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Virtual blunt injury of human thorax: age-dependent
response of vascular system
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Abstract — This work is the numerical study of the age-dependent responses of the vascular sys-
tem under low-mass high-speed impact scenario. The grid-characteristic method on the adaptive mesh
model of the human thorax is the numerical tool of the study. Due to the lack of valid vascular in-
jury criteria, the numerical model only provides information on injury risk. The numerical simulation
demonstrates that an older age changes significantly the vascular response and increases the risk of
aorta injury. We focused on the aorta because its rupture is the general consequence of vehicle ac-
cidents (great mass impacts at relatively low velocity). Our numerical results are in good agreement
with previous studies of great-mass low-speed blunt thorax impact.

Keywords: Grid-characteristic method, human thorax model, blunt ballistic impact, vascular injuries,
age dependence.
MSC 2010: 74L15, 92C10

The study of human thoracic impact responses has attracted considerable interest.
The most of the works on blunt thoracic impact describe its biomechanics in auto-
motive area where great mass impacts at relatively low velocity. The different im-
pact scenario occurs in several sports (hockey, solid sports ball) or with special type
of non-lethal munition used as a means of individual or crowd control. This scen-
ario implies impacts of low-mass at high-velocity. Biomechanics of such impact
and injury criteria differ from those seen in automotive research [1,3]. For example,
according to Bir [3], the same skeletal injuries are caused by a lower rate of com-
pression in the case of blunt ballistic impacts than in automotive case. Thus, direct
relationship between two scenarios for injury mechanisms is not clear and injury
assessment criteria for blunt ballistic impact should be elaborated in its own right.
In particular this is important for the design of chest protectors.

Blunt injuries of great blood vessels are general consequences of vehicle acci-
dents: traumatic aorta rupture is the second cause of death after brain injuries [2]. In
case of low-mass high-velocity impact scenario, vascular injuries is uncommon phe-
nomenon. Vascular injuries can be asymptomatic, however, this kind of injury leads
to a significant increase in mortality [9]. Rapid identification of traumatic vascular
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injuries is required for mortality reduction.
This study investigates age-dependent responses of great blood vessels in case

of blunt ballistic impact. For such type of scenario, limited data on physiologically
acceptable response are available [1, 3, 4]. Therefore, a mathematical model can
provide information on injury risks rather than injury forecast. Moreover, the model
allows us to obtain a probable region of vessel damage after blunt ballistic impact.

The dynamic responses and injuries of thoracic viscera and vessels have been
studied using human cadavers, mechanical dummies and mathematical models.
Many studies simulate thorax compression to predict injury risk by finite element
method [21]. We use a grid-characteristic numerical method to solve the dynamic
impact problem [16]. This approach takes into account specific features of hyper-
bolic equations and allows to achieve high accuracy for wave solutions in hetero-
geneous media.

The outline of the remainder of the paper is the following. In Section 2 we recall
the governing equations for dynamic processes in solids and introduce the grid-
characteristic method. The results of numerical experiments for dynamic problems
are presented and discussed in Section 3. Section 4 collects a few closing remarks.

1. Mathematical model of dynamic processes in solids

General dynamic equations for deformable body in the Cartesian coordinate system
(x1,x2,x3) have the following form:

ρ v̇i =
3

∑
j=1

∇ jσi j + f (b)i in Ω (motion equations)

σ̇i j =
3

∑
k,l=1

qi jkl ε̇kl +Fi j in Ω (rheological equations)

where Ω is the domain occupied by solid, ρ is the density, vi is the ith component
of the velocity v, σi j and εi j are the components of the stress tensor σ and deform-
ation tensor ε , respectively, ∇ j = ∂/∂x j is the jth component of the gradient, f (b)i
is the component of the body force f(b), tensor with components qi jkl determines
the rheology of the medium, Fi j is a right-hand side that can be used to account
viscoelasticity.

The initial conditions correspond to the unstressed state of rest

v|t=0 = 0, σ |t=0 = 0 in Ω.

