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Hybrid cellular automaton method for homogeneous
tumour growth modelling

K. M. Zapolski∗, Yu. B. Admiralskiy∗, and A. S. Bratus∗†

Abstract — In this paper a discrete planar model of the tumour growth is presented. The model is
based on hybrid cellular automaton and describes the tumour in a homogeneous tissue. The tissue con-
sists of healthy cells and can have irregular vasculature. The model simulates proliferation processes
and necrotic cells appearance which depends on the oxygen supply. There exists a stable solution,
which may be used as an approximation of the tissue. Described HCA model can be extended with
angiogenesis, nutrients and factors fields.
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1. Introduction

Cancer is one of the most common reasons of death in many countries of the world.
It is the case, because tumour is a very inconvenient object to detect and cure. Today
it is hard to detect tumour while it is small. Modern tests for tumour markers may
help find cancer in healthy or high-risk people before symptoms develop, however
the presence of the marker alone is not enough to diagnose cancer. Another problem
lies in types of cancer treatment. Chemo or radiation therapies cause healthy cells
death and need to be used with care. That’s why we need good tumour models
which can predict tumour reaction to treatment and help find out new signs of cancer
presence.

The most essential property of cancer tumour is its fast growth. Methods of tu-
mour growth modelling often use continuous dynamic models. Despite undoubted
progress in that area, many mathematical and modelling problems remain. Diffi-
culties with continuous models make researchers look for other modelling methods.
For example discrete models, which are based upon cellular automata, are widely
used.

The article is dedicated to the tumour growth model which is based upon the
hybrid cellular automata (HCA) approach. The model describes the tumour growth
dependence on the oxygen supply. In the first part the HCA construction method
is described. It combines the discretized classical diffusion equation with cellular
automaton. Such an approach helps us to avoid a postulation of oxygen field rules
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and shows the role of cellular automaton in the model. In the second part some
model simulation results are given. They describe the typical behaviour of obtained
solutions.

1.1. Existing models review

The cancer modelling has a long history. There are many cancer modelling ap-
proaches, which are based on different mathematical methods (see [9, 15]). This
paper is dedicated to the tumour growth modelling. There are many types of tu-
mours and each type has its own properties. Some papers are devoted to the solid
tumour modelling (see [3]). We can also find articles which describe general aspects
of tumour growth (see [6]). In the following sections we give a short review of such
models.

1.1.1. Continuous tumour growth models. Today the most part of continuous
tumour growth models can be separated into two classes: the lumped element model
and the distributed element model.

In practice researchers use the lumped element models when they are inter-
ested in tumour cells count or other tumour integral characteristics. In such models
the whole tumour is considered as a single object. It is useful to describe tumour
response to the treatment (chemotherapy and etc.). However such models do not
describe the distribution of tumour in space or shape. In these models the dynam-
ics of tumour growth is described by ordinary differential equations (ODEs) system
with tumour parameters as variables. It provides us with good analytical methods to
predict the system evolution. One of the system variables is often a cell count, but in
some papers different cell classes are marked out. For example in [13] all the cells
were separated into two classes according to their cell-cycle states.

The other way to describe tumour is the distributed element model. The para-
meters of tumour (density for example) are distributed continuously throughout
space. It provides the way to describe the behaviour of separate parts of tumour.
This model can give a proper account to distribution and uptake of oxygen, nutrients
and production of carbon dioxide in tumour. However it is hard to describe some
tumour characteristics with such models (for example, the solid tumour borders),
because they operate with partial differential equations (PDEs). The distributed ele-
ment model of infiltrative tumour is used in [12] to obtain growth rate dependence
on oxygen amount. In [2] such a model is used to describe the cancer cell invasion
of healthy tissue.

There are also papers where a hybrid model is used. Such a combination of
continuous lumped and distributed element models can help describe drug delivery
processes (see [7]).

1.1.2. Discrete models. On the one hand ODE systems are unable to describe
tumour spatial structure. On the other hand PDE systems don’t provide any intuitive
way to describe some tumour growth aspects. For example in [5] the multicellular
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spheroids growth is described by using a free boundary-value problem. Nowadays
such problems need serious simplifications to be analyzed. These disadvantages of
continuous models make researchers propose other models of tumour proliferation.

Many papers are devoted to discrete models. In [10] the cellular automaton for
proliferation modelling was used. In [1] the influence of oxygen concentration to
the cell colony growth was described by using hybrid cellular automaton. In our
work we describe the construction and solutions behaviour of similar model with
irregular vascular network.

