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From chaos to order. Difference equations in one ecological
problem
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Abstract — In this paper we consider properties of the difference equations (discrete mappings) ob-
tained in the study of the population dynamics of lemmings. A bifurcation scenario is proposed for
obtained equations. Certain stability zones appear under this scenario with periods varying in order of
natural series and also zones with more complicated modes. The study of transitional zones (‘order-
ing of the chaos’) is performed with the use of analytic calculations and computational experiments.
Numerical analysis of mappings uses the methods of approximation of implicitly specified sets allow-
ing us to construct and visualize sets of ‘resonance’ parameters including the front of the so-called
singularity of ‘blue sky’.

Keywords: Difference equations, discrete mappings, computational experiment, methods of approx-
imation of implicitly specified sets, interactive decision maps.

MSC 2010: 37M20, 65P30

Since the end of last century the interest in difference equations (DE) was largely
driven by environmental problems. The initial impetus was given by R. May in [8]
where the term ‘chaos’ was used in model description of biological populations by
a logistic equation, this term was introduced by T. Li and J. York [5], ‘the cycle
of period three creates a chaos’. More precisely, as was shown earlier by A. N.
Sharkovsky [12], the existence of a cycle of period three implies the existence of
a cycle of any period (in the continuous mapping of a unit segment onto itself). In
fact, with the filing of R. May [8] the logistic equation was the focus of studying the
difference equations [2].

Describing the population dynamics of animals within the framework of math-
ematical models of tundra populations and communities [1, 11, 13], we succeeded
in justification of the type of difference equation (DE) differing from conventional
logistic equation. It also represents a unimodal mapping of the unit segment onto
itself and consists of three line segments, two of which have the absolute value of
the derivative exceeding one, and the third is a constant (a segment of horizontal
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line—‘plateu’), the numerical value of this constant is taken as the bifurcation para-
meter.

For this type of equations and the chosen bifurcation parameters, a scenario of
its change was proposed so that stability zones with stable cycles appear sequen-
tially [9]. Inside the zone of stability the period of cycles is constant, in the trans-
ition from one zone to another the period changes according to the sequence of nat-
ural numbers. Stability zones are separated from each other by transitional domains
with more complex (quasistationary) modes. In this case the domains of stability
(for parameters of the equation allowing one to reproduce the population dynamics
close to the real one) are much wider than the transitional zones. In contrast with tra-
ditional studies [2], the emphasis shifted here, the purpose of this research is not just
to prove the existence of cycles of different periods, but the search for a region of
their stability. The representation of DE in the form of straight line segments makes
the problem of determination of periodic orbits and stability domains solvable by
analytic methods. This allows one to analyze the so-called region of chaos (where
trajectories are very sensitive to small changes of parameters) by using the proced-
ure of consecutive consideration of cycles with increasing periods, i.e., to ‘order the
chaos’ or indicate the sequence of the period appearance in the considered domain
for increasing length of periods.

In most cases the period of oscillation of trajectories is not sensitive to small
changes (with the exception of boundary points) in contrast to transition zones
where the periods of cycles are very sensitive to small changes of the bifurcation
parameter.

After appearance of the period three (as shown in this example) the stall in the
chaos does not occur, but we have its own laws and stability domains of cycles
(with periods greater than or equal to four). This paper is focused on revealing these
features.

Origin of the problem. In the quantitative analysis of ecological processes the first
problem is the choice of equations for model description. The ecological science
has no prevalent equations. Analysis of particular processes leads to refinement and
sometimes to a fundamental review of used equations.

