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Nonstationary hemodynamics modelling in a cerebral
aneurysm of a blood vessel
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and K. Yu. Orlov‡

Abstract — Computer simulation is carried out for unsteady hemodynamics in a cerebral aneurysm of
a blood vessel. Using the data of a real patient obtained in medical examination and during surgery, we
reconstruct the 3D geometry of the anomaly, calculate hydrodynamic parameters of blood flow (flow
velocity, streamline distribution, pressure, shear stress on walls, energy flux) and the deformation and
stresses of the vessel walls. The calculations were performed for the following three cases: in the
presence of an aneurysm, immediately after stent deployment changing the geometry of the vessel,
and one year after the surgery. It is shown what changes of hydrodynamic and mechanical quantities
characterize a successful surgery.
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The vascular system of the brain is highly susceptible to anomalies and patholo-
gies due to peculiar intensity of its work in comparison with other organs. Cerebral
arterial aneurysms are the most common anomalies. They are a pathological local
expansion of a vessel caused by inflation of one layers of its wall, namely, intima,
which is the most subtle and least durable. This violates the geometry of the vessel
and normal blood flow in it. Since the aneurysm dome is thinner than the vessel wall,
in most cases there is a risk of rupture just at this place, which leads to hemorrhage.
The aneurysm treatment scenario depends on many factors.

The hemodynamics in a neighbourhood of an aneurysm is intensively studied
now. The influence of the geometry of the stent and vascular intracranial aneurysms
were considered in [3, 5]. A simulation of flow-redirecting stent deployment was
performed in [15]. An evaluation of stresses on the wall of an abdominal aortic
aneurysms was done in [10]. The simulation results for the flow with an installed
stent in the abdominal aorta was described in [12]. Mechanical properties of stents
were studied in [13].

Currently, the outcome of the surgery depends on the skill of a particular sur-
geon. The medical aspects of the problem were described in details in [7]. This paper
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is aimed to application of the methods of mathematical modelling to this complic-
ated area.

Stents are often used for the surgery of arterial aneurysms without neck or an-
eurysms located in the bifurcation (branching) of vessels. There are many designs
of stents used for different purposes. Any stent is a delicate, generally cylindrical,
metal, or plastic construction. The stent is delivered to the place with an intravas-
cular instrument and then is spread inside with a special removable bulb which
increases its diameter and presses it into the vessel wall. The design of the stent
ensures the preservation of its straightened configuration. In this paper we consider
coarse elastic stents which practically do not block the lumen of the vessel but, due
to their elasticity, gradually correct pathological bends of vessels. The stenting was
not aimed at strengthening the walls in the zone of aneurysm and hence stents are
positioned so that they do not touch initially the dome of the aneurysm. Mechanical
properties of vessel walls in the zone of strengthening with stents could not be de-
termined in vivo, at the same time, zones of maximal strains and stresses are located
on the dome of the aneurysm or near it, i.e., in the areas where the interaction of
the vessel wall and the stent does not occur. In this connection, calculations of the
stress–strain state did not take into account the strengthening of vessel walls by a
stent.

In this paper we study an unstationary mathematical model of hemodynamics
in an aneurysm surgery, and the stress–strain state of walls is calculated subject to
differences in their mechanical properties in the zone of aneurysm. Numerical cal-
culations were performed with the use of ANSYS/Flucht and ANSYS/Mechanical
packages in the information and computing complex of the Novosibirsk State Uni-
versity.

We simulate the actual surgery carried out by neurosurgeons of the Acad. E. N.
Meshalkin Research Institute of Blood Circulation Pathology. The geometry of ves-
sels is determined from the data of X-ray tomography. Elastic properties of vessel
walls are taken from [22]. In order to specify boundary conditions, we take the val-
ues of the pressure and velocity of blood flow measured in cerebral vessels during
the surgery. These measurements were taken near the pathology with the intravascu-
lar ComboWire sensor of the Volcano ComboMap instrument [8]. Three geometric
configurations are considered, namely, before the surgery, immediately after the sur-
gery, and checkup one (one year later).

Modelling of such complex and multifactor objects always poses a problem of
optimization of the complexity of the model for choosing the model as simple as
possible, but taking into account ‘significant’ factors. In this paper we describe the
blood flow by unstationary Navier–Stokes equations for a viscous, incompressible,
Newtonian fluid. The behaviour of vessel walls is described by equations of the lin-
ear theory of elasticity. The results of calculations indicate that the proposed model
describes the change of hydrodynamic and mechanical parameters of the flow and
vessel qualitatively and correctly and thus can be used in pre-surgery simulation,
which is an important and promising approach of modern medicine.

