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A drug pharmacodynamics and pharmacokinetics based
approach towards stabilization of HIV infection dynamics

R. M. Tretyakova∗‡, A. Meyerhans†, and G. A. Bocharov‡

Abstract — In our study we developed a computational algorithm for finding optimal dosages of
antiretroviral drug administration for the stabilization of HIV load at low levels. The novelty is that
the pharmacokinetics and pharmacodynamics of the antiretroviral drugs were taken into account. A
standard closed-loop control of HIV dynamics was constructed that stabilizes the viral load and the
optimal drug administration mode was formulated. We analyze the appropriateness of the ‘drug effic-
acy’ based control and its relationship to a realistic drug dosage and kinetic models in the human body.
The translation of the efficacy function into drug concentration is implemented via the pharmacody-
namics model of the drug effect. Optimal approximation of the idealized concentration functions is
based on the orthogonal projection on linear subspace of drug pharmacokinetics functions.
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Human immunodeficiency virus (HIV) infections remain a major concern for public
health with about 35 million infected individuals worldwide [10]. HIV is a retrovirus
that affects the immune system, and uses its functionality for self-replication. Con-
tinuous ongoing virus replication within an infected host leads to a gradual destruc-
tion of the immune system and results in AIDS and eventual death. Antiretroviral
therapy (ART) based on the use of a combination of three and more pharmaceutical
compounds out of the 26 approved drugs provides a basis for long-term control of
virus replication [3, 19]. The drugs target different steps of the viral life cycle and
allow to keep viral loads at low level. This transforms HIV-infected individuals into
chronic carriers with prolonged life expectancy. However, ART is rather expensive
and associated with side effects such as hepatotoxicity, neurological disorders and
cardiovascular diseases. Therefore, the optimal timing of medication presents an
important issue with respect to improving therapy benefits.

Mathematical modelling and control theory represent promising tools for de-
veloping parsimonious and personalized approaches to treatment of HIV-infected
individuals. An overview of the progress achieved so far in model-driven analysis
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and optimal control of HIV infection can be found in [1, 5, 6, 8, 13]. As the virus
cannot be eliminated via antiretroviral therapy, the realistic objective in formulating
the optimal control problem is the reduction of the viral load. Indeed, the duration
of an asymptomatic HIV infection is inversely related to the set-point viral load as
shown in [7]. The appropriate framework for designing the corresponding control
strategy is based upon the feedback and deviation control [4, 14]. The antiretro-
viral drugs are given to patients according to the manufacturer’s recommendation.
It should be noted that research on optimal timing of ART presents a challenge.
Drug dynamics in the body is governed by drug-specific pharmacokinetic models
with respective parameters [11, 18, 20]. However, the existing approaches towards
the mathematical modelling of optimal therapy design are based upon the so called
‘drug efficacy’ functions or control variables that can take any values from the spe-
cified range [1, 6, 8, 14] and thus ignore drug kinetic constraints. We note that in [8]
an optimal control problem for three drugs treatment was considered with the drug
concentrations in between the dosages administration approximated as average val-
ues rather than dynamic quantities.

The purpose of our study was to develop a numerical method for finding an
optimal dosage of medication for HIV control taking into account the pharmacokin-
etics and pharmacodynamics of the antiretroviral drugs. We constructed a closed-
loop control of HIV dynamics that stabilizes the viral load and evaluated the optimal
drug administration regime. We analyzed the appropriateness of the ‘drug efficacy’
based control and its relationship to the drug dosage and kinetics in the body. Our
study is built upon the previous work on closed-loop control [14]. In Section 2 we
present the basic model of HIV dynamics and the feedback-based stabilization pro-
cedure. Section 3 considers the pharmacokinetic and pharmacodynamic issues for
drug modelling and the algorithm for optimal drug dosage calculation. The numer-
ical implementation and the results are covered in Section 4. Finally, in Section 5
the conclusions are presented.