In our research the problem of studying properties of difference equations (DE)
appeared in the description of the population dynamics of animals with mathemat-
ical models of tundra populations and communities [1, 11, 13]. The studies resulted
in the construction of a set of interconnected models. The base of such set is formed
by detailed imitation models constructed in cooperation with biologists on the base
of dependencies approved by experts and taking into account season variations of
parameters. The analysis of results of numerical experiments with mutually comple-
mentary models of the ‘vegetationlemmingsArctic foxes’ community and the pop-
ulation of lemmings subject to age structure had led to justification of a simplified
model in the form of a difference equation connecting the population size of lem-
mings in two subsequent years. Using the obtained equation [11, 13], we succeeded
in reconstruction of time evolution dynamics qualitatively close to the actual pop-
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ulation dynamics of lemmings [10]. Using this DE, we can formulate hypotheses
for mechanisms of formation of population size oscillations for tundra animals and
disclose three main factors determining this, namely, 1) the rate of biomass growth
in a favorable year; 2) the maximal population size; 3) survival in the most ad-
verse conditions (or two dimensionless parameters: relative population growth rate
and portion of assuredly surviving animals). The first factor characterizes the bal-
ance between the fertility and mortality processes in the absence of ‘environmental
pressure’; the second one characterizes the ecosystem as a whole and reflects the
coevolution of lemmings and feed base; the third parameter characterizes adapta-
tion features of lemmings in extreme conditions and is mainly determined by local
characteristics, in particular, by the land relief at the place of overwintering [1, 11,
13].

These studies of DE get particular relevance due to the fact that the simulated
population of lemmings of Western Taimyr has typical oscillation of the population
size maxima with the period of three years [10], whereas a cycle of period three in
the order of Sharkovsky guarantees the existence of cycles of any length [12]. In
this paper we propose a DE and a scenario of variations of a chosen parameter so
that this provides the change of cycle periods in the order of the natural series.

1. Mathematical model

1.1. Justification of the use of the difference equation

As the result of undertaken studies of the tundra ‘vegetation-lemmings-Arctic fox’
community [1, 11, 13], we get difference equation (1.1) connecting the lemming
population sizes for two adjacent years. Using this equation, we reproduced the
time dynamics qualitatively close to the dynamics of real population of lemmings
(see Fig. 1).

For the normalized variable L̃ = L/Lmax it has the form

L̃n+1 =


PL̃, L̃n 6 1/P
1− r(L̃−1/P), 1/P < L̃n 6 1/P− (1−d)/r
d, 1/P− (1−d)/r < L̃n 6 1.

(1.1)

Figure 1. Comparison of the experimental data (Taimyr Peninsula) [10] (solid line) and calculations
for the population dynamics with the use of difference equation (1.1) (dotted line) [13].
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Here P is the increment of the biomass of lemmings in a favorable year; d is the nor-
malized biomass of lemmings in the optimal biotope, the coefficient r characterizes
the change in the biomass of lemmings in the case of insufficient food in spring.

It should be noted that the value d (the capacity of the optimal biotope) is most
hard to estimate among all three parameters. Therefore, it is natural to take this
parameter as a bifurcation one, determine domains where the behaviour of traject-
ories weakly depends on this factor, and identify domains where the sensitivity to
variations of this factor is high.

The results of computational experiments with equation (1.1) for P = 2 and
r = 100 are presented in the bifurcation diagram in Fig. 2 [9]. The character of
dynamic modes was studied for the range of the parameter d varying from 1 to 0.
In Fig. 2 we can see stability zones separated by transitional zones with complex
modes (black vertical strips).

The following assertion is valid. In the case of equation (1.1) and if the para-
meter d varies from 1 to 0, stability zones appear successively and transitional zones
with complex modes separate them. The trajectories have constant periods inside the
stability zones and in the transition from one stability zone to the other the period
changes in the order of the natural series. Each transition zone has periodic traject-
ories with the period exceeding an arbitrary natural number given in advance. In
this case the ‘width’ of transitional zones can be made arbitrarily small when the
parameter r tends to infinity.

For a given value d the period of a trajectory is visually estimated in the fol-
lowing way: we draw a vertical line across the fixed point with the value d on the
abscissa axis and the number of intersections of this vertical line with the trajectory
determines the period of the trajectory for this d.