The boundary conditions are balancing the given exterior pressure p(t) imposed to
a boundary patch ω:

(σn,n) =−p(t) on ω (1.1)

and traction-free on the rest of the boundary

σn = 0 on ∂Ω\ω (1.2)
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where n is the unit exterior normal vector to ∂Ω.
Almost all living tissues have nonlinear- and anisotropic mechanical properties.

Moreover, these properties of most living tissues of an individual vary significantly
with age, gender, physical conditions. Experimental studies of postmortem materials
only approximate properties of most human living tissues. In vivo characterization
of thoracic viscera and vessels lacks for static and dynamic experiments; this being
so, following other researchers we choose the basic linear material laws (1.1).

For small strains, tensor ei j = ε̇i j can be expressed in the following form:

ei j =
1
2
(∇ jvi +∇iv j). (1.3)

Equations of motion and rheological relations (1.1) can be rewritten in a simple
matrix form:

∂u
∂ t

+Ax1

∂u
∂x1

+Ax2

∂u
∂x2

+Ax3

∂u
∂x3

= f (1.4)

where u = (v1,v2,v3,σ11,σ12,σ13,σ22,σ23,σ33)
T is the vector of variables, f is the

right-hand side vector of the same dimension, Ax1 , Ax2 , Ax3 are matrices of the ninth
order.

For linear elasticity, tensor components qi jkl and right-hand side components Fi j
in (1.1) have the following form:

qi jkl = λδi jδkl +µ(δikδ jl +δilδ jk), Fi j = 0 (1.5)

where λ and µ are Lame parameters, and δi j is Kronecker symbol. In this case,
since we neglect the body force components, the right-hand side of (1.4) becomes
zero.

The system of hyperbolic equations (1.4) is solved numerically by the grid-
characteristic method. The main idea of the method is the following. The three-
dimensional system (1.4) is split by space variables. More precisely, (1.4) is replaced
with three systems of one-dimensional hyperbolic equations

∂u
∂ t

+Axi

∂u
∂xi

= 0. (1.6)

These systems are solved sequentially by fractional time steps, the solution of
the previous system is used as the initial state to solve the next one. This approach
allows us to simplify numerical implementation and obtain better computation per-
formance. The approximate solution of each system of one-dimensional hyperbolic
equations at the nth time step is sought as a grid function with values un

m colloc-
ated in mesh nodes and mesh mid-edges. The computational mesh is assumed to
be conformal tetrahedral, and the grid function is extrapolated quadratically in each
tetrahedral cell.

Matrices Ax1 , Ax2 , Ax3 are diagonalizable and can be represented as:

A= B−1DB.
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Here indices xi are omitted for simplicity, B is a matrix composed from left eigen-
vectors bT

j of matrix A:

bT
j A= λ jbT

j , or AT b j = λ jb j (1.7)

while D= diag{λ j} is the diagonal matrix of corresponding eigenvalues.
Premultiplying (1.6) by B, we get the system

∂Bu
∂ t

+D
∂Bu
∂xi

= 0

which in the Riemann invariants r = Bu becomes

∂r
∂ t

+D
∂r
∂xi

= 0.

Thus, the original system of equations (1.6) is split into n separate equations:

∂ r j

∂ t
+λ j

∂ r j

∂xi
= 0 (1.8)

and the solution for (1.6) can be composed of independent waves with propagation
speeds λ j.

Let characteristic curves Γ be defined by

dxi

dt
= λ j. (1.9)

Equations (1.8) along Γ take the form

dr j

dt
= 0 (1.10)

and the Riemann invariants are constant along curves Γ. Therefore, their values at
the (n+1)th time layer and at the nth time layer are the same along these curves.

The grid-characteristic method for computing un+1
m at point xn

m performs sequen-
tially the steps for i = 1,2,3:

1. Compute eigenvalues λ j for the matrix A=Axi and corresponding character-
istic curve Γ j using (1.7)–(1.9).

2. For each characteristic curve Γ j find the point xn
j∗ on intersection of Γ j with

time layer tn.

3. Define un
j∗ in xn

j∗ by quadratic interpolation in mesh tetrahedron containing
xn

j∗ and slope limiting as described in [16].
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4. Compute the jth Riemann invariant rn
j∗ in the point xn

j∗ using the values un
j∗.