1. Basic approach to computational modelling of HIV infection
stabilization

We use the following notation in the paper:

• T (t) density of uninfected CD4+ T-cells at time t;
• T ∗(t) density of infected CD4+ T-cells at time t;
• V (t) concentration of free virions (HIV RNA particles) at time t;
• e(t) drug efficacy (bounded value representing relative effect of HIV treat-

ment) at time t;
• emax maximal drug efficacy;
• C(t) drug concentration at time t;
• C0 drug dosage (amount of administered drug divided by the peripheral blood

volume in which it is distributed);
• RTI reverse transcriptase inhibitors (antiviral drug inhibiting the transcription

of the viral single stranded RNA genome into a double-stranded viral DNA);
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• PI protease inhibitors (antiviral drug blocking the production of infectious
viral particles).

The overall HIV treatment process can be described as follows: the patient takes
medication regularly to sustain the drug concentration C(t) around some target value
(C(t)'C0). The drug concentration determines the drug efficacy e(t) ∈ [0,emax),
that eventually determines the reduction of the virus population growth V (t). A
conventional approach to modelling HIV treatment is based on predicting the viral
population dynamics V (t) given the drug concentration C(t) and the efficacy e(t)
function (see, e.g. [20]). The application of the optimal control methods to HIV
infection dynamics consists in computing the optimal efficacy function e(t) in order
to minimize some infection severity criterion depending on viral load V (t), immune
status and drug quantity (see, e.g. [1, 8]).

1.1. Basic model of HIV infection dynamics

Today, there exists a broad spectrum of mathematical models addressing various
aspects of the HIV infection dynamics and formulated with ordinary, delay- and
integro-differential equations (see the references in [5]). Most of the research on
optimal control of HIV infection dynamics has been performed with rather simple
mathematical models considering the target cell infection and the immune response
(see Tables 1–2 in [6]). The widely accepted model used in the studies of the HIV
infection is the one presented in [13]. It will be used for illustrative purpose in
the present study. We note, that more complex models have been developed that
consider different types of immune system cells and their characteristic features,
infection latency, and virus mutation (see [1, 8, 12]). In the following analysis we
consider the HIV dynamics model presented in [13] and used for feedback control
study in [14]. Model variables represent the uninfected target cells T (t) [cell/mm3],
the productively infected cells T ∗(t) [cell/mm3] and the virions V (t) [copies/mm3].
The model considers two drugs: RTI drug reducing the infectivity rate, and PI drug
inhibiting the virion production by the infected cells. The studies of multiple drug
administration [18] proved that their effects can be considered independent:

dT (t)
dt

=−µ1T (t)− (1− eRT I(t))βT (t)V (t)+ s

dT ∗(t)
dt

=−µ2T ∗(t)+(1− eRT I(t))βT (t)V (t)

dV (t)
dt

=−µ3V (t)+(1− ePI(t))kT ∗(t).

(1.1)

We use the same parameter values as in [14]: µ1 = 0.02day−1, µ2 = 2.4day−1,
µ3 = 0.24day−1 are healthy T-cells, infected T-cells and virions death rates, re-
spectively; s = 10(cell/(mm3 · day)) – constant source of CD4+ T-cells (produced
by thymus); β = 2.4× 10−5 (mm3/(virion · day)) – infectivity rate of free virions;
k = 100 (virion/(cell ·day)) – virion production rate by infected cells.
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1.2. Stabilization of HIV dynamics

The implemented algorithm of computing the closed-loop control is based on the
work [14]. First, we rewrite system (1.1) using the following vector variables, x,u:

x(t) =
[
T (t) T ∗(t) V (t)

]
, u(t) =

[
eRT I(t)

emax

ePI(t)
emax

]
⇒ dx(t)

dt
= f (x(t), u(t)).

Vector x(t) states HIV dynamics variables and vector u(t) represents control vari-
ables for efficacy functions which are normalized to the half-open interval [0, 1).
The aim of HIV infected patient ART based optimal control is not a complete elim-
ination of the virus, but the maintenance of its concentration (viral load) at a constant
low level. Therefore, the system is to be stabilized in the vicinity of a low viral load
equilibrium point X ss, which can be found by setting derivative to zero (ẋ(t) = 0).
The steady state system of equations reads:

xss
2 = (s−µ1xss

1 )/µ2

uss
1 = 1−µ2xss

2 /(βxss
1 xss

3 )

uss
2 = 1−µ3xss

3 /(kxss
2 ).