Figure 2. Results of computational experiments with model (1.1); the dependence of trajectories of
the model on the value 1-d. The abscissa axis corresponds to the value 1-d. For the chosen value of d
the vertical cross section of the graph represents the points of the trajectory.
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1.2. The study of the difference equation by the method of approximation of
implicitly specified sets

We study the considered mapping by its visualization. However, first we should con-
struct it explicitly by methods of approximation of implicitly specified sets [6, 7].
We present here a brief description of the applied technique for the case of approx-
imation and visualization of nonlinear mappings.

A set T is called a metric ε-net for a set S if any point of S is positioned at the
distance not greater than ε from a certain point of T. Metric nets allow us to encode
infinite completely bounded sets by a finite set of points. If T is a metric ε-net for S,
then an ε-neighbourhood of T, i.e., the set (T)ε approximates the set S. This means
that T ⊂ S ⊂ {B(x,ε) : x ∈ T}, where B(x, ε) is a ball of radius ε with the center at
the point x. Thus, we get more accurate approximation for lesser ε , but the greater
number of the metric net points is required.

The deep holes method [4] is used for the construction of approximations in the
method of reachable sets for nonlinear systems. The rate of convergence of the deep
holes method is determined by the metric (fractal) dimension of the approximated
set.

The following figures present approximations of different sets. Since we use
the Chebyshev metric, metric balls are cubes (squares in the two-dimensional case).
Therefore, two-dimensional sets consist of the small squares. Three-dimensional
sets consist of the small cubes. The figures show their two-dimensional cross-
sections, each section is drawn with its own color. The visualization uses the in-
teractive decision maps technology [7].

Let us consider difference equation (1.1) connecting the normalized population
sizes of lemmings in two adjacent years in more detail.

We denote the normalized population size of lemmings in (1.1) by Y(t). We
study the trajectory beginning from the ‘plateu’ d, i.e., study the properties of a
stable cycle of system development, Y(0)= d. For t = 1,2, . . . we calculate Y (t +1)
for Y (t) according to formula (1.1). We are interested in various characteristics of
this trajectory, i.e., the set of reachable states of the system Y(t) for different t, cyclic
structures of trajectories, their periods, etc. for different combinations of values of
the parameters P, r, and d.

We are interested in the following sets and indicators. First of all, in the space
of the parameter d and the phase Y we consider the set

A(P, r, d) = {(d, Y(t)), t = 0, . . . , N}.

Hereafter, we assume N = 1000. We construct and study the sets A(P, r, d) for all
d ∈ [0,1] and obtain:

A(P, r) = {A(P, r, d): d∈ [0, 1]}.

For large N these sets can be assumed as approaching the attractor of the considered
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Figure 3. Bifurcation diagram of A for P=1.5, r=4.

system.
We are also interested in the value characterizing the periodicity of the con-

sidered trajectory, i.e.,

Period (P, r, d) = min {t: —Y(t) - d— 6 ∆, t = 1, . . . , N}

where ∆ is the given accuracy of the cycle ‘closure’. Unless otherwise specified,
below we assume ∆ = 10−8.

We are also interested in the sets

B(P, r, d) = {(d, Y(t), Period(P, r, d)), t = 0, . . . , N}

B(P, r) = {{B(P, r, d): d∈ [0, 1]}

which represent the graph of the cycle length given at the points (d, Y) of the at-
tractor A (P, r). We also consider maps of the cycle period as functions of the para-
meters P and d (for fixed r), i.e., the sets

C(r) = (P,d, Period(P, r, d))

The following bifurcation diagram (Fig. 3) shows the approximation of the set
A(1.5, 4)={A(1.5, 4, d): d∈ [0, 1]} with the use of metric ε-nets. In the figures the
abscissa axis corresponds to the parameter d and the ordinate axis corresponds to
the set of values Y(t) for t = 0, . . . , N.

This figure presents the same properties of the increasing chaotic behaviour of
the system when the parameter d tends to 0 as this was indicated in the previous
section.

Figure 4 presents the approximation of the set B(1.5,4) = {B(1.5,4,d) : d ∈
[0.01,1]} by metric ε-nets. The set B is a stratification of the set A in the indicator
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Figure 4. Stratification B of the bifurcation diagram A over the period of the cycle for P=1.5, r=4.