This invariant is extrapolated along Γ j to the point xn
m: rn+1

jm = rn
j∗. Define rn+1

m

from components rn+1
jm .

5. Find the values un+1
m

un+1
m = B−1rn+1

m .

Importantly, different components of vector rn+1
m are computed in different points

xn
j∗.

Once the vector un+1
m is computed, the grid-characteristic method updates the

mesh nodes:
xn+1

m = xn
m +∆tvn+1

m (1.11)

and the computational mesh is Lagrangian. The positions of mesh mid-edges are
recalculated by averaging the positions of the edge endpoints rather than by (1.11).

Modelling of bodies composed of materials with substantially different rheolo-
gical and mechanical properties requires the accurate solution of the contact prob-
lem: wave interactions and reflections from material boundaries affect the deforma-
tions and stresses. The grid-characteristic method allows us to set contact boundary
conditions explicitly. This approach gives higher precision compared to approaches
with implicit treatment of contact boundaries. The conditions on a contact bound-
ary are set in the form of relations between variables at two adjacent points on the
contacting boundaries. In this paper full-adhesive conditions are used:

v = v′, σn = σ
′n. (1.12)

The variables with and without primes correspond to the opposite contacting sur-
faces.

The grid-characteristic method offers the following advantages. Impact loads
cause wave process in the medium, and high accuracy methods are required for
the solution of dynamic problems. The method is designed to simulate physically
correct propagation of waves with high accuracy. The accurate solution of contact
problems for tissues with significantly different mechanical properties allows to re-
cover wave propagation across multiple contacts in human thorax.

2. Numerical results

We used Visible Human Project (VHP) [22] data to construct the discrete thorax
model. The initial segmentation was performed for the torso region of a human
body [7,8]. The torso model was truncated to the thorax region, and Table 1 presents
the main organs and tissues of the thorax model. The resolution of the segmented
model is 1 mm and does not resolve vessel walls. The vasculature includes the inner
domain occupied by blood and is marked with the same material.
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Tissues

Aorta

Blood

Veins

Trachea

Muscles

Lungs

Liver

Heart

Fat

Digestive

Diaphragm

Bones

Figure 1. Anatomical thorax model: the segmented model and the saggital cross-section of the com-
putational mesh.

Figure 2. Thorax view, green box and arrow shows impact area and direction: coronal, saggital and
transverse planes.

Accounting blood in the vasculature and the heart is important for the impact
simulation; however, resolution of all great vessel walls brings about excessive mesh
refinement and computational time. This work is the preliminary numerical study of
vascular response, and we focus on the aorta as the most injured vessels in vehicle
accidents. We consider two models of aorta: aorta is a solid structure and aorta
is a vessel filled with blood. The first model extends mechanical properties of the
aorta wall to the entire structure. The second model distinguishes aorta walls and
blood inside aorta. The blood region in aorta is generated artificially so that the
wall thickness is 2 mm. The walls were reconstructed only in the part of aorta with
diameter larger than 12 mm. The other vessels are assumed homogeneous in this
study.

The computational mesh is generated by the Delaunay triangulation algorithm
from the CGAL-Mesh library [18]. This algorithm enables defining a specific mesh
size for each model material. In order to preserve geometric features of the segmen-
ted model while keeping the number of cells feasible, we assign a smaller mesh size
to blood vessels and a larger mesh size to fat and muscle tissues. An example of
tetrahedral mesh adapted to blood vessels is presented in Fig. 1. The computational
mesh contains 1 019 029 tetrahedra and 169 255 nodes. The mesh size ranges from
1 mm in vessels to 6 mm in fat and muscles.

All tissues and organs are considered to be elastic. Static and dynamic mod-
uli of the soft tissue may differ significantly. Experimental studies for soft tissues
are mostly performed for static loadings. In our computations, we use static moduli
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Table 1. Mechanical properties of tissues and organs [11, 14, 19].