The authors had considered the same surgery previously [29]. The description of
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Figure 1. Calculation domain (a); calculation grid (b).

blood flow used stationary Navier–Stokes equations for a viscous, incompressible,
Newtonian fluid, and the behaviour of vessel walls was described by equations of
the linear theory of elasticity without separating the zone of aneurysm. It was shown
that the flow velocity and shear stress on the wall were reduced after the surgery,
the maximum of stresses was on the inner side of the aneurysm (before the surgery
it was on the wall of the incoming flow, after the surgery it was at the point of flow
stagnation). The points of maximal displacements and stresses were different both
before and after the surgery.

1. Mathematical model

The blood flow is described by the Navier–Stokes equations for a three-dimensional
unstationary flow of an incompressible, viscous, Newtonian fluid:{

divv = 0
vt +(v ·∇)v+∇p = ν∆v in Ω.

(1.1)

Here, v is the velocity, p is the pressure, ν is the coefficient of kinematic viscosity, Ω

is the inner volume of the calculation domain including the configuration of vessels
in the form of T-joint and the aneurysm located in the place of bifurcation. By γ =
∂Ω we denote the boundary of the vessel wall, Γin is the cross-section of the parent
vessel of the tee, Γ1out, Γ2out are the sections of subsidiary receptacles (outlets of
the tee). In the solution of the hydrodynamic problem the vessel walls are assumed
to be motionless.

For Navier–Stokes equations (1.1) we specify adhesion conditions on the walls
of the vessel, i.e., v= 0 on γ . On the normal section of the inlet vessel Γin we specify
the variable velocity vreal, the conditions on output sections of the subsidiary vessels
Γ1out, Γ2out use variable pressure values p1

real and p2
real.

A similar formulation of boundary conditions is recommended in the manual for
the ANSYS/Fluent package [1,2] and is widely used in computational practice (see,
e.g., survey [4]). The well-definiteness of the streaming problem for the Navier–
Stokes equations with such boundary conditions is a traditional assumption in such
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numerical experiments and is justified by appropriate results of numerous calcula-
tions. Various formulations of boundary conditions on inflow/outflow regions are
considered now for the Navier-Stokes equations for a viscous incompressible fluid
in the streaming problem. Along with specification of velocity vectors, it is possible
to specify the pressure and one velocity component on these regions so that the ve-
locity vector is perpendicular to the inflow/outflow boundary [9,25]. For the hydro-
elastic streaming problem one can specify the head (total pressure) and the equality
of the tangent velocity component to zero [17]. The guides for the ANSYS/Fluent
package recommend to pose only one condition at the output, i.e., for the pressure.
Such boundary condition is natural in the case when the simulation uses experi-
mental (clinical) data. Numerical calculations presented here demonstrate a good
agreement of calculated results with experimental data. This is an argument for the
application of the ANSYS/Fluent package widely used nowadays in hemodynamic
computations [27].

The values vreal, p1
real, p2

real were measured during the surgery [8, 20] and then
filtered from noise and also smoothed. The method of measurement gives values
of the velocity and pressure averaged over the cross-section. Figure 2 presents the
graphs of dependence of the corresponding functions on time. Experimental data are
approximately periodic. The preliminary calculations were performed for the time
interval of 4 seconds and the analysis of the results had shown that two seconds are
sufficient for stabilization of the state. Further calculations were performed within
the two seconds interval.

The intravascular measurements of flow velocity and pressure in cerebral blood
vessels near aneurysms at the modern state of medical equipment are possible, ap-
parently, exclusively during the surgical intervention. The data the authors have got
now are obtained during the operations for curing aneurysms before the stent install-
ation. Measurements after stenting are planned and will be held in future. Calculat-
ing all the three states (before and after surgery and one year later) in this paper, we
use the same values of velocity and pressure measured prior to stenting. Of course,
this introduces certain errors in calculations which will be eliminated after obtaining
necessary data.

Non-Newtonian blood properties are weakly expressed for the diameters of ves-
sels and flow velocities considered in our calculations and hence we generally neg-
lect them. It is shown in [16] that even for a slow blood flow inside the aneurysm
bag between microcoils the consideration of non-Newtonian properties of blood is
not determinative.

