incidence data to daily format. The daily incidence is estim-
ated by the cubic interpolation of the weekly incidence, assuming that nThu

inf =
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Figure 1. Typical ARI incidence curve.

nW
inf/7, where nW

inf is weekly incidence taken from the database and nThu
inf is the

daily incidence for Thursday of the corresponding week.

• Extracting the data on influenza outbreak from the cumulative seasonal ARI
data with the help of a separate epidemic curve allocation algorithm. At first
the algorithm finds the higher non-flu ARI incidence level a2, which cor-
responds to the average number of newly infected in non-epidemic period
(Fig. 1, red horizontal dashed line). The ARI epidemic curves, which are re-
cognized as flu outbreaks (Fig. 1, red solid line), should have their peaks well
above the higher ARI level. Also they should comply with the time period
during which the ARI prevalence exceeds the non-epidemic ARI threshold
assessed by the Flu Research Institute (Fig. 1, red rectangle). The beginning
and ending of the extracted curve are chosen to match the level a2.

3. The fitting algorithm

3.1. Description of fitting parameters

The list of parameters involved in the fitting procedure (see Table 1) includes five
epidemiological parameters, α , β , γ , δ , and I0, from model (1.1)–(1.2), and two aux-
iliary parameters, ∆ and kinc, corresponding to horizontal and vertical positioning of
the modelled incidence curve relatively to the epidemic data points. The necessity
of the latter arises from the fact that the incidence curve in some cases could have a
baseline below the level a2 (see Fig. 2).

The fitting procedure is based on several simplifying assumptions:

• We assume that the epidemic starts with the appearance of a small number of
infected individuals in the population I(0) = const, whereas E(0) = 0 (thus
S(0) = α − I(0)). Since the epidemic outbreak could start literally from one
individual (that is confirmed by modelling experiments [3]), for the sake of
model fitting the value I0 is assumed to be (somewhat arbitrarily) a small fixed
number.
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Figure 2. ARI incidence curve showing the discrepancy between the outbreak curve baseline and
higher ARI level.

Table 1.
Parameters for model fitting.

Definition Description Value Unit

Epidemiological parameters
α Initial ratio of susceptible individuals in

the population
Estimated —*

β Intensity of infection Estimated 1/(person · day)
γ Intensity of transition to infective form

of the disease
Varied 1/day

δ Intensity of recovery Varied 1/day
I0 Initial ratio of infected 0.0001 —*

Curve positioning parameters
kinc Relative vertical bias of the modelled

incidence curve position
[0.8;1.0] —*

∆ Absolute horizontal bias of the mod-
elled incidence curve position

5, . . . ,54 day

* dimensionless

• We suppose that in the period of the influenza outbreak the disease incid-
ence due to acute respiratory infections of non-flu nature remains stable and
corresponds to the higher ARI level registered before the epidemic outbreak
(though in the general case it may not be true).

• Since we do not have any a priori information on the distribution of bias
for the incidence data, we assume that the bias is independent in each point
and normally distributed, which makes it possible to apply the least squares
method to fit the model curve to data, following [3, 9].

It is worth noting that the values of γ and δ represent the general features of
disease progression and could be considered independent of the epidemic season
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and the city under study (although the differences between these parameter values
exist for different influenza A strains, for the purpose of our research this difference
could be considered negligible). At the same time, the values of α and β are to be
estimated independently for each outbreak case.

3.2. Algorithm structure

Let Y (dat) be the set of incidence data points loaded from the input file and corres-
ponding to one particular outbreak. Assume that the number of points is T , which
equals the observed duration of the outbreak.

The limited-memory BFGS optimization method is used to find the best fit [15].
For each value of ∆ the algorithm varies the values of parameters α,β ,γ,δ ,kinc to
get the model output, which minimizes the distance between the modelled and real
incidence points:

F(Y (mod),Y (dat)) =
n

∑
i=1

(y(mod)
i − y(dat)

i )2.