There are three equations with five unknown variables, which means that two of
them can be taken as independent variables while the other three are expressed
through them. Similar to [14], we make use the U.S. Department of Health and
Human Services HIV Therapy Guidelines [16] postulating that the number of viri-
ons should be suppressed under 50mm−3. We set xss

1 = 490 and xss
3 = 30. In order

to keep xss
1 on a high level we need uss

j ' 1, which is practically unrealistic. From
the above formulas we obtain:

xss =
[
490 0.83 30

]
, uss =

[
0.43 0.14

]
.

The asymptotic stability of the equilibrium point (xss,uss) can be examined via the
analysis of the eigenvalues of Jacobian matrix generating the following character-
istic polynomial:

(λ +µ1 +(1−uss
1 )βxss

3 )(λ +µ2)(λ +µ3)− kβ (1−uss
1 )(1−uss

2 )x
ss
1 (λ +µ1) = 0.

It can be verified that the above steady state is stable.
The control problem of stabilizing the system at the steady state can be formu-

lated in terms of the deviations ∆x(t) from constant equilibrium values xss. The con-
trol variables also can be splitted into the constant component uss and time-variant
component ∆u(t):

xi(t) = xss
i +∆xi(t), u j(t) = uss

j +∆u j(t).

The state and control variables are related via the linearized system of equations:

ẋ(t) = ˙(∆x)(t) = f (x(t), u(t))' A∆x(t)+B∆u(t)
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A=

−µ1− (1−uss
1 )βxss

3 0 −(1−uss
1 )βxss

1
(1−uss

1 )βxss
3 −µ2 (1−uss

1 )βxss
1

0 (1−uss
2 )k −µ3

 , B=

 βxss
1 xss

3 0
−βxss

1 xss
3 0

0 −kxss
2

 .
We consider the quadratic performance criterion to obtain ∆u(t):

Q(∆x,∆u) =
∫

∞

0
∆xT (t)W1∆x(t)+∆uT (t)W2∆u(t))dt

where W1 > 0 and W2 > 0 are some positively-defined weighting matrices. It is
known that the optimal control law that minimizes the above performance criterion
along the trajectories of linearized equation can be calculated from matrix Riccati
equation [2]:

∆uopt(t) =−Fopt
∆x(t), Fopt =W−1

2 BT P

PA+AT P+W1−PBW−1
2 BT P = 0.

(1.2)

2. Pharmacokinetics and pharmacodynamics based stabilization of the
infection

To compute the optimal drug dosages which allow to achieve the drug efficacy re-
quired by the stabilizing control function u(t) = uss +∆u(t), we consider the stand-
ard models of pharmacokinetics and pharmacodynamics [11]. Combined pharma-
cokinetic-dynamic studies seek to characterize the time course of drug effects.

2.1. Pharmacodynamics

Pharmacodynamics studies the mechanism of interaction between drug and cellular
receptors as well as the drug transformation in the cells. Pharmacodynamic models
exclusively relate the drug concentration with the pharmacological effect e(t) =
e(t,C(t)). Pharmacodynamics is linked to pharmacokinetics, which encompasses
the study of movement of drugs into, through, and out of the body. For any given
efficacy function e(t) one can compute the corresponding drug concentration C(t).
The basic pharmacodynamic models are presented in Table 1. The selection of an
appropriate pharmacodynamic model depends on drug characteristics as well as the
way of its administration.

The pharmacodynamic model parameters can be estimated from experimental
and clinical data as presented in [20]. The parameter values used in our paper rep-
resent some reference values taken from [11] for illustrative purpose. The inversion
of the drug efficacy function into the drug concentration profile is given by the para-
meterization specified in the last column of the above Table. We note that whereas
for the sigmoid and time-variant models the concentration function exists for any ef-
ficacy function e(t), for the irreversible and indirect link models the differentiability
of e(t) is required.
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Table 1.
Basic pharmacodynamic models: efficacy function e(C(t)) and the inverse concentration
functions C(e(t)).