The stress–strain state of vessel walls is described with the use of a quasi-static
approximation. At each time step (equal to 0.01 seconds) the fluid pressure on the
vessel wall obtained in the hydrodynamic calculation is used as the boundary con-
ditions in the calculation of the stationary stress–strain state of the vessel wall. The
following model of an isotropic linear elastic material is used [18]:

3

∑
j=1

σ ji

∂x j
= 0, ∆σi j +

1
1+ν

∂ 2(σ11 +σ22 +σ33)

∂xi∂x j
= 0
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Figure 2. Clinical data, the pressure (top) and velocity (bottom).

where σ = (σi j) is the stress tensor, i, j = 1,2,3; ν is the Poisson coefficient. The
first group of equations represents the equilibrium condition, the second group cor-
responds to the Beltrami–Michell relations. The pressure caused by the blood flow
is given on the inner wall surface. The outer side of the wall is not loaded. The inlet
and the et boundaries are strictly fixed.

The relation between the stress tensor (σ ) and the strain tensor (ε) is determined
by the Hooke law σ = Eε , where E is the Young modulus. This model is fairly
common [6, 27].

The following parameters are taken for the wall of a normal (healthy) vessel:
the wall thickness hc = 0.4 mm, The Yung modulus E = 1.0 MPa, the Poisson
coefficient ν = 0.49. The zone of aneurysm has the parameters different from that
of healthy vessel. The aneurysm wall thickness is ha = 0.1 mm, E = 1.2 MPa, ν =
0.49, which corresponds to experimental data [22].

The geometry of vessel walls and the aneurysm was constructed on the base of
x-ray tomograms for all the three calculated cases. Using the ITK-SNAP code [30],
we constructed three-dimensional representation of vessels in the anomaly area. The
model of the stent used during the surgery is applied only for remodelling the shape
of a vessel so that a coarse stent becomes a part of the wall after its deployment [3].

We use a tetrahedral calculation grid (see Fig. 1). Refining the grid of 56253
nodes and 233985 elements to the grid of 360570 nodes and 2036619 elements,
i.e., 5 times, we obtain the deviation of less than 1% for the pressure, the absolute
value of the velocity demonstrates slightly greater deviations (up to 5%). Further
refinement of the grid does not practically affect the result, which demonstrates the
adequacy of the grid used here.

Equations (1.1) were solved numerically by the SIMPLE method [21]. The spa-
tial derivative is discretized with the use of the least squares method with values at
centers of cells, the momentum is discretized by the second order upwind scheme.
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The SIMPLE scheme has the first order of approximation in time.
The calculation of each configuration takes approximately 3 hours with the use

of 4 computational kernels of the Intel Xeon E5540 processor.

2. Results. Hydrodynamic parameters

We calculate the following hydrodynamic parameters before the surgery, after it,
and a year later: the flow velocity, streamline distribution, pressure, energy flux,
shear stresses on the wall.

The results presented below were calculated for the time moment corresponding
to systole, i.e., 380 ms from the beginning of the cardiac cycle. This time moment
is interesting for quick changes in the velocity and pressure.

From the medical point of view, it is important to detect hazardous areas (‘hot-
spots’) in the aneurysm and in the vessel near it. The question what parameter values
determine these ‘hot-spots’ is not completely clarified. Based on the calculations,
the pressure cannot be considered as such parameter because at each time moment
its spatial distribution over the aneurysm and adjacent vessels is quite uniform (de-
viations are about 10%) which does not allow us to select any part of the vessel as a
danger zone. The biggest difference between the maximal and the minimal pressure
in the vessel in the whole time interval is approximately 45%. Figure 3 illustrates the
spatial pressure distribution at the time moment when the distribution is maximally
irregular.

2.1. Calculation of blood flow before the surgery

Figure 4a shows the velocity field streamlines in the vessel calculated before the
surgery, the colour indicates the velocity value. Higher velocity values are observed
in the subsidiary vessels, these are higher than 1 m/s, at the time moment shown
in the figure the fluid flow having the maximal velocity almost completely fills the
volume of the subsidiary vessels. Under normal conditions, velocity values about
1 m/s are observed only in the carotid artery, after that the velocity is decreased
downstream due to the increase of the total cross section of the bloodstream [28]. In
the place of bifurcation of the vessels the flow is pathologically twisted very much.

2.2. Calculations after the surgery

After stenting the flow velocity inside the aneurysm and in subsidiary vessels is
reduced, which may be considered as a positive tendency in the case of a wide-neck
aneurysm (see Fig. 4b). A decrease of blood flow velocity was also obtained in [11]
in the case of the stent installation, which was considered as a positive result. The
vortex insider the aneurysm is decreased and passes to an almost circular one, which
is transformed into a cylindrical one in the cardiac cycle.
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Figure 3. Pressure distribution in the vessel before the surgery.