Figure 5. Map of the cycle period C for r = 100.

Period, i.e., the graph of this function at the points of A.
The abscissa axis in the figure corresponds to the parameter d and the ordinate

axis corresponds to the set of values Y(t) for t = 0, . . . , N. The color (density of
hatching) corresponds to the value of the indicator Period(d). The same color may
indicate different values of Period. The palette of colors is presented at the right side
of Fig. 4.

The figure shows that if the value d tends to zero, then we get trajectories with
an arbitrarily large period. In this case, only a part of the graph is presented for
d > 0.01, therefore, the maximal value of the cycle period for these values of the
parameters P and r and the accuracy ∆ of closure of the cycle does not exceed 128.

Figure 5 shows the map of the set C(100), i.e., for r = 100, as a set of graph
layers for different ranges of graph periods. The correspondence of period values to
colors (to hatching in monochrome images) is presented at the right side of Fig. 5.



8 G. K. Kamenev, et al.

In Fig. 5 the abscissa axis corresponds to the parameter P and the ordinate axis
corresponds to the parameter d. The color indicates the range of values of Period(d)
corresponding to that color. For example, the plateau in the upper right part char-
acterizes combinations of these two parameters so that the period equals 1, 2, or 3.
In monochrome images each color is represented by hatching of specific density.
One can see ‘mountain ridges’ of points with large periods (in these figures they are
darker).

Figure 5 presents only the points with P∈ [1.5, 5] and d∈ [0.01, 0.5]. It is seen
that, approaching the lower left corner (the point with the minimal values of para-
meters), the value of the basic period sharply increases and ‘ridges of large periods’
become more frequent.

Figure 6 presents the map of the set C(10), i.e., for r = 10. The figure shows that
if the parameters P and d decrease, then the period tends to infinity, i.e., for small
P and d we get a singularity of the period characterized by the concept of ‘blue sky
singularity’ [3], i.e., there are no images of points with the cycle period exceeding
1000 in the lower left corner. In this case the front of the ‘blue sky disaster’ is most
visible.

In conclusion we present the study of the set of existence defined here as the set
of triples of combinations for values of the main parameters (P, d, r) such that the
period is within a given range. For example, we can consider the set of ‘resonance’
combinations of parameters such that the cycle period is greater than 5. This set is
shown in Fig. 7.

In Fig. 7 the abscissa axis corresponds to values of the parameter P and the
ordinate axis corresponds to the parameter d. The color (hatching) indicates the
values of the parameter r according to the palette in the right side of the figure.
Recall that for all these combinations of parameters the cycle period of a trajectory
does not exceed 5.

It is seen from Fig. 7 that the considered set of existence lies in the domain of
small values of the parameters P and d. The figure also shows the structure of this
set. It is formed by three-dimensional fragments (in the space of the parameters P
and d those have a hyperbolic form) slanted in the third dimension to the direction
of decrease of these two parameters for increasing r.

2. Analytic study of difference equations

In addition to the study of obtained mapping (1.1) with the use of computational ex-
periments, we can also use analytic (non-computer) methods. To do that, let us con-
sider the non-concave one-dimensional unimodal mapping (1DUM) X t+1 = F(X t)
of the segment [0,1] onto itself possessing the following properties.

The function F monotonically increases on the segment [0, D] (D ¡ 1) and at-
tains its maximal value at the point D and then it decreases passing through the fixed
point (equilibrium position) A = F(A) not equal to (0,0).

Examples of such equations are above equation (1.1) and also the triangular
mapping equation X t+1 = F0(X t) = 1−2|0.5−X t |.
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Figure 6. Map of the cycle period for C for r=10 in the region of small values of the parameters P
and d (‘blue sky’ singularity).

Figure 7. The set of the ‘resonance’ parameters P, d, and r such that Period¿5.