Model Description e(C) C(e),
ng·mm−3,day−1 [15]

Sigmoid
emax

based on occupancy the-
ory and used if chemical
equilibrium is achieved

e(t) =
emaxC(t)

IC50+C(t) , IC50 –
concentration at half-
maximal effect

C(t) = IC50
e(t)

emax−e(t) ,
IC50 = 8.0

Indirect
link

used in case of temporal
dissociation between time
courses of concentration
and effect

e(t) =
emaxy(t)

Iy50+y(t) y(t) =∫ t
0 C(τ)e−ky(t−τ)dτ y(t) –

concentration in receptor
site proximity, ky – delay
constant

C(t) =
ė(t)Iy50

emax−e(t) (kye(t) +
emax

emax−e(t) ) ky = 0.8,
Iy50 = 10.0

Irreversible used if drug-receptor
bimolecular interaction is
irreversible

ė(t) = r(e(t)) − g(C)e(t)
r(e) – proliferation func-
tion, g(C) – cell-killing
function

C(t) = g−1(
r(e)−ė

e(t) ),
r(e) = kin − koute
kin = 0.5, kout = 1.0,
g(C) =C

Time-
variant

used if drug susceptibility
is nonconstant

e(t) =
emaxC(t)

IC50(t)+C(t)
IC50(t) – time course
of concentration required
for half-maximal effect

C(t) = IC50(t)
e(t)

emax−E(t)
IC50(t) =
It0 + (Itn − It0)t/Tcure
It0 = 7.0, Itn = 8.5

2.2. Pharmacokinetics

The subject of pharmacokinetics is the study of the spatial-temporal behaviour of
the drug concentration in the organism [17]. Pharmacokinetic models suggest ex-
plicit functions of drug concentration C(t) = C(t,C0,τ), where τ is a time interval
between drug administration (e.g., τ = {2,4,6,8,12,24, ...} hours) and C0 = M0/V
is an initial dosage. The classical pharmacokinetic models [11, 17] are based on
the concept of compartment: compartmental system is made up of a finite number
of constant volume compartments, each of which is homogeneous and well mixed;
compartments interact by exchanging material. The basic drug kinetic functions for
different compartmental models are presented in Table 2. The identification of an
appropriate model for a specific drug requires the drug concentration profiles and
is beyond the scope of our study. The parameter values specified in Table 2 are for
illustrative purpose taken from [17]).

2.3. Pharmacokinetic-dynamic model based approximation of control function

In this section we seek to find the best approximation of the feedback control law us-
ing the drug concentration functions representing the drug pharmacokinetics in vivo.
The continuous drug concentration function to be approximated C(t), t ∈ [0,Tcure] is
an element of Hilbert space H = L2(0,Tcure). The control (or drug efficacy) function
u(t)≡ e(t) calculated from (1.2) and (1.1) is continuous [2], therefore the superpos-
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Table 2.
Basic pharmacokinetic models: the drug concentration functions C(t).

Model Description C(t) Parameters, day−1 [16]

One-com-
partment
(1C)

concentration decreases
exponentially

C(t) =C0e−αt α = 2.33

One-com-
partment
with ab-
sorption
(1CA)

drug absorption from
gastric system is con-
sidered

C(t) = C0(e−αt −
e−k1t), k1 > α

α = 3, k1 = 9

Two-com-
partment
(2C)

second compartment
is a drug reservoir
e.g. blood and cellular
plasma

C(t) = C0(a1e−αt +

a2e−β t)

α = 3.4, β = 0.9, a1 =
0.33, a2 = 0.66

Two-com-
partment
with ab-
sorption
(2CA)

unites all the previous C(t) = C0(a1e−αt +

a2e−β t − a0e−k1t)
k1 > α , k1 > β

α = 1.9, β = 3, k1 = 16,
a1 = a2 = 0.25, a0 = 0.5

ition of u(t) and C(u) (see Table 1) is also continuous: C ∈ L2(0,Tcure). If the control
function u(t) is represented at the mesh points dividing the interval [0,Tcure] into M
equal subintervals, then the vector C ∈ RM and H in this case is the M-dimensional
Euclidean space. We use the following notation for the inner product (·, ·) = (·, ·)H
and the norm ‖ · ‖= ‖ · ‖H .