1.2. Hybrid cellular automaton

The cellular automaton is an idealized model of physical system with discrete space
and time. The base of the model is the square grid of elements which are called
cells. Each cell has its own coordinates r̄ and cell state S. The state can represent
any characteristic of the cell, but the set of all the states S must be a finite set. Each
cell has the neighbourhood set which consists of the cells with coordinates r̄ in the
grid:

N (r̄) = {r̄+∆i | i = 1, . . . , N} .
Over time, changes in cell states put together the evolution of the whole system (in
our paper we consider only synchronous CA):

Sn(r̄) = R(Sn−1(r̄), Sn−1(N (r̄))) .

In the case of the finite grid we need to define how to process the boundary cells.
Boundary cells processing rules are called boundary conditions.

The cellular dynamics in real tissue depends on many factors: nutrient and toxin
amount, temperature. etc. We can consider these factors as fields. The field itself can
be modeled with asynchronous CA (see [4]). But in our research the other way —
hybrid cellular automaton (HCA) is used. The HCA is a model where the classical
CA is combined with some field (which is not modeled by CA). This extension of
the classical automaton provides the ability to consider the global characteristics of
the problem. The HCA basics and some applications are described in [16].

Assume that the state of the cell can be presented as the vector [SD1 , SD2 . . . , SDN ]
T .

The hybrid automaton cell will have the state:

S = [SD1 , . . . , SDN , SF1 , . . . , SFM ]
T .

Vector components SD1 , . . . , SDN are the design variables, components SF1 , . . . , SFM

are the field variables. The field influences the local transition rules of cellular auto-
maton and may change over time.

2. Model description

We consider a 2D model for visualization purposes, but there are no principal limita-
tions that prevent us from generalizing it for the 3D space. The model is kept simple
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in order to make the description of mathematical aspects of construction clear. It
doesn’t consider angiogenesis, tumour invasion or immune system reaction.

In the model we consider small tumours which contains several hundred up to
several tens of thousands of cells (≈ 5 mm2). In that scale we assume the tumour and
surrounding tissue to be homogeneous, where cells put together a regular structure
(so the cell density changes insignificantly) and have similar characteristics (size,
oxygen uptake rate and etc.). These conditions provide an ability to represent tissue
cells and capillaries by CA elements in square lattice. Capillaries supply tissue and
tumour cells with oxygen and can form an irregular network. We concentrate on the
aerobic respiration, so model describes tumour cells dynamics dependence only on
oxygen extraction and uptake. Respiration is the main energy source for cells which
are located near capillaries.

We consider a rectangular region of tissue (or extracellular matrix) with a tu-
mour inside it. All cells are contained in rectangular domain D. The origin of co-
ordinates is in left-down vertex of rectangle. Each point of the rectangle D has co-
ordinates x̄ = [x1, x2]

T > 0.

2.1. Periodical functions

To describe the field discretization properties we need to define fluctuation func-
tions.

Definition 2.1. Function ϕ(x̄), where x̄ ∈ Rn is the fluctuation function if it ful-
fills two conditions:

(1) has limitation: |ϕ(x̄)|<C for all x̄ ∈ Rn;

(1) has compact support B: ϕ(x̄) = 0 for all x̄ /∈ B⊂ Rn.

If B is a convex compact and 0̄ ∈ B we can define a periodical fluctuation. Let
us consider r̄0 ∈ Rn and R ∈ Rn×n. The r̄0 and R must fulfill the condition:

R =


... . . .

...
r̄1, . . . , r̄n
... . . .

...

 , r̄1, . . . , r̄n — basis vectors

r̄0 = c1r1 + . . .+ cnrn, |ci|< 1, i = 1, . . . , n.

In the area D we consider the subset of vectors:

K [r̄0, R, D] =

{
[k1, . . . , kn]

T ∈ Zn
∣∣ r̄0 +

n

∑
i=1

kir̄i ∈ D

}
.

Area D is a limited set, so |K [r̄0, R, D]| = NK < +∞. For all the pairs r̃1 = r̄0 +
∑

n
i=1 k1iri and r̃2 = r̄0 +∑

n
i=1 k2iri, where r̃1 =/ r̃2 and k1, k2 ∈ K [r̄0, R, B], there
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exists r > 0 which fulfills the condition:

‖r̃1− r̃2‖=

∥∥∥∥∥ n

∑
i=1

(k1i− k2i) x̄i

∥∥∥∥∥> 2r.