To analyze behaviour of trajectories, we define two following sets of points: G=
{An,n = 0,1,2, . . .}, K = {Dn,n = 0,1,2, . . .}. The set G consists of points Ai such
that F i(Ai) = A, the set K consists of points Di such that F i(Di) = D, where F i(·) =
F(F . . .(F())) is a i-fold mapping. In this case, A0 = A,D0 = D. If the trajectory
is to the left of the point A and the ordinate of one its point falls into the interval
[An,An−1], then at the next cycle the trajectory falls into the interval [An−1,An−2].

Basic definitions. In order to analyze the results of computational experiments with
lowering the plateu d (see Fig. 2), we proposed constructive techniques to obtain
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periodic trajectories of 1DUM and introduced the corresponding methods of study
[9]. These techniques can be used for a wide class of mappings X t+1 = F(X t).

The equilibrium position A divides the segment [0, 1] into the two domains
[0, A] and [A, 1]. These parts are unequal. The right-hand part of a trajectory cannot
have two cycles in succession; it is some kind of ‘reflector’ actually specifying initial
values for the movement of the trajectory in the left-hand part of the function, and
in the left part of the trajectory it can have several cycles.

The set reflects the specificity of 1DUM, it shows what number of cycles is in
the domain [0, A], determines the distance between maxima inside the trajectory.
It possesses the following evident property: for any natural number n there exists
a neighbourhood of zero such that for An−1 < X0 < An the trajectory is in the left-
hand side of the domain (X t < A) for exactly n cycles and then it passes to the
right-hand side (X t > A). There exists a wide class of functions for which we can
take a scenario leading to the situation that in most cases the set {An} determines
the character of trajectories including the length of the cycle.

In some cases it is sufficient to use the set {An} for practical problems of study
of possible dynamic modes in discrete mapping. In particular, in the case when
the degree of reliability of biological information allows us to analyze only time
intervals between the maxima of population size [10].

For more detailed study of properties of the considered mappings we introduce
the additional construction called line return (LR).

Definition 2.1. A line return of nth order (LRn) for a mapping F is the curve in
the rectangle A 6 X t 6 1; 0 6 X t+1 6 A being the graph of the function F(n)

c (X t+1)
mapping the segment 0 6 X t+1 6 A onto the segment A 6 X t 6 1 according to the
following algorithm.

Construction algorithm for LRn. We draw a horizontal line through any value X t+1

from the segment 0 6 Xt +1 6 A in the rectangle A 6 X t 6 1;0 6 X t+1 6 A. Then
we take any point X t+1 from the segment 0 6 X t+1 6 A and draw a horizontal line
through it in the rectangle A 6 X t 6 1; 0 6 X t+1 6 A. The point of intersection with
the graph of the original function to the right of the equilibrium position (EP) gives
the initial point. We construct the trajectory graphically by using Lamerey’s ladder.
At the nth return to the right of the equilibrium position over the bisectrix of the
angle between the abscissa and ordinate axes we draw the corresponding vertical
line. The point of intersection of this line with the testing horizontal line with the
coordinates (X t ,X t+1) belongs to LRn. Apply the similar procedure to all points
X t+1 from the segment [A, 1] and join all points of intersection. As the result, we
obtain LRn. Thus, we have associated each value X t+1 with the value X t in the
indicated rectangle and hence define the function X t = LRn (X t+1). The graphical
implementations of this construction algorithm for LR1 and LR2 for the triangular
mapping are presented in Figures 8 and 9, respectively.

The algorithm implies another definition of LR. Let us suppose a segment of
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Figure 8. Construction of lines of the first return. Trajectories passing through the points F(x1) and
F(x2) give the points P1 and P2 forming the segment of first line return (LR1).

a trajectory such that its first and last points are positioned after EP. In this case
the line return of the kth order can be defined as the locus of points such that their
coordinate X t equals the coordinate X t of the last point, and their coordinate X t+1

equals the coordinate X t+1 of the first point of that segment. In this case k is the
number of returns of the trajectory to the right of EP in this segment.

Proposition 2.1. The points of intersection of LRn with the graph of the initial
function F (GIF) determine periodic trajectories. In this case, using LRn, we can
obtain all periodic trajectories with the period less than or equal to n.