Here y(dat)
i and y(mod)

i represent the absolute flu incidence on the ith day taken from
the input data-set and derived from the model, respectively.

Since the existence of several local minima is possible, the algorithm has to be
started several times with different initial values of input variables. The best fit is
chosen as a minimum of distances from all the algorithm runs.

The algorithm operations are performed in the following order. For each ∆ ∈
5, . . . ,54:

• For each fixed combination of values {α,β ,γ,δ ,kinc} generated by BFGS
optimization procedure:

1. Find the numerical solution of model (1.1)–(1.2) with the initial condi-
tions S(0) = α− I0, E(0) = 0, I(0) = I0, R(0) = 1−α .

2. Calculate the modelling flu incidence in relative numbers: y(mod,rel)(t) =
NE→I(t). Since from (1.1)–(1.2)

E(t) = E(t−1)+NS→E(t)−NE→I(t)

and
NS→E(t) = S(t−1)−S(t)

we obtain:

y(mod,rel)(t) =−∆S(t)−∆E(t), t = 1,2, . . .
∆S(t) = S(t)−S(t−1)

∆E(t) = E(t)−E(t−1)
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3. As we work with the disease incidence attributed only to influenza out-
breaks, excluding the non-epidemic cases of ARI infections, we need
to subtract the non-epidemic incidence from the overall ARI incidence
data. For that purpose we need to derive the baseline level for the mod-
elled outbreak start ybase from the value for higher ARI incidence level
a2, considering the relative bias kinc, and to subtract it from the data
incidence points:

ybase := kinc ·a2

y(dat)
i := y(dat)

i − ybase, i = 0, . . . ,T −1

4. We assume that the data incidence points from the data-set are shifted by
∆ days from the model curve start. Thus, we are to compare the distance
between the following data-sets:

Y (dat) = {y(dat)
0 ,y(dat)

1 , . . . ,y(dat)
T−1}

Y (mod) = {y(mod)(∆),y(mod)(∆+1), . . . ,y(mod)(∆+T −1)}.

5. Convert the relative model incidence values to absolute values:

y(mod)
i = y(mod,rel)

i ·NL(m) (3.1)

where NL(m) is the total population of the city L in the year m equal to
the starting year of the considered epidemic season.

6. Calculate the value of the fit function F(Y (mod),Y (dat)), F = F(∆).

In the described manner for each value of ∆ the BFGS algorithm finds the least
distance F∆. We define ∆min: F(∆min, . . .) = minF(∆, . . .), and the parameter set
{α,β ,γ,δ ,kinc}, corresponding to ∆min. These values are the final result of our op-
timization procedure.

After the optimization algorithm has established the best fitting model parameter
values, the model can be used to estimate the dynamics of population groups S(t),
E(t), I(t), and R(t) over time. The group quantities are converted to absolute format
in the same way as it is done with influenza incidence in (3.1).

4. Numerical experiments

The algorithm was implemented in a form of a set of scripts written in Python
programming language (Python 3.x with numpy and matplotlib libraries was
used). The higher ARI level was estimated with the help of scipy.optimize.
curve fit procedure and the limited-memory BFGS optimization method for
curve fitting was performed via scipy.optimize.minimize routine.
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Table 2.
Parameter point values and value ranges.

Exp. 1 Exp. 2 Exp. 3 Exp. 4

Input data
Cities num. 3 1
Seasons num. 28 1

Outbreak-dependent parameters
α [10−2;1.0]
β [10−7;50.0]

Outbreak-independent parameters
γ [10−7;50.0] [0.2;8.0] 0.39 [0.2;8.0]*
δ [10−7;50.0] [0.08;0.33] 0.133 [0.08;0.33]*