We also demand the matrix R to fulfill the condition:

r > rb = max
x∈B
‖x‖ .

In Minkowski addition notation it means:

(r̃1 +B)∩ (r̃2 +B) =∅.

For these objects r0, R, B, ϕ(x̄) the following function can be defined on area D:

ϕ̃ [r̄0, R, B] (x̄) =


ϕ(x̄− r̃), x ∈ (r̃+B)

r̃ = r̄0 +
n
∑

i=1
kir̄i, [k1, . . . , kn]

T ∈ K [r̄0, R, B]

0, otherwise.

For each fluctuation function specified on compact B the following operator can
be defined:

·̃ [r̄0, R, B] : ϕ(·)→ ϕ̃ [r̄0, R, B] (·).
The interpretation of ϕ̃ [r̄0, R, B] (·) is quite simple: with every vector k ∈

K [r̄0, R, B] the location r̃ = r̄0 + ∑
n
i=1 kir̄i can be associated, and ϕ̃ [r̄0, R, B] (·)

equals to the value of ϕ(x̄) if the r̃ is the origin of coordinates (we remember that
0̄ ∈ B). The function has support which is a subset of a ball with center 0̄ and radius
r. Supports for two different locations do not intersect, and that’s why the function
ϕ̃ [r̄0, R, B] (·) is determined explicitly.

Let us enumerate all the elements:

K [r̄0, R, D] =
{

k̄1, . . . , k̄NK

}
and consider a function:

C̄(x̄, ȳ) = [C1(x̄, ȳ), . . . ,CNK (x̄, ȳ)]
T ∈ RN , x̄ ∈ B.

Here ȳ are parameters. So the following operation can be defined:

C̄(x̄, ȳ) · ϕ̃ [r̄0, R, B] (x̄)=


Ci(x̄− r̃i, ȳ)ϕ(x̄− r̃i), x ∈ (r̃i +B)

r̃i = r̄0 +
n
∑
j=1

ki j r̄ j, k̄i = [ki1, . . . , kin]
T ∈ K [r̄0, R, D]

0, otherwise.

The example of fluctuation function ϕ(x, y) is shown in Fig. 1 (the border of the
set B is shown as a red line). The result of ϕ̃[r̄0, R, B](x, y) is shown in Fig. 2, where

D = (0, 10)× (0, 10) , B =
{
(x, y)

∣∣ x2 + y2 6 1
}

r̄0 = [1, 1]T , R =

[
4 0
0 4

]
.
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Figure 1. Fluctuation function in R2.
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Figure 2. Periodical fluctuation function in R2.

2.2. Oxygen field

The oxygen concentration u(x̄, t) is defined on the set D̄× [t0, T ]. Oxygen is ex-
tracted by capillaries and is consumed by cells. The oxygen field behaviour can be
described by the diffusion equation:

∂u
∂ t

= ∇(F(x̄, t)∇u)+E(x̄, t), x̄ ∈ D, t ∈ (t0, T ] . (2.1)

Boundary conditions are:
u(x̄, t0) = u0(x̄), x̄ ∈ D̄
∂u
∂ n̄

(x̄, t)
∣∣∣∣
x̄∈∂D

= a(x̄)|x̄∈∂D , t ∈ [t0, T ] .

Here E(x̄, t) and F(x̄, t) are continuous on D̄ at every t ∈ [t0, T ] and piecewise con-
tinuous function on [t0, T ] with a finite number of singularities (so it has a piecewise
smooth solution); u0(x̄) is continuous on D̄; a(x̄) is continuous on ∂D. The equation
(2.1) is a very rough approximation of real oxygen field. However similar oxygen
field models are used to obtain values from experimental data in some papers (for
example in [8]). The equation is linear, that’s why E(x̄, t) (and the solution also) is
able to be negative. Because of that we can’t use it in PDE based continuous model.
But we will show how the CA presence changes the situation.

First of all the classical partial differential equation describes the field, which
is continuous over time and space. However, the CA is discrete, so we need to
discretize the equation. Let us consider a rectangular domain D which has width Lx1

and height Lx2 . We also assume that there exist numbers K, M ∈ N for which:

Lx1

K
=

Lx2

M
= ∆x.

We can separate D into N = K M square subareas Di j according to the rule:

Di j =
{
[x1, x2]

T
∣∣∣ x1 ∈ ((i−1)∆x, i∆x) , x2 ∈ (( j−1)∆x, j∆x)

}
.
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For each area Di j there is a unique corresponding CA element Si j ∈S . Assume that
CA transits into the following state at the moments:

t0 +∆t, t0 +2∆t, . . . , t0 +Z∆t, ∆t =
T − t0

Z
, Z ∈ N.