Definition 2.2. The domain from the point A to the point A1 is called the zone of
two, the domain from the point A1 to the point A2 is called the zone of three, etc.

The number of a zone determines the number of cycles required for a trajectory
to fall to the right of EP again, and it also determines the period of the cycle passing
through the point of intersection of the graph of the initial function and LR1.

Proposition 2.2. Lines of LR can be constructed as fragments of Fn specularly
rotated by 90◦.

Proof. Take an arbitrary point on LR formed by Fn−1 specularly rotated relative
to the bisectrix by 90o and draw a horizontal line to the bisectrix. At this point we
have the value Fn−1. According to Lamerey’s algorithm, we draw a horizontal line
to the bisectrix and then draw a vertical line from the point of their intersection. This
vertical line passes through the original point constructed by the specular rotation
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Figure 9. Construction of lines of the second return. Trajectories passing through the points F(x1)
and F(x2) in the first return in the domain to the right of the equilibrium position give the points P(1)

1

and P(1)
2 forming a segment of the first return line (LR1). The points P(2)

1 and P(2)
2 are obtained in the

second return and belong to different segments of LR2.

of Fn−1.

Proposition 2.3. The points of intersection of LR with GIF constructed as frag-
ments of Fn−1 specularly rotated by 90o lie on periodic trajectories of period n.

Proof. We repeat arguments similar to above ones. Take any point of intersec-
tion of LR and GIF and draw a horizontal line to the bisectrix. This point corres-
ponds to some value of the function Fn−1. According to Lamerey’s algorithm, we
draw a horizontal line from this value to the bisectrix and then draw a vertical line
from the point of their intersection to the intersection with GIF. At the point of in-
tersection we have LR formed by Fn−1 specularly rotated by 90o. Thus, we have got
a cycle of period n.

Proposition 2.4. The points indicates above form the complete set of points of
period n lying to the right of the equilibrium position (in the zone of formation of
LR).

Proof. Let us take an arbitrary point of period n positioned to the right of EP.
According to Proposition 2.2, it must lie at the point of intersection of some LR with
GIF. Draw a horizontal line from this point to the bisectrix. This point corresponds
to some value of the function Fn−1. According to Lamerey’s algorithm, we draw a
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horizontal line from this value to the bisectrix and then draw a vertical line from the
point of their intersection to the intersection with GIF. At the intersection we have
the original point. Since the point was chosen arbitrarily (from the corresponding
points lying to the right of EP), Proposition 2.4 is proved.

Proposition 2.5. Let n be some period. In the triangular mapping (TM) the
cycle points of period n lying to the right of the equilibrium position (in the zone of
LR formation) are defined as the points of intersection of LR with the graph of the
initial function. The equations determining their coordinates have the form

X t+1 =


4i−2
2n +1

for a rising, i = 1, . . . ,2n−2

4i−2
2n−1

for a downward slope, i = 1, . . . ,2n−2.
(2.1)

The index i in this formula indicates the ordinal number of a prong among the
sequence of prongs of LR formed by the function Fn−1 specularly rotated by 90o.
The enumeration begins with the most lower prong (closest to the abscissa axis).

2.1. The study of transitional modes

In order to study transitional modes, we use the triangular mapping (TM) supple-
mented by a plateu d to the right of the equilibrium position (EP). This mapping
is a particular case of mappings defined by formula (1.1). It has wide transitional
zones, a high level of symmetry, and so we can analyze it easily. We applied the ‘bi-
furcation study’ for TM, i.e., determined cycles appearing in the process of lowering
the plateu. The LR technique is ideal for analysis of results of computational experi-
ments with lowering the plateu. If the plateu is at a certain place, then it is crossed by
LRn, and the LR with the least number among those LRn that lie above the graph
of the initial function is realized. Thus, the analysis of the sequence of appearing
cycles in the process of lowering the plateu is reduced to the study of changes in
minimal numbers of LRn that are above the graph of the initial function. In order to
determine such numbers, we use the following procedure: we successively consider
LR with the increasing number n.