ρ , kg/m3 λ , MPa µ , MPa

Fat 1000 1.0e+00 7.5e−01
Muscles 1000 3.1e+00 2.1e+00
Bones 1000 7.7e+02 1.1e+03
Lungs 600 2.9e−02 7.1e−04
Diaphragm 1000 5.8e+00 3.6e+00
Liver 1200 2.4e−01 6.1e−02
Trachea 2000 1.4e+01 3.6e+00
Oesophagus 1200 7.1e+00 1.8e+00
Heart 1000 2.4e−01 6.0e−02
Blood 1000 2.4e−01 5.0e−04
Arteries (20-year-old) 1000 6.0e+00 1.6e−01
Veins (20-year-old) 1000 1.6e+01 3.5e−01
Arteries (40-year-old) 1000 9.2e+00 1.9e−01
Veins (40-year-old) 1000 3.3e+01 6.7e−01
Arteries (60-year-old) 1000 1.9e+01 3.9e−01
Veins (60-year-old) 1000 5.6e+01 1.1e+00

presented in previous blunt thoracic impact studies [11, 14, 19]. Mechanical prop-
erties of tissues and organs are presented in Table 1. Age-dependent vessel stiffness
is based on data from [5].

We simulate the direct impact to thorax as boundary condition (1.1) imposed on
a small square patch ω on the thorax surface ∂Ω (see Fig. 2). The impact energy is
8.0 kJ that corresponds to the energy distributed by a bulletproof vest after a rifle
shot. The rest of the thorax surface is assumed to be traction-free (1.2). We treat the
external force as pressure imposed on the impact area for 134 microseconds.

In failure mechanics two stress-based criteria are conventional: the von Mises
criterion and the maximum principal stress criterion. The von Mises stress σmises is
defined by

σmises =

√
(σ1−σ2)2 +(σ2−σ3)2 +(σ3−σ1)2

2
(2.1)

where σ1 > σ2 > σ3 are the principal stresses.
According to the von Mises criterion, the failure occurs when von Mises stress

exceeds the ultimate stress σu,m > 0:

σmises > σu,m. (2.2)

According to the maximum principal stress theory, failure occurs when the max-
imum principal stress exceeds the value of the ultimate stress σu,1 > 0 in simple
tension:

σ1 > σu,1. (2.3)

The ultimate stresses σu,m, σu,1 are material constants and should be properly de-
termined. Unfortunately, in soft tissue mechanics these constants are not well estab-
lished and both failure criteria can not be used.
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Figure 3. Velocity modulus for 8 kJ strike at different time points (18 mcs, 3.6 ms, 7.2 ms, 10.8 ms,
14.4 ms, 18 ms). On the top - a slice in the saggital plane, at the bottom - in the transverse plane; 40
years age group. The velocity unit is cm/sec.
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Figure 4. Comparison of aorta models for 60 years age group: maximum von Mises and maximum
velocity modulus observed in simulation; two-sides views. On the left: homogeneous model (wall
material occupies entire vessel); on the right: aorta filled with blood. Stress and velocity units are Pa
and cm/sec, respectively.

Using grid-characteristic method we obtain distributions of stress and velocity
at the nodes of the computational mesh for different age groups. The results allow us
to find maximum von Mises stresses, maximum tensions and maximum velocities
over the simulation time:

max
t>0

σmises, max
t>0

σ1, max
t>0
|v|

and analyze them as functions of x.
Figure 3 presents characteristic wave patterns at different time moments. As

one can see, elastic waves propagate in lungs much slower than in other organs
and tissues: everywhere waves already dissipated by the time when the primary
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Figure 5. Aorta age-dependent response. Two-sides views for distribution of maximum von Mises
stress observed in simulation: 20 years age group (left), 40 years age group (middle), 60 years age
group (right). Stress unit is Pa.
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Figure 6. Distribution of the maximum von Mises stress observed in simulation (upper row) and the
maximum tension observed in simulation (bottom row) for the non-tubular model of the vasculature,
60 years age group. Stress unit is Pa.
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wave sweeps across the lung. The result can be related to the fact that pulmonary
contusion is one of the main injuries caused by a blunt ballistic impact [3].