Coefficients in (2.1) will have singularities at these transition points. Cellular auto-
maton has N = K M cells and it passes Z +1 states on segment [t0, T ].

Fluctuation functions can describe heterogeneity of oxygen diffusion and ex-
traction (uptake) rate inside the cell. The homogeneity of tissue means that fluctu-
ation functions are the same for all the cells. We consider convex compact B ∈ R2

which fulfills the following conditions:

(1) 0̄ ∈ B;

(2) limitation condition: B⊂
(
−∆x

2
,

∆x
2

)
×
(
−∆x

2
,

∆x
2

)
.

In that case set B has the following property:

B−
[

∆x
2
,

∆x
2

]T

+[i∆x, j∆x]T ⊂ Di j. (2.2)

Cells consume and extract oxygen and may have variable diffusion coefficient. To
describe these characteristics we define in B continuous fluctuation functions ψ(x̄)
and ϕ(x̄). For ϕ(x̄) there are additional conditions:

(1) non-negativity: ϕ(x̄)> 0, where x̄ ∈ B;

(2) has an integral:
∫

B ϕ(ξ ) dξ = 1.

By using the operation defined in Subsection 2.1, we can rewrite (2.1) more exactly:

∂u
∂ t

= ∇((F0 + F̄(t) · ψ̃[r̄0, R, B](x̄))∇u)+C̄(t) · ϕ̃[r̄0, R, B](x̄) (2.3)

where C̄(t) and F̄(t) are piecewise constant and:

F0 + F̄(t) · ψ̃[r̄0, R, B](x̄)> 0, (x̄, t) ∈ D× [t0, T ]

r̄0 =

[
∆x
2
,

∆x
2

]T

; R =

[
∆x 0
0 ∆x

]
.

Now we can mathematically express what the ‘homogeneity’ of tissue in the
model means:

(1) tissue cells put together a rectangular lattice. So it’s possible to separate area
D into a set of regions Di j, and there is a unique cell which is located in each
region;

(2) the oxygen field equation inside the tissue can be described in the form (2.3).
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2.2.1. Field discretization. The equation (2.3) can be discretized. We assume that
u(x, t) is a solution of (2.3).

(1) Instead of u(x̄, t) we consider new variables Qi j(t):

Qi j(t) =
∫

Di j

u(ξ , t)dξ .

Variable Qi j(t) can be interpreted as an amount of oxygen inside Di j at the
moment t.

(2) We integrate equation(2.3) on area Di j and use Kelvin–Stokes theorem:∫
Di j

∂u
∂ t

(ξ , t)dξ =F0

∫
∂Di j

〈∇u, n〉(ξ , t)dξ +Fi j(t)
∫

∂Di j

〈ψ̃[r̄0, R, B]∇u, n〉(ξ , t)dξ +Ci j(t).

According to the area B property (2.2) and Definition 2.1:

ψ̃[r̄0, R, B](x̄)|x̄∈∂Di j
= 0.

(3) For every i = 1, . . . ,K and j = 1 . . . ,M we approximate Qi j(t) time derivative
with its difference analogue:

Qk
i j−Qk−1

i j

∆t
=F0

1

∑
r=0

(−1)r
(

qx1
(i−r) j(k−1)+qx2

i( j−r)(k−1)
)
+Ck−1

i j , k= 1, . . . , Z.

For every k = 0, . . . , Z−1 boundary qx1
i j (k) and initial Q0

i j values are:

qx1
0 j(k)=−

j∆x∫
( j−1)∆x

a(0, ξ )dξ , qx1
K j(k)=

j∆x∫
( j−1)∆x

a(Lx1 , ξ )dξ , Q0
i j =

∫
Di j

u0(ξ )dξ .

Boundary qx2
i j (k) can be obtained from the same type formulas as qx1

i j (k). In-
ternal qx1

i j (k) and qx2
i j (k) values are:

qx1
i j (k)∆x2 = Qk

(i+1) j−Qk
i j, qx2

i j (k)∆x2 = Qk
i( j+1)−Qk

i j

i = 1, . . . ,K−1, j = 1 . . . , M−1.