It is practically impossible to achieve an exact match between the theoretical
(continuous optimal control function) and the actual drug concentration in blood,
since the drug kinetics is governed by an appropriate pharmacokinetic model. If the
drug is administered at dose C0 at time t = 0, its concentration changes as C(t) =
C0Γ(t), t ∈ [0,Tcure] according to one of the models:

Γ(t) =

{
ΓPK(t), t > 0
0, t < 0,

Γ
PK(t) =


e−αt , one-compartment
e−αt − e−k1t , one-compartment with absorption
a1e−αt +a2e−β t , two-compartment
a1e−αt +a2e−β t −a0e−k1t , two-compartment with absorption.

One can specify an appropriate pharmacokinetic model ΓPK by selecting one of
above four kinetic pattern functions.

Let the time interval between drug administration be τ and define a uniform
grid ti = iτ , i = 0, . . . ,N−1, on t ∈ [0,Tcure]. The therapy period Tcure is divided into
intervals τi = [ti, ti+1] so that τN = Tcure. If the drug is administered at dose Ci

0 at time
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ti, its kinetics follows Ci
0Γ(t− ti). Consider a set of basis functions Γi = Γ(t− ti).

Then, for any t ∈ [0, Tcure] the drug concentration function is a linear combination
of the basis functions as follows:

CΓ(t) =
N−1

∑
i=0

Ci
0Γi. (2.1)

Therefore, all admissible drug concentration functions CΓ(t) are the elements of a
linear span of the basis functions {Γi}N−1

i=0 . Let us denote the finite linear subspace of
H, LΓ = span(Γi), i = 0, . . . ,N−1. The optimal approximation problem in Hilbert
space for given concentration function C is equivalent to the minimization problem
for the following functional:

Z(C0) = ‖C(t)−
N

∑
i=0

Ci
0Γi‖ → inf, C0 = [C1

0 . . . CN
0 ]

T ∈ RN . (2.2)

The following statement holds.

Theorem 2.1. The solution of the orthogonal projection problem (2.2) exists,
is unique and given by C∗0 = G−1C̃, where C̃ is the drug profile function required
for optimal feedback stabilization and G is the Gram matrix of the basis functions
{Γi}N−1

i=0 .

Proof. The Hilbert projection theorem [15] states that for any element of the
Hilbert space and any its finite closed subspace there exists a unique best approxim-
ation element of that subspace. Therefore, ∀C ∈ H there exists a unique orthogonal
projection C∗

Γ
∈LΓ such that:

C−C∗Γ⊥LΓ⇒‖C−C∗Γ‖= inf
Y∈LΓ

‖C−Y (t)‖.

To find C∗
Γ
, the orthogonal projection procedure (C−C∗

Γ
,Γi) = 0, i = 0, . . . ,N−1,

generates the following system of linear algebraic equations C̃i = (C,Γi), depending
on the Gramian matrix with elements Gi j = (Γ j,Γi) for the basis functions LΓ :(

∑
N
j=0C j

0Γ j,Γi
)
= ∑

N
j=0C j

0(Γ j,Γi). The best-fit estimate of the dosages vector C∗0 is
given by the solution of the linear system GC∗0 = C̃.

Another way to prove the theorem is to find the minimum to the functional
Z(C0). At the extremum point the following holds: (∇Z)i =−2(C−C∗

Γ
,Γi) = 0 and

the Hessian matrix of Z(C∗0) is (Z′′)i j = 2(Γ j,Γi), Z′′ = 2NG. As the Hessian matrix
is constant for all C0 ∈ RN , and is positive definite, it follows that Z is a convex
functional. Therefore, it has a unique minimum point defined by ∇Z = 0.

Overall, both considerations lead to the same system with a positive definite
matrix for the unknown drug dosages GC0 = C̃ that has a unique solution C∗0 =
G−1C̃.
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Remark 2.1. The Gram matrix G is a symmetric and Toeplitz one: (Γ j,Γi) =
(Γ j,Γi) = (Γi+k,Γ j+k) for all k : 0 6 i+ k < N and 0 6 j + k < N, because all
functions Γi are just the shifts of the same function Γ. The solution of the system
GC0 = C̃ with a symmetric Toeplitz matrix can be obtained by means of the Levin-
son recursion algorithm in O(N2) operations.

3. Numerical study

3.1. Implementation of the algorithm

The following iterative process to compute the optimal drug dosages allowing to
approximate the drug concentration profile required by the the feedback control law
is implemented using MATLAB programming tools.