Goodness of fit
Avg. R2 0.977 0.966 0.946 0.983

* fixed values of vectors for each start of the fitting procedure

In order to test the algorithm we used the weekly ARI incidence data for three
Russian cities (Moscow, St. Petersburg, and Novosibirsk) from July 1986 to June
2014. By means of epidemic curve allocation algorithm we have extracted the in-
cidence data for the epidemic outbreaks, which gave us 67 epidemic outbreaks in
total (there were no epidemics during some seasons). To characterize the goodness
of fit we have chosen the coefficient of determination R2 ∈ (0,1]— the parameter
widely used for fitting SIR models to data (for instance, see [22]). This coefficient
shows the percentage of the response variable variation that is explained by a model.
The closer to 1 the value of R2 is, the better fit is supposed to be achieved. The aim of
the numerical experiments was to estimate the variation of α and β corresponding
to the fitted modelled incidence curve, making various assumptions on the values
of γ and δ . The parameter point values and value ranges for each experiment are
presented in Table 2. Value intervals are denoted by square brackets. Further details
on experiment procedures are given below.

4.1. Experiment 1

The aim of the first experiment was to find the distribution of the values of outbreak-
dependent parameters α and β in absence of strict limitations on the values of
outbreak-independent parameters γ and δ and to check out whether the intervals
for these values will be plausible from the epidemiological point (for the corres-
ponding estimations see Appendix A). The obtained quality of fit is demonstrated
in Fig. 4.

As seen from Fig. 3a, the values of γ and δ of the fitted model curves are spread
along the horizontal axes, and the big values of γ as a rule correspond to the small
values of δ . The corresponding interval values of α (not shown on the graph) and
β almost coincide with their initial value intervals listed in Table 2 (from 0.011 to
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Figure 3. The joint distribution of γ , δ , and β : (a) Experiment 1, (b) Experiment 2. The big dots
represent the values of parameter vectors (γ,δ ,β ), the small ones correspond to their projections onto
the plane β = 0.
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Figure 4. The distribution of R2 values for Experiment 1.

0.972, or 97% of the initial interval width, for α; and from 0.107 to 50, i.e. 99,8%
of the initial interval width, for β ). Thus we can conclude that if we take arbitrarily
broad value intervals for the parameters, the model curves with the best fit to data
could have unrealistic parameter values.

4.2. Experiment 2

The aim of the second experiment is to find out whether the values of α and β will
be realistic in case if we narrow the limits on γ and δ . The limitations on the latter
parameters are put according to the estimations from the epidemiological data per-
formed in Appendix A. As seen from Fig. 3b, the joint distribution of optimal γ and
δ shows the strong influence of initial constraints on the optimization procedure:
there are many points corresponding to minimum or maximum of the possible val-
ues. At the same time, due to these constraints the distribution of α and β (Fig. 5a)
conforms to the estimated plausible intervals. Figure 6 demonstrates that the quality
of fit in this experiment has declined slightly compared to Experiment 1.

4.3. Experiment 3

Reflecting upon the results obtained in the previous experiments, we have assumed
that the number of free parameters in the model is too big, thus the fairly good fit
could be achieved with various combinations of parameter values, including those
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that do not have epidemiological sense. To resolve that issue we have decided to
reduce the number of varied parameters employed in the model fitting procedure.
To achieve that goal we have fixed the values of γ and δ . The taken values γ = γ∗,
δ = δ ∗ correspond to their point estimations made on the basis of the epidemiolo-
gical data (see Appendix A). The resulting distribution of the outbreak-dependent
parameters is shown in Fig. 5b. The experiment shows that the version of our model
with reduced state space can still give the realistic output and satisfactory quality of
fit (see Fig. 7).

4.4. Experiment 4

Since the choice of values for γ and δ was made with the help of not very strict,
though plausible, estimations, the question arises whether there could exist other
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pairs of realistic values for γ and δ which will give us the curve fit equal or bet-
ter to the one we have obtained in the previous experiment. And if the answer is
positive, what will be the variation of the corresponding outbreak-dependent val-
ues α and β for these new input parameter sets. To shed some light on that matter,
we have conducted a new experiment, details of which are given below. Due to the
computational limitations the experiment was performed for a sole case of epidemic
outbreak: St. Petersburg, winter of 2003–2004 (see Fig. 1).