Figure 4. Streamlines in the vessel: before the surgery (a); after the surgery (b); a year later (c).

2.3. Checkup

One year after the surgery the geometry of vessels was noticeably changed, the span
angle decreased, the intersection between the child branches almost disappeared, the
geometry of the vessel in the neighbourhood of bifurcation was normalized. Zones
of high velocities in the aneurysm and the child vessels were decreased, the vortex
near the point of bifurcation disappeared (see Fig. 4c). Thus, the vessel had taken a
geometrical configuration most conforming to a healthy one among all considered
here. In this case we get the minimal velocity among the three configurations and
there is practically no vorticity.

We also considered tee configurations before the surgery with inlet and outlet
vessels artificially lengthened up to 10 diameters. These lengths were taken so that
the velocity profiles could come to a stable state.

Test calculations with this geometric configuration show a qualitative and sub-
stantial quantitative agreement between the results for configurations with artifi-
cially lengthened inlet vessels and without them. In this connection, we mainly
present the results of calculations for the configuration without lengthening the ves-
sels.
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3. Shear stress distribution on the vessel wall

At the moment there is no generally accepted criterion for determining the aneurysm
rupture location. Apparently, the danger of rupture is affected by a combination of
many factors. In particular, it is known [7] that increased shear stresses on the vessel
wall lead to depletion and degradation of this wall, which can further contribute to
the development of the aneurysm and to depletion of its walls, which leads to rup-
ture. It is also assumed that small shear stresses lead to an insufficient metabolism
in the wall and to formation of plaques [15].

The shear stresses on the vessel wall are determined by the formula [19]

~τ = 2µε ·~n

where µ is the coefficient of dynamic viscosity, for blood it is equal to 0.004
kg/(m·s) [26], ε is the strain tensor,~n is the normal to the wall.

Below we present shear stress distributions on the wall calculated with the AN-
SYS/Fluent package. The shear stress distribution strongly depends on the position
of the aneurysm on the vessel, of its form, and on the diameter of its neck. In this
case the width of the incoming flow is close to the diameter of the cross-section of
the aneurysm and hence we do not observe a local decrease of shear stress on the
dome, the stresses are distributed uniformly over the dome.

It was shown in [19] that the values of shear stresses calculated with the use of
the CFD package are greater than those measured with MRI. However, the qualit-
ative difference is small. This fact may explain a sufficiently high mean value of
shear stresses in our calculations. At the same time, this is an argument in favour of
coincidence of high shear stress zones in our calculations and in the real vessel.

Before the surgery the maximal shear stresses are large and distributed over the
vessel nonuniformly, they take the maximal values where the dome joins the branch
vessels (see Fig. 5a).

After the surgery the shear stress distribution becomes more uniform and also
decreases in value, which is a favourable indicator for further medical prognosis.
A local increase of the sear stress appears where the blood comes to more narrow
vessels (see Fig. 5b).

One year later the shear stress decreases and the maxima are concentrated at
the point of bifurcation of vessels, which increases the risk of new aneurysm (see
Fig. 5c).

Figure 6 shows the shear stresses before the surgery for the configuration with
lengthened inlet and outlet vessels. Comparing this result with that for the configur-
ation without vessel lengthening, we indicate their sufficiently good qualitative and
quantitative coincidence.

4. Energy flux

There are several hypotheses for the optimal structure of a vascular network. One
of such hypotheses is the minimality of the energy consumed for blood motion. In
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Figure 5. Shear stresses on the wall, before the surgery (a); after the surgery (b); a year later (c).

Figure 6. Shear stresses on the wall before the surgery for the configuration with lengthened inlet and
outlet vessels.

this connection, it is interesting to compare the loss of energy flux for the three
configurations considered here [8, 20].

The energy flux is calculated by the following formula:

∫
Σ

(
ρ|v|2

2
+ p
)
· (v ·~n) dσ

where Σ is the cross section of the vessel, v is the velocity, p is the pressure, ρ is the
density of blood, ~n is the normal to the cross section of the vessel. The difference
of energy fluxes before the anomaly and after it can be used to estimate the energy
loss in the blood flow passage over the aneurysm.