Initially, the control time interval is set [0,Tcure]. Then, a uniform mesh tn, n =
1, . . . ,N, is introduced with the step-size h, such that tN = hN = Tcure. On the set of
subintervals [tn−1, tn], the control function u(t) and the trajectory x(t) are computed
using the following procedure:

(1) compute ∆u(tn−1) = −Fn−1∆x(tn−1), where the optimal gain matrix Fn−1 is
computed by solving matrix Riccati equation (1.2);

(2) evaluate u(tn−1) = uss+∆u(tn−1), with u(tn−1) normalized to 06 u(tn−1)< 1;

(3) solve the initial value problem ẋ(t) = f (x(t), u(t)) on [tn, tn−1] starting at
x(tn−1) with u(t) = u(tn−1) to get u(tn).

As the result we generate the (discrete) functions x(tn) converging to xss and optimal
drug efficacy functions u(tn)→ uss, respectively.

The next stage is to compute the corresponding concentration profile C(t) for the
generated drug efficacy function u(tn) using the specific pharmacodynamic formula
C(u(t)) as indicated in Table 1. Finally, we solve the linear system GC∗0 = C̃ for
C∗0 considering different values of time intervals between the drug administration,
characterized by the parameter τ = {2,4,6,8,10,12,24} hours. Overall, this allows
one to estimate the best-fit drug dosages vector C∗0 for different G(τ) and C̃(τ).

3.2. Results

We consider the stabilization problem for the HIV infection with the initial con-
ditions that differ from the target steady state values: [T,T ∗,V ] = [560,1,60]. We
set the duration of the therapy time Tcure = 250 days and find the solution of
the optimal feedback control problem on a uniform grid with a step (h) of one
hour (tn = n/(24Tcure)). The controlled dynamics of the viral load V (t,u(t)), un-
infected T (t,u(t)) and infected T-cells populations T ∗(t,u(t)) is shown in Fig. 1.

The closed-loop system is driven to the neighbourhood of the steady state xss.
The corresponding control (efficacy) functions u1,u2 are presented in Fig. 2.
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Figure 1. Stabilization of the HIV infection dynamics: (a) uninfected target CD4+ T-cells, (b) infec-
ted CD4+ T-cells and (c) viral load.
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Figure 2. The computed control functions driving the HIV infection to a target steady state: (a) effic-
acy function for RTI eRT I(t) = u1(t), (b) efficacy function for PI ePI(t) = u2(t).
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Figure 3. HIV infection dynamics for optimal- and time-constant control strategies: (a) uninfected
CD4+ T-cells dynamics for optimal control (OC efficacy function) T (t,u(t)) and constant controls
(CC) T̃ (t,AUC(u)), (b) infected CD4+ T-cells and (c) viral load dynamics under optimal efficacy
T ∗(t,u(t)), V (t,u(t)) and constant efficacy functions T̃ ∗(t,AUC(u)), Ṽ (t,AUC(u)) regimes.

Notably, for this scenario, RTI-type drug is not required in the treatment aimed
at the HIV infection stabilization of up to 120-th day, while the PI-type drug should
be administered in large quantities: for the first ten days the patient is supposed to
receive the drug amount that brings the efficacy function to almost 1. Then it should
be reduced by 50%. After 120 days the required drug efficacy level goes down to
0.14, whereas the effect of the first drug should ensure the efficacy function value
of about 0.43.

To examine the difference between the dynamic and static modes of control,
we present the solution to the HIV model under the assumption that the control
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Figure 4. Concentration functions of antiviral drugs computed from four different pharmacodynamic
models: (a) RTI-type drug, CRT I(t) = C(eRT I(t)). (b) PI-type drug, CPI(t) = C(ePI(t)).

functions take constant values equal to the mean values of drug efficacy function
x(t,AUC(u(t))) (the mean value AUC is the area under function curve divided by
therapy time, which are in our case AUC(u1)= 0.216 and AUC(u2)= 0.336). Figure
3 shows the optimally controlled and time constant control HIV infection dynamics.
The differences in the time course of the state variables between the optimal control-
and constant drug efficacy based therapy are quite substantial.