• We have assumed that the outbreak-independent parameters γ and δ were not
defined by the fixed values, but by the random variables γ̃ and δ̃ . These vari-
ables had uniform distribution on the intervals that were used as constraints
for γ and δ in Experiment 2 (see Table 2). The theoretical values of γ̃ and
δ̃ , thus, were equal to 4.1 and 0.205, respectively, the relative standard devi-
ations (i.e., standard deviations divided by means) were 0.549 and 0.352. A
sample of 125 corresponding value vectors (γ̃i, δ̃i) was generated via Monte
Carlo simulation.

• For i = 1, . . . ,125 the model was fitted to incidence data of a given epidemic
outbreak with fixed γ = γ̃i, δ = δ̃i and varied α and β .

The means and relative standard deviations calculated for the input and output
samples are presented in Table 3. The resulting joint distribution of α and β is shown
in Fig. 8. As the table demonstrates, the relative standard deviation of both output
values is less than the relative SD for the input. The picture shows that except several
outliers the output value vectors are densely concentrated in the limited area. The
form of the point cloud (which seems to be diagonally oriented) allows us to assume
somewhat speculatively that there could be a slight dependence between the optimal
fit values of β and α . It is worth noting that the similar fact (i.e., the dependence
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Table 3.
Sample mean and relative SD of the output compared to input.

Output Input
α β γ δ

Experiment 3
Exact value 0.046 0.388 0.39 0.133

Experiment 4
Mean 0.054 0.402 4.141 0.206
Relative SD 0.156 0.249 0.553 0.35

between the fraction of individuals without the immunity to a particular flu virus
and the force of infection during the outbreak caused by this virus) was noted and
extensively used in [3] for fitting the SIR model to flu incidence data in Soviet cites.

Figure 9 demonstrates the distribution of relative biases of output values from
those calculated in the point γ = γ∗, δ = δ ∗. It could be found that the areas of the
same bias value tend to spread horizontally. So, despite the bigger variance, the
variable γ has a lesser influence on the output values than δ . At the same time it
is worth mentioning, that generally, as it was also shown in Fig. 8 and Table 2, the
changing of neither γ nor δ does not affect sufficiently the optimal values of α and
β .

The changes of R2 registered during the Experiment 4 could be considered neg-
ligible: sample mean value is equal to 0.983 (which is slightly less compared to
0.993 obtained for the same incidence curve in the Experiment 3), relative SD is
2.6%.

Summing up, the results of this experiment bring us to preliminary conclusion
that the form of the model incidence curve should be predominantly defined by
the relation between α and β themselves rather than by γ or δ (provided that their
values are taken from the plausible interval), but this hypothesis requires further
justification.

5. Discussion

The distribution of R2 for Experiments 1–3 shown in Figs. 4, 6, and 7 demonstrated
that the quality of fit is satisfactory and declines slowly due to narrowing of the
intervals for γ and δ . If we do not take into account three outliers, the low border
for R2 is 0.91 for Experiment 1, 0.89 for Experiment 2, and 0.84 for Experiment
3. The outliers correspond to the peculiar forms of the epidemic curves that cannot
be reproduced by the ordinary SEIR model (see Fig. 10). These epidemic curves
require further investigation, for they could demonstrate the examples of multistrain
epidemics or the data biases due to the influence of external factors.

The consequent limitation of the model parameter space through Experiments 1–
3 without considerable loss of fit quality demonstrated that the initial number of free
parameters in the fitting algorithm seems to be too big. Even the model version with
fixed values of γ and δ could be simplified even further. One can argue that one of
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Figure 9. The relative biases of α and β from their values achieved in the point γ = γ∗, δ = δ ∗

(marked by the cross).