Due to the optimal construction of blood circulation system, the energy loss in
a blood flow through a vessel is sufficiently small. An aneurysm deforms the vessel
wall and causes an increased energy loss in the flow. Before the surgery the energy
loss in the flow passage through the tee was∼ 9%, which is a sufficiently large value
for the tee length approximately equal to 2 cm. After the surgery the geometry of
vessels is reestablished up to a nearly healthy state with the flow energy loss of
∼ 4%. One year later the geometry of the vessel changes so that the energy loss
becomes even less and equal to ∼ 1% (see Fig. 7). Qualitatively similar changes
in the energy flow are observed in calculations of configurations with lengthened
vessels. This result shows that the anomaly is an energy-consuming formation in
the vascular network and the organism must spend additional energy for blood flow
motion in the presence of an anomaly.
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Figure 7. Energy flow.

Figure 8. Displacements of the wall, (a) before the surgery, (b) after the surgery, (c) a year later.

Figure 9. Von Mises stresses, (a) before the surgery, (b) after the surgery, (c) a year later.

5. Parameters of stressedly-deformed state of vessel walls

The calculation of wall deformation is performed relative to the initial (not loaded)
state. The problem of the position of aneurysm rupture has no unique solution
today [7], therefore, it is very important to calculate various parameters that may
cause this rupture. Determining the location of the rupture, not only high hydro-
dynamic flow parameters, but also strength properties of the wall are important. One
of possible criteria for destruction of the aneurysm wall is the von Mises criterion,
its physical interpretation is that the von Mises stress characterizing the elastic strain
energy attains its critical value [24]. The von Mises stress is calculated through the
components of the stress tensor by the formula [14]:

σv =
[1

2
(σ1−σ2)

2 +(σ2−σ3)
2 +(σ3−σ1)

2
]1/2

. (5.1)

Stresses and displacements are calculated in the ANSYS/Mechanical package
in the quasistatic model approximation of one-way hydroelasticity (1 way FSI).
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5.1. Displacements and stresses before the surgery

Figures 8a, 9a present the distributions of displacements and von Mises stresses
before the surgery, their isoline contours are very similar. The maxima of displace-
ments and stresses are located at the dome of the aneurysm, but at different places.
The places where the greatest stresses are concentrated are dangerous and just at
these places the rupture of vessel wall may occur.

5.2. Displacements and stresses after the surgery

The stenting heavily changes the geometry of the vessel, and in comparison with
the preoperative state the displacements are decreased by ∼ 17%, but the stresses
by only ∼ 4%. After the stenting the qualitative difference between the location of
displacement and the stress isolines increases (see Figs. 8b, 9b).

5.3. Displacements and stresses. Checkup

One year after the surgery the displacements and stresses had decreased almost 2
times in comparison with the previous results (see Figs. 8c, 9c). At the same time,
their maxima were shifted from the dome of the aneurysm closer to the input ves-
sel. Thus, the point of vessel bifurcation considered dangerous from the viewpoint
of aneurysm rupture appeared to be unloaded, which can be interpreted as a good
prognosis.

Aimed for comparative analysis, we carried out an additional stationary calcu-
lation of the hydro-elastic problem with time-averaged boundary conditions at the
inlet and the outlets of the vessel. The maximal stresses and displacements in the
stationary and unstationary calculations with separation of the aneurysm zone are
always on the dome of the aneurysm and it is important that while these values are
different in magnitude, they are geometrically located at the same positions, which
allows us to apply quick calculations of ‘hot spots’ if necessary.

Unfortunately, obtaining experimental data characterizing the stress–strain state
of the vessel in vivo is impossible now for ethical reasons because it requires sig-
nificant intervention into the patient’s body which is not associated with medical
indications.

6. Conclusion

The main features of this paper are nonstationary calculations of the actual an-
eurysm configuration and comparison of hydrodynamic flow parameters and strength
properties of vessel walls before, after, and one year after the stenting. These results
provide useful information for pre-surgical simulation and prognosis of dangerous
points of the aneurysm.

The calculations performed in this research imply that immediately after the
surgery the flow velocity in the aneurysm and child branches, shear stresses, energy
loss when passing through the anomaly, von Mises stresses and wall displacements
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are reduced, an almost circular vertex appears within the aneurysm. A year later the
vessel takes such form that the vortex is completely absent and the flow velocity
inside the vessel is minimal in comparison with other considered configurations.
The surgery has significantly reduced the energy loss of blood flow in its passage
through the tee and in a year the organism changes the geometry of the vessel so that
the energy loss is ∼ 1%. There is a qualitative and largely quantitative coincidence
of the results for the configurations with artificially lengthened supply vessels and
without them.

In comparison with the results of [29] where the stationary case without separ-
ation of the zone of the aneurysm was considered, there is a qualitative agreement
in the behaviour of streamlines, the distribution of pressure and shear stresses at the
wall, but at the same time the quantitative values of the calculated parameters are
significantly different.
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