Using the computed efficacy functions, we proceed with the inversion of the
required control laws into the drug medication levels using four pharmacodynamic
models specified in Table 1. Figure 4 shows the kinetics of the drugs concentrations
for the different models. The drug concentration functions are rather close to the
efficacy function patterns (Fig. 2) although some smoothing of the sharp peak of the
PI control law takes place. The resulting functions for indirect link- and irrevers-
ible models appear to be quite similar to the emax model. The time-variant model
demonstrates the presence of a small linear growth phase in RII drug after 120 days
rather than a stabilization at a steady sate level. The observed behaviours suggest
that further analysis of the optimal drug dosage administration performed only for
the emax model will be sufficiently instructive.

To find the optimal doses of the ART drugs required to achieve the target con-
centrations specified by C(t) we proceed with the orthogonal projection algorithm
outlined in the previous section. To this end linear systems of equations with the
Gram matrix for the set of basis functions Γi(t) for every pharmacokinetic model
specified in Table 2 are generated. By solving the system of equations we get the
required values of C∗0 vector and the approximating drug kinetic profile CΓ(t).

Figure 5 gives an example of CΓ(t) behaviour during the first five days after
initiation of the PI-type drug therapy.

The behaviour of CΓ(t) for RTI of drug treatments is shown in Fig. 6. Here we
consider one-compartment model with absorption and the time intervals between
the drug intake ranging from 4 to 12 hours: τ = {4,8,12}.

Figures 5 and 6 also show the drug doses C∗0 administered sequentially at times
ti = iτ required to closely achieve the target concentration function C(t). One can



12 R. M. Tretyakova, A. Meyerhans, and G. A. Bocharov

t, days

0 1 2 3 4 5

C
(t

),
 n

g
/m

m
3

0

2

4

6

8

desired

achieved

administred

t, days

0 1 2 3 4 5

C
(t

),
 n

g
/m

m
3

0

2

4

6

8

10

desired

achieved

administred

t, days

0 1 2 3 4 5

C
(t

),
 n

g
/m

m
3

0

5

10

desired

achieved

administred

(a) (b) (c)
Figure 5. One-compartment model with absorption. The theoretical C(t) and attainable CΓ(t) drug
concentration kinetics for PI-type drug. The calculated medication doses C∗0 are shown by red circles
for various intervals (τ) between the drug administration: (a) τ = 4 hours, (b) τ = 8 hours, (c) τ = 12
hours.
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Figure 6. The concentration of the RTI-type drug suggested by the solution of the optimal control
problem C(t) and the best approximation to it attainable for the ’one-compartment with absorption’
pharmacokinetics model CΓ(t). The estimated doses C0 of the drug to be administered at the indicated
times: (a) τ = 4 hours, (b) τ = 8 hours, (c) τ = 12 hours.
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Figure 7. The long-term dynamics of the concentration of the RTI- (a) and PI-type (b) of the antiret-
roviral drugs suggested by the solution of the optimal control problem C(t) and the best approximation
to it attainable for the ‘one-compartment with absorption’ pharmacokinetics model CΓ(t) with a short-
interval between the administration of the drug τ = 2 hours.
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Table 3.
Approximation relative errors for RTI drug.

Model type, τ (hours) 2 4 6 8 10 12 24

1C 0.0485 0.1079 0.1633 0.2164 0.2671 0.3151 0.5426
1CA 0.0116 0.0342 0.0666 0.1077 0.1549 0.2057 0.4872
2C 0.0477 0.1061 0.1605 0.2126 0.2621 0.3090 0.5306
2CA 0.0158 0.0452 0.0841 0.1291 0.1767 0.2247 0.4706

Table 4.
Approximation relative errors for PI drug.

Model type, τ (hours) 2 4 6 8 10 12 24

1C 0.0502 0.1113 0.1655 0.2215 0.2729 0.3247 0.5540
1CA 0.0121 0.0352 0.0690 0.1142 0.1632 0.2106 0.4885
2C 0.0496 0.1100 0.1634 0.2186 0.2690 0.3200 0.5436
2CA 0.0135 0.0391 0.0743 0.1200 0.1666 0.2103 0.4549

observe that the values of C∗0 are decreasing with smaller τ values. Indeed with
shorter intervals between drug administrations larger quantities of the drug remain
in the body and consequently the required drug amount to reach the target level
becomes smaller. Obviously, the resulting drug concentration functions depend on
the τ value and differ from one another. One can examine the problem of finding
an optimal dosage interval τ . The optimality can be addressed by considering an
approximation criterion expressed as a relative error of the difference between the
target drug concentration and the achievable concentration function in the Euclidean
norm:

Rerr =
‖C−CΓ‖
‖C‖

, C = [C(t1),C(t2), ...,C(tN)]T , ti ∈ [0,Tcure], i = 1, ,N.