01.12 01.01 01.02 01.03 01.04 01.05 01.0610000

11000

12000

13000

14000

15000

A
R
I 

in
ci

de
nc

e

Moscow, Nov 1992 to Jun 1993

R2 =0.538

01.12 01.01 01.02 01.03 01.04 01.053500

4000

4500

5000

5500

6000

6500
A
R
I 

in
ci

de
nc

e
Saint Petersburg, Nov 2007 to May 2008

R2 =0.694

Figure 10. Examples of the epidemic curves corresponding to the cases of unsatisfactory model fitting
(Experiment 3). Blue dots correspond to the incidence data, green dashed line represents the model
curve.

the possible sources of the ’undesirable freedom’ of the algorithm is the existence of
the curve fitting parameters ∆ and kinc which theoretically could serve as additional
correctors, making it possible to fit improper model curve to incidence data. It goes
without saying that ideally the model fitting should rely on the precise information
on the moment of epidemic start and the initial number of infected. However, the
exact data cannot be obtained due to the absence of distinct diagnosis of influenza
and other acute respiratory illnesses. Under these circumstances the use of fitting
parameters ∆ and kinc allows the algorithm to estimate approximately the moment
of epidemic start and the corresponding level of non-epidemic ARI incidence for the
input incidence data with improper curve edges by relying on the expected regular
form of the incidence curve. Small values of ∆ and kinc ≈ 1 as a rule correspond to
the ’clear’ cases, when it is easy to distinguish the flu outbreak curve edges from
the seasonal ARI level (see Fig. 1), whereas the incidence data with non-smooth
edges (Fig. 2) is usually fitted by the curve with big ∆ and small kinc, indicating
that the epidemic outbreak had started earlier than it was detected by the curve al-
location algorithm. It is worth noting that if the task of the researcher is limited to
the retrospective analysis of the epidemic curves (like it is in this paper), the mo-
ment of epidemic start probably may be estimated more accurately by employing
the laboratory studies on dominant ARI virus strains (if they are at researcher’s dis-
posal, which was not our case). Unfortunately, the data of laboratory studies tend
to become available with a considerable time lag comparing to reported ARI in-
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cidence, which makes them hardly applicable for the real-time outbreak dynamics
prediction.

The drawback of this work which is to be mentioned is that we do not consider
the bias in data gained as a result of conversion of the weekly incidence data to
daily one. However, we hope to get rid of this issue after getting the real daily
epidemic incidence data instead of generating synthetic ones. Despite the fact that
the interpolated daily data is surely more ‘smooth’ than the real one, we presume
that our set of algorithms will be still suitable to handle the real daily incidence data-
set, as the daily epidemic curves demonstrated in [3], after filtering the fluctuations
caused by the weekly cycle of individuals, resemble the synthetic data we work
with.

An interesting problem which was not covered in this paper is to find the relation
between the values of the outbreak-dependent parameters and the time and place of
the outbreak (i.e. the city and the epidemic season). As seen from Figs. 3 and 5,
for our epidemic incidence data-set there is no articulated difference in parameter
distribution for different cities. The preliminary analysis of the yearly changes in
the outbreak-dependent parameters (not included in this paper) did not give us any
stable patterns as well. We hope to elaborate on that topic and possibly get some
insights on the matter with the help of more broad data-set containing 49 cities
instead of the limited one used in the presented research.

6. Conclusions and future works

In this paper we have presented the algorithm aimed at fitting the SEIR model to
the incidence data for Russian cities, namely, Moscow, Saint Petersburg and Nov-
osibirsk. The numerical experiments have demonstrated that our algorithm could
provide a satisfactory fit for the 64 curves out of 67 influenza outbreak incidence
data-sets we used (R2 > 0.84 . . .0.91, depending on the initial parameter values).
The remained epidemic curves, which could not be plausibly described by the
model, should be either handled by incorporating the additional factors into the
model or left beyond the scope — in the latter case we will have to admit that the
descriptive force of the model is considerably limited. Nevertheless, it is worth men-
tioning that even for these outliers the time moment of the epidemic peak and the
maximum incidence value are estimated fairly well by the fitted model curves (see
Fig. 10). This fact gives us a hope that despite the possible biases the flu dynam-
ics in Russian cities still shows a general agreement with the output of Kermack–
McKendrick epidemic models. The authors plan to elaborate more on that topic,
particularly implementing the following improvements.