The discretized equation has less parameters count. Variables Qk
i j are model HCA

field variables and CA works with discretized Qk
i j field.
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2.3. Cell states

Elements of cellular automaton represent regions with biological cells (normal, can-
cer cells) and capillaries. Each subarea Di j contains only one cell. To process bound-
ary cells we use adiabatic boundary conditions. In the model the following types of
cells are marked out:

(1) empty cell — region is outside of the tissue area or filled with extracellular
matrix;

(2) normal and cancer cells — tissue and tumour cells;

(3) capillary.

Cells of the same type have similar characteristics and state transitions. For
normal tissue and cancer cells we simulate the cell cycle:

(1) specialized state (G0) — normal oxygen uptake, no doubling (Gap 0);

(2) doubling (D) — the state which includes preparation (Gap 1), DNA replication
(S), preparations for mitosis (Gap 2) and mitosis (M). The cell consumes more
oxygen than in G0 state;

(3) hypoxia (H) — cell’s oxygen supply is insufficient for a normal activity. If the
oxygen amount remains insufficient, the cell reaches necrosis N state;

(4) necrosis (N) — no oxygen uptake, the cell is dead. Dead cells are removed after
time TN .

The cancer cell has a similar cycle, but reaches the G0 state only if there is no
space to proliferate. The cell proliferates if the oxygen supply is enough and some
neighbour position is empty. The transition between states is made according to
the cell cycle. Sufficient oxygen supply is required to remain in G0 and D states.
Otherwise the cell reaches the hypoxia (H) and then necrosis N states (it provides
the non-negativity of Qk

i j solution). If the sufficient supply of oxygen is restored, the
cell reaches a specialized state G0.

Capillaries have only one state — the extraction state, in which the capillary
extracts oxygen to supply surrounding tissue. A vessel can be approximated as a
connected group of capillary cells. Let us define the sets:

Stype = {Empty, Normal, Cancer, Capillary}— the cell types set;

Sint = {G0, D, H, N}— the internal states set;

T̃ = {1, . . . , Tlim}— the number of iterations the cell has remained in the state
(maximum Tlim).
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Figure 3. Simplified cell cycle. Doubling stages united into D state.

By using this definition we can determine the cellular automaton cell states set. Each
state can be presented as:

S = [St , Si, t] ∈S , St ∈ Stype, Si ∈ Sint, t ∈ T̃

S = Stype×Sint× T̃ .

The S components are the design variables of HCA.

2.4. Field and CA

The cellular automaton dynamics can be written as:

Sk
i = R(Sk−1

i , Sk−1(Ni)), k = 1, . . . , Z
S0

i ∈S .

The CA remains in k-th state for a period of time:

Si(t) = Sk
i , t ∈ [t0 + k∆t, t0 +(k+1)∆t) .

The CA interacts with field by changing multipliers C̄(t) and F̄(t) in equation (2.3).
We consider that two cells in the same state interact with the oxygen field in the
same manner:

C̄(t) =C(S(t)) = [C(S1(t)), . . . ,C(SN(t))] ∈ RN

F̄(t) = D(S(t)) = [F(S1(t)), . . . , F(SN(t))] ∈ RN .
(2.4)

The HCA gives to the model several advantages. Different cell types mark out
the borders between tumour and surrounding tissue. The CA can be extended with
angiogenesis (capillaries take part in cell dynamics). These factors provide a way to
avoid a free boundary-value problem (like in [5]). The automaton switches constants
C̄(t) and F̄(t) and keeps the field solution Qk

i j non-negative. The HCA states can
be calculated in parallel manner because the state of each cell at the next moment
depends on cells only in the neighbourhood set.
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Table 1. Function C(S).

St\Si G0 D H N

Normal −Cn
0 −Cn

D 0 0
Cancer −Cc

0 −Cc
D 0 0

Table 2. Parameters values.

Parameter Value Description

∆x 50 µm Averange cell size
∆t 0.5 s Time step (assumed)
F0 2×103 µm2/s Oxygen diffusivity in thin cell layer [8]
CP 4.7 nmol/s/106 Capillary oxygen extraction rate (assumed)
Cn

0 0.4 nmol/s/106 Normal cell OUR in G0 [11]
Cc

D 0.7 nmol/s/106 Cancer cell OUR in D [14]
T n

D 60.1×103 s Normal cell doubling time
T c

D 71.3×103 s Cancer cell doubling time
TN 10.8×103 s Necrosis time (assumed)