The relative approximation errors were computed for all pharmacokinetics models
and values of τ ranging from 2 to 24 hours. The results are presented in Table 3 for
RTI drug and Table 4 for PI drug. One can see that the optimal interval between
drug administration is the one with a minimal error. The tables show that the best
approximations for both drugs are obtained for the smallest τ values equal to two
hours between intakes. The models with absorption provide a better approxima-
tion. Figure 7 depicts the drug concentration functions for a long-term treatment for
one-compartment model with absorption (Tcure = 250 (days)). One can see that the
approximating concentration functions oscillate in the close vicinity of the target
theoretical functions in relation to the basic drug kinetics model Γ(t). The oscilla-
tions increase with increasing dosages C0 or with time intervals τ between the drug
intakes.

To verify the computed approximation CΓ(t) for the drug concentration func-
tion C(t) we solved numerically the minimization problem (2.2) for the functional
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Z(C0) using MATLAB function ‘fminunc’ with zero initial guess vector. By finding
the minimum values Ĉ0 = argmin(Z(C0)) we evaluated Cver = ∑

N
i=0 Ĉ∗0Γi to be com-

pared with the optimal projection based solution. The relative difference between
the two functions ‖CΓ−Cver‖/‖CΓ‖ appears to be less than 0.0002 for all mod-
els and τ values used in the analysis and by two orders smaller than the relative
approximation error.

4. Discussion

In the present study we examined the link between idealized control laws for the
HIV infection obtained via the application of the optimal control theory to math-
ematical models of HIV infection dynamics. This goes beyond existing approaches
towards computational modelling of HIV control which are based upon the assump-
tion that the efficacy or control function can take any value at all times. A compu-
tational algorithm was developed that enables to determine the drug dosages C0
that are required to achieve an optimal drug concentration C(t) to have the effic-
acy e(t) that stabilizes the viral load below a certain level V (t) 6 V̄ and unin-
fected CD4+ T-cells above a certain level T (t) > T̄ . The algorithm approximates
the effect of theoretical control functions by an optimal drug administration regime
with the dose of the drug being an optimized parameter. The dependence on time
intervals between the drug administration was explored. The developed algorithm
has a modular structure so that the specific HIV infection dynamic model or the
pharmacokinetics/-dynamics model of the drugs can be replaced by refined ones.
Our results indicate that in order to ensure a good approximation of the drug con-
centration kinetics suggested by the optimal control of the infection dynamics the
intervals between the drug administration should be smaller and a two-fold reduc-
tion leads to a proportionate decrease in the relative error of the approximation. The
pharmacokinetics models with absorption provide a better approximation to the tar-
get concentration profile than those without absorption.

Previous mathematical modelling studies on HIV dynamics and control con-
sidered the effect of drug treatment through an idealized ‘efficacy’ or control func-
tion term. In medical practice, the drug administration is constrained by the ap-
proved protocols and is based on prescription of standard doses of ART drugs in
a regular manner [16]. In addition, the drug action is constrained by the pharma-
cokinetics and pharmacodynamics of the drug. Special clinical studies need to be
conducted in order to identify the functions describing the drug efficacy and the
kinetics of the drug in the body.

The design of patient-individual dosing regimes for HIV infection treatment re-
mains a challenge. Further progress in this direction requires the parameterization
of the side effects and the cost of the drugs, and considerations of multiscale regu-
lation of virus infection and immune response dynamics. The first study along these
lines was presented recently in [8]. Another important direction of analysis will be
to explore the optimal drug administration regimen by varying both the dose and the
timing between the interventions. Finally, our approach will be extended to consider
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the practically used therapies based on the combination of three and more antiviral
drugs and to include immunomodulatory treatments.
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