Modify the model to make it find plausible output values during the fitting pro-
cedure ‘in a natural way’, without the limitations on input variance. That could be
achieved using additional a priori data related to the outbreak features for the fitting
procedure, applying several criteria for the goodness of fit in addition to R2 (e.g.,
the correctness of the prediction of epidemic peak and the length of epidemics), or
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by reducing the number of model parameters. Another idea worth trying consists in
using a part of the incidence curve to fit the model instead of the full set of incidence
points returned by the epidemic curve extraction algorithm. For instance, in [3] it
was mentioned that the use of the first ‘half-wave’ of the incidence curve instead
of the full curve helped the authors to increase the quality of flu incidence forecast.
Also if we omit the incidence points at the beginning and the end of the curve, that
could also improve the fitting quality, because at the stages of low flu incidence
the epidemic statistics is badly affected by the existence of the parallel process of
non-flu ARI dynamics [9].

Compare different minimization criteria for the ‘distance’ between the data
points and the model curve. So far we have used the least squares method, mainly
for the sake of simplicity and better algorithm performance, despite the absence of
a priori information on the distribution law of bias in the incidence data. However,
in fact it will be more correct to employ more general methods that do not rely on
the normal distribution of the bias.

Create the parallel modification of the algorithm. The loss of algorithm per-
formance due to higher computational expenses on the more sophisticated distance
measurements could be compensated by shifting from serial to parallel execution of
the algorithm. For instance, the iterations of the ‘for’ cycle on variable ∆ could be
launched independently in several threads — this approach was already employed
for the sake of epidemiological modelling by one of the authors and helped to obtain
a considerable speed up [13].
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Appendix A. Estimation of the values for input parameters

Since there is still a lack of quantitative information on the herd immunity and the individual
partial immunity gained as a result of previous epidemic outbreaks, the upper bound for
α could be roughly obtained as α = 1− ηµ , where η is the ratio of vaccinated in the
population and µ is the vaccine effectiveness. Unfortunately the authors failed to find the
corresponding data for Russia. For the solely illustrative purposes we estimate the vaccine
effectiveness and coverage based on the US data during the epidemic season of 2015–2016:
η = 0.399 [6], µ = 0.6 [7], thus 0 < α 6 0.77.

The value intervals for β , γ , δ were derived from the epidemiological data on influenza
in the same fashion as it was made by one of the authors in [2] for HIV propagation model.
The details on that process follow.

• The variable γ , as an intensity of transition from E to I, is an inverse of the average
time of staying in the group E, or of the average flu incubation period duration. Since
various sources give an estimation for the flu incubation period of 0–2 days [12],
several hours to 3 days [9, 11], 1–5 days [17], we can take period of 3 hours to
5 days as the plausible value interval. That gives us the value interval for γ from
0.2 to 8.0. The average flu incubation period according to our value interval will be
approximately 2.56 days, which gives us the point estimate for γ equal to 0.39.

• Similarly, δ is an inverse of the average infectious period, which is said to be 4–5 days
[11], 3–6 days [12], 5–7 days [9], or 8–12 days [17]. Assuming that the infectious
period is from 3 to 12 days, we get the value interval [0.08; 0.33] for δ . The average
flu infectious period will be 7.5 days, which gives us the point estimation for δ equal
to 0.133.

• The coefficient of infection β is connected with the basic reproduction number [1] of
the illness. For the model (1.1)–(1.2) the basic reproduction number has the form

R0 =
β

δ
.

Relying on the assessments of the basic reproduction number for seasonal ([1.19;1.37])
and pandemic ([1.47;2.27]) influenza from [4], and using the value interval for δ es-
timated above, we obtain the estimate for the values of β from 0.095 to 0.75.