In the case of triangular mapping with lowering the plateu, formulas (1.1) and
(2.1) imply the following result.

Proposition 2.6. The coordinates bounding the domain of realization of a cycle
with a given period for the triangular mapping with lowering the plateu are calcu-
lated by the formulas

X t+1 =


4i−2
2n +1

for boundaries nearest to EP, i = 1, . . . ,2n−2

4i−2
2n−1

for boundaries far from EP, i = 1, . . . ,2n−2.
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Proposition 2.6 and formulas forming this assertion imply Propositions 2.7–2.9.

Proposition 2.7. If multiple cycles exist, then all cycles with lesser periods
surely contact a multiple cycle of greater length.

Propositions 2.6 and 2.7 imply the following result.

Proposition 2.8. If a cycle of some period n appears in the procedure of suc-
cessive increase of cycle periods, then cycles with the periods n2m, m = 1,2,3, . . . ,
appear directly after it.

Since the domains of realization of doubling cycles are ‘glued’, we have proved
the following.

Proposition 2.9. Inside the sequence of cycles n2m, m = 1,2,3, . . . , there are no
cycles of other periods.

Proposition 2.10. There are no cycles of periods n2m, m = 1,2,3, . . . , directly
before any cycle of period n.

Analogues of Feigenbaum’s assertions. Feigenbaum [2] presented assertions on
relations between the sizes of cycle realization domains in the process of doubling
of cycle period (n = 2,4,8,16, . . . ).

Studying bifurcation modes in TM appearing under variations of the parameter
d (‘plateu height’), we have formulated more general assertions.

Proposition 2.11. The following relation is valid for the sizes (width) of adja-
cent domains where cycles of periods n and 2n are realized: (22n−1)/(2n−1).

It should be noted that for n tending to infinity the reverse ratio of sizes of
adjacent domains tends to zero, i.e., (2n−1)/(22n−1)→ 0,n→ ∞. Obviously, the
value of this ratio is equivalent to 1/2n.

In contrast with Feigenbaum’s relation, this one holds for any generating num-
ber n∗ = 2,3,4,5, . . . .

Let us study in detail the domain between first appearances of cycles with the
periods 4 and 6. We have the following result.

Proposition 2.12. All even cycles lie between the intervals of the domain of
parameters where cycles of periods 4 and 6 appear for the first time.

Successively considering LR with increasing numbers n in the domain between
the first appearance of cycles with the periods 4 and 6, we come to the following
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sequence of cycles.
Up to period 8: 4, 8, 6;
Up to period 10: 4, 8, 10, 6;
Up to period 12: 4, 8, 12, 10, 6;
Up to period 14: 4, 8, 12, 14, 10, 14, 6;
Up to period 16: 4, 8, 16, 12, 16, 14, 10, 14, 16, 6;
Up to period 18: 4, 8, 16, 12, 16, 18, 14, 18, 10, 18, 14, 18, 16, 6;
Up to period 20: 4, 8, 16, 20, 12, 20, 16, 20, 18, 14, 18, 10, 20, 18, 14, 18, 20,

16, 20, 6;
Up to period 22: 4, 8, 16, 20, 12, 20, 16, 20, 22, 18, 22, 14, 22, 18, 22, 10, 20,

22, 18, 22, 14, 22, 18, 22, 20, 16, 20, 22, 6;
Up to period 24: 4, 8, 16, 24, 20, 12, 24, 20, 24, 16, 24, 20, 24, 22, 18, 22, 14,

22, 18, 22, 24, 10, 20, 24, 22, 18, 22, 24, 14, 24, 22, 18, 22, 24, 20, 24, 16, 24, 20,
24, 22, 6;

Up to period 26: 4, 8, 16, 24, 20, 12, 24, 20, 24, 16, 24, 20, 24, 26, 22, 26, 18,
26, 22, 26, 14, 26, 22, 26, 18, 26, 22, 26, 24, 10, 20, 24, 26, 22, 26, 18, 26, 22, 26,
24, 26, 14, 26, 24, 26, 22, 26, 18, 26, 22, 26, 24, 20, 24, 26, 16, 26, 24, 20, 24, 26,
22, 26, 6;