3. Discussion and modelling results

In fact we can use in each Di j its own fluctuation functions ϕ(x̄) and ψ(x̄), but they
must fulfill the described conditions (see Subsection 2.2). The discretized model is
simpler and has less parameters count than the continuous one. Function C(S) in
equilibrium (2.4) is always 0 for empty cells and CP for capillaries. For normal and
cancer cells the function is shown in Table 1. We assume a(x̄) = 0 in ∂D. There are
constants which need to be estimated: cell doubling oxygen uptake rate (OUR) of
normal (Cn

D) and cancer (Cc
D), cell G0 OUR for normal (Cn

0) and cancer cell (Cc
0), G0

duration for normal cells (T n
0 ), time limit for hypoxic normal (T n

h ) and cancer (T c
h )

cells. We assume that constants are:

Cn
D =

3
2

Cn
0 , Cc

D =
3
2

Cc
0, T n

0 =
1
2

T n
D , T n

h = T c
h =

1
2

T n
0 .

In our simulations we use parameters values for thin cell layers obtained by the ex-
periments. Normal cells represent hepatocytes (normal Chang liver cell line) and
cancer cells represent HepG2 (hepatocellular carcinoma) cells. Used values are
shown in Table 2.

At first the tumour growth dependence on capillaries count on the 20×20 field
(1 mm2) was investigated. The tumour had started with one cell and had been pro-
liferating for two weeks (336 hours). During the proliferation an oxygen amount
Qk = ∑

K
i=1 ∑

M
j=1 Qk

i j and a cancer cells count were being obtained. There are two
scenarios of the HCA dynamics: infinite oxygen and stable scenarios (Fig. 4). First
one takes place when capillaries oxygen extractions exceed the whole possible
field consumption (37 capillary cells). Tumour had occupied all free cells and then
stopped growing (Fig. 5). In the second scenario we used 12 capillary cells (see
Fig. 7), what is not enough to supply the large tumour with oxygen. The growing
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Figure 4. Oxygen amount Qk.
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Figure 5. Infinite oxygen scenario.

0 50 100 150 200 250 300
0

50

100

150

200

250

300

350

400

Time (hours)

C
a
n
c
e
r 

c
e
lls

 

 

Max. cells

Cells

Doubling cells

Necrotic cells

Cell types:

- capillary;
- cancer (sw.);

- cancer (G0);
- necrotic.

Oxygen:

0 6.6289 13.258

Figure 6. Stable scenario. Figure 7. Stable tumour. Bright cells switch
between G0 and H states.

0 20 40 60 80 100 120 140 160

603

603.2

603.4

603.6

603.8

604

604.2

604.4

604.6

604.8

Time (hours)

O
x
y
g
e
n
 n

m
o
l 
/ 
1
0

6

Figure 8. Stable tumour oxygen.

0 20 40 60 80 100 120 140 160
0

50

100

150

200

250

300

350

400

Time (hours)

C
a
n
c
e
r 

c
e
lls

 

 

Max.cells

Cells

Hypoxic cells

Figure 9. Stable tumour cells count.
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tumour had consumed all extra oxygen and then decreased in size after 286 hours
(Fig. 6). At this moment a necrotic border (or a core, if the tumour is surrounded
by capillaries) appears. It corresponds with known fluorescence images of the solid
tumour microenvironment. Since that moment there is no proliferation — tumour
has been stabilized. In fact that’s the start point when the angiogenesis is necessary
for the further growth.

We also simulated stable tumour (Fig. 7) dynamics for a week (168 hours).
The stable solution may also be characterized by several boundary cells, which are
switching between hypoxia and specialized state (Fig. 7). The oxygen dynamics is
shown in Fig. 8 (averange: 603.97 nmol/106, σ = 0.11 nmol/106). The cell dynam-
ics is shown in Fig. 9 (averange: 99.08 hypoxic cells, σ = 2.84 cells). No switching
cell in Fig. 7 remains in hypoxia H state for a long time, but the instantaneous H
cells count varies insignificantly.

There is no cell invasion in the current model, so normal and cancer tissue in-
vades only empty cells. Cancer cells always proliferate in the case of enough space
and oxygen around. That’s why they surpass normal cells, which passes also G0
state.

4. Conclusion

The model is simple and doesn’t simulate many important processes in real tumours.
However the useful feature of the HCA approach was described: nonlinearity can
be ‘split’ between field and CA to keep each of the components simple and intuit-
ive. Also a 3D HCA model can be created with the described construction method.
Stable solutions can be used as an approximation of real biological tissue, where
oxygen uptake and extraction are balanced. Such a solution can be taken as an ini-
tial condition for more advanced model. The model can be extended to describe
angiogenesis and other phenomena by adding extra fields and CA rules.
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