We compare velocity and stress distributions for different aorta elastic models
(see Fig. 4). According to the simulation results, blood incorporation distresses sig-
nificantly the aortic wall and changes the velocity field. In the case of the tubular
aorta model, the maximum values of the von Mises stress reduce by 25% and the
maximum values of the velocity magnitude increase by 20%. At the same time, the
velocity and stress distributions do not differ significantly in the three major aorta
branches. Such similarity is conditioned by the non-tubular representation of the
branches in both aorta models because of numerical difficulties discussed above.
In the following analysis we will focus on the aortic wall within the tubular aorta
model.

Figure 5 presents age-dependent responses of the aortic wall. As one can see,
aging leads to the increase of the maximum von Mises stress. To the best of our
knowledge, no studies on the age-dependent ultimate stress σu,m are available in
the literature; however, similar research on the age-dependent dynamic tension
strength [15] allows us to assume that the ultimate stress σu,m decreases with aging.
Therefore, the increase of the maximum von Mises stress with age implies increas-
ing risk to injury. The maximum von Mises stress for 40 years age group is in av-
erage 50% higher than that for 20 years age group; the maximum von Mises stress
for 60 year-old group is in average 30% higher than that for 40 year-old group. If
we assume that σu,m is not age-dependent (conservative assumption), the factor of
safety decreases each twenty years in average by 28%. This conclusion on age de-
pendency of the safety factor correlates with high mortality in elderly group (age
above 55 years) caused by blunt traumatic thoracic aortic lacerations [6].

The regions of high von Mises stresses are in a good agreement with previous
numerical results on blunt traumatic aorta rupture [17]. We can highlight three main
aortic wall areas with maximum (over simulation time) value of the von Mises stress
(see Fig. 5): peri-isthmus region, region of contact with bones and ascending aorta.
The regions of high von Mises stresses occur for two reasons. The first one is a
surface wave of high amplitude that propagates along traction-free bottom bound-
ary of the thorax (see upper row of Fig. 3). The second reason is the full-adhesive
contact of aorta with the vertebral column condition (1.12). According to clinico-
pathological studies, the primary site of the aortic ruptures caused by vehicle acci-
dents is peri-isthmus region [10,12,20], although any portion of the thoracic aorta is
at risk. Therefore, the computed von Mises stress is in accordance with the numer-
ical results and clinico-pathological studies for great-mass low-velocity impacts.

A high aortic wall tension is one of possible reasons of traumatic aortic rupture.
According to our numerical results, the maximum value of tension among all ages
(about 116 kPa) is far less than the failure threshold for aorta (2800 kPa [15]). Thus,
in the considered impact scenario, the wall tension does not cause aortic rupture.

Non-tubular solid models of entire vasculature can be used for qualitative ana-
lysis of the thoracic impact response as well. For instance, within this model age
plays the similar role and facilitates the injury. Moreover, distribution of stress for
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vena cava is similar to that for the aorta (see Fig. 6). Therefore, in the scope of the
considered impact scenario, vena cava, similarly to aorta, is at risk of injury. This is
in agreement with findings [13].

3. Conclusions

We studied numerically the age-dependent responses of the vascular system under
low-mass high-speed impact scenario. Our tool is the grid-characteristic method
on the adaptive mesh model of the human thorax. This work is the preliminary
study of the vascular system response for such type of impact. Due to the lack of
valid vascular injury criteria the mathematical model provides only information on
injury risk. We focused on the aorta because its rupture is the general consequence
of vehicle accidents. Our numerical results are in good agreement with previous
studies of great-mass low-speed blunt thorax impact. The risk of injury for the other
vessels will be considered in the future work.

In our study we considered passive mechanical properties of soft tissues. It is
well-known that elastic moduli of cardiovascular system vary during the cardiac
cycle. At present stage of our research we did not take into account such variab-
ility of mechanical properties. Also, in future studies we will treat soft tissues as
viscoelastic material, that is more physiologically correct.

According to our numerical model, older age changes significantly the vascu-
lar response and increases the risk of injury. Apart of traumatic vascular rupture,
possible blood vessel subfailures (e.g. pseudo-aneurysm, dissection) should be ex-
amined. Severe vascular injuries may occur without vivid clinical manifestations,
and the outcome of injuries is unpredictable and unfavorable. Our results indicate
that the older is the person, the more demanding is early diagnosis.
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