Up to period 28: 4, 8, 16, 24, 28, 20, 28, 12, 24, 28, 20, 28, 24, 28, 16, 28, 24,
28, 20, 28, 24, 28, 26, 22, 26, 18, 26, 22, 26, 14, 28, 26, 22, 26, 18, 26, 22, 26, 28,
24, 28, 10, 20, 28, 24, 28, 26, 22, 26, 28, 18, 28, 26, 22, 26, 28, 24, 28, 26, 14, 28,
26, 28, 24, 28, 26, 22, 26, 28, 18, 28, 26, 22, 26, 28, 24, 28, 20, 28, 24, 28, 26, 28,16,
28, 26, 28, 24, 28, 20, 28, 24, 28, 26, 22, 26, 28, 6.

These sequences of alternation of cycles under the change of the bifurcation
parameter in the considered interval do not contradict the order of Sharkovsky. Us-
ing Propositions 2.8–2.10, we can formulate the following result.

Proposition 2.13 similarity hypothesis. If a certain sequence of alternation of
even cycles is realized (in the procedure of successive increase of periods) 2ai, then
this sequence is realized under the replacement of 2 by 2m, m = 1,2,3, . . . , i.e., the
sequence 2mai is realized.

The similarity hypothesis was checked by comparison of the corresponding se-
quences of cycles.

3. Conclusions

Let us sum up the results of performed researches. The study of models of tundra
community revealed the leading role of the population of lemmings in formation
of animal population fluctuations in this community [1, 11, 13]. It was possible to
use difference equations (DE) to describe this population. Such equations have a
non-traditional from (different from the widely known logistic one) [2, 5, 8]. We
should note that not only the form of the equation, but the choice of the bifurcation
parameter d (the capacity of optimal biotope) were justified as well. In this regard,
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it is natural to take this parameter as a bifurcation one. In the analysis of mappings
we used the method of approximation of implicitly specified sets and interactive
decision maps [4, 6, 7].

Computational experiments allowed us to obtain domains where the behaviour
of trajectories weakly depends on the chosen indicator and also reveal the domains
where a high sensitivity to variations of this indicator is typical. In this case, passing
from one stability zone to another, the period of oscillations changes in the order of
the natural series (1, 2, 3, 4,. . . ), whereas stability zones are separated by transitional
zones with more complicated dynamic modes [9]. An important aspect of conducted
investigations is the study of these transitional zones (‘ordering of the chaos’) where
cycles of large periods alternate with a high density and their values change for small
variation of the bifurcation parameter. Traditional (computer) studies of the logistic
equation (that usually get universal usability [2]) do not concentrate attention on
the presence of stability and transitional zones. (Although those can be indicated
in results of numerical experiments, see, e.g., [2]). Texts of various origins (see the
references in [2]) are roughly the following: first a cascade of doubling of cycle
periods occurs, after that the dynamics complicates, and, obtaining a cycle of period
three, there exist cycles of all periods (which is interpreted in [5, 8] as the appearance
of chaos).

The use of DE formed by segments of straight lines allows us to transform the
problem of determination of the sequence of cycle appearances to a ‘computable’
form, which essentially supports the results of computational experiments. The use
of the line return technique helps essentially in the study of transitional zones [9].
This technique gives an algorithm of study for the sequence of appearances of cycles
of arbitrarily large period due to a justified method of successive increase of periods
of studied cycles. The fact that we can obtain the sequence of appearances of cycles
as the result of calculations is a constructive example of extension of Sharkovsky’s
order [12], which is hard to obtain for the logistic mapping.

After appearance of the period three (as is shown in the example considered
here) there are no ‘stalling into chaos’, but its own patterns and stability domains
of cycles appear (with periods greater than or equal to four). All these refinements
were checked by computational experiments and partly by analytic calculations.
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