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The use of evolution optimality principles in simulation of
structured biosystems

V. N. Razzhevaikin∗

Abstract — Approaches to use the theory of evolutionary optimality in the study of structured models
of biological communities are proposed. Relations of this theory to the stability of equilibrium states
are indicated and the formulation of its main result for the case of a quasilinear dynamical systems in
normed spaces is presented. For models of communities with age, spatial, and age-spatial structure,
functionals optimized over parameters of evolutionary selection are constructed. The functionals are
calculated on the basis of the available information concerning steady stationary distributions. The
sets of parameters obtained as the result of this optimization can serve for identification of models.

Keywords: Evolution optimality principle, age-dependent systems, spatially structured systems.

Extreme principles in biology arise as a formalization of the idea of evolution and
its consequence, the evolutionary optimality, originating from the fundamental work
of Darwin [3]. The fact that the competition in conditions of limited living space
leads to elimination of all varieties except for a small number of those most ac-
commodated to given environmental conditions allows us to construct fundamental
principles of functioning of biological systems.

Initially, the theory of optimal biological structures was considered as an inde-
pendent branch of biological science based on very solid empirical basis. A high
efficiency of relatively simple ideas of optimality promoted these ideas to become
in their time a key principle of world order and to be reflected in a variety of
widespread teleological concepts. The research of Hess [7] who considered blood
circulation is regarded as one of the first scientific works concerning the use of
optimality ideas for particular applied problems. Later, more detailed models of
optimal structural-functional organization had been constructed just for this pro-
cess [1, 2, 12]. Similar studies were undertaken for the processes of external res-
piration [10, 14, 23]. All these researches illustrate the diversity of used optimality
criteria having in any case an energy basis.

The consideration of evolutionary selection could not leave outside the scope for
a long time such characteristics of organisms that are most directly involved in the
processes related to the change of generations. As the result, along with the criteria
developed previously, new criteria had been developed on the base of the influence
imposed by considered biological structure on the reproductive function. The cri-
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teria of Fisher [5] and Haldane (see [25]) are among the most known of them. The
accumulated experience in the use of mathematical models based on the optimality
principle had led to the hypothesis about the universality of this principle in bio-
logy which in the context of its relationship with evolutionary selection had found
its representation in the ‘principle of adequate structures’ of Rashevsky [17]. In the
formulation of Rosen [24] this principle is read as ‘Organisms possessing biolo-
gical structure that is optimal with respect to natural selection are also optimal in
the sense that they minimize a certain value function defined on the base of charac-
teristics of the environment’. In the same Rosen’s monograph one can find a detailed
overview of the results of application of the optimality principle in biology for all
its half-century history. Many structural and functional parameters concordant with
actual observed values were determined on the basis of this principle. Among them
are diameters and branching angles of bronchi vessels, blood throughput rate in the
circulatory system, etc. The discussion of these results, as well as many others, can
be found in [8, 13], and also in [15].

From the viewpoint of mathematical justification of principles used for solution
of practical problems, the most interesting are papers [6, 25] where a clear relation-
ship between the stability of steady equilibrium states corresponding to the final
stage of the evolutionary process and extremal properties of values of Malthusian
functions calculated in such equilibrium states and corresponding to surviving spe-
cies (i.e., those with nonzero size, see next section). In the context of these publica-
tions, the principle of optimality had got in biology the name of ‘principle of evol-
ution optimality’, which is quite clear in the mathematical sense. However, despite
the depth and serious mathematical basis of these works, the range of their applica-
tion remained extremely narrow until recently. The operation with total population
sizes was often inadequate to reality because of the differences of population roles
of juvenile and adult individuals. A similar problem occurred regarding to spatially
distributed biological communities. Natural systems endowed with one or another
continuous structure (and first of all the age system) fell out in mass from consider-
ation. This was mainly caused by the complexity of mathematical technique neces-
sary for strict construction of the theory taking into account properties of dynamical
system in spaces of distributions. Researches implemented at the so-called ‘physical
level of strictness’ appeared from time to time, in the context of distribution dynam-
ics problems this meant a neglect of fundamental mathematical issues caused by a
specific character of unbounded operators determining such dynamical systems. As
an example of a gap appearing in consideration at this level we may indicate the
neglect of the presence of operator spectrum components except for its discrete part
and, as a rule, the latter is considered by default as a set of simple eigenvalues. For
example, we may rank monograph [4] as one of such works, it posed the problem of
evolutionary optimality for a system with continuous age structure. The existence
of such publications creates a general understanding of the nature of evolutionary
selection processes in distributed biological systems, but does not change the overall
picture of gaps in the theory because they do not contain any acceptable justification
of the principles proposed there from the mathematical point of view.
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The theory constructed by the author (see [18, 19]) makes an attempt to over-
come the shortcomings indicated above and propose a construction combining the
stability properties of stationary modes of distributed biological systems with ex-
treme properties of values of inherited traits in species surviving in these modes.
Without going into details, note that despite some artificial nature (the quasi-linear
nature of problems with continuous time specifies a number of technical, but quite
natural restrictions) this theory allows us to obtain interesting and practically useful
results in some urgent cases. An overview of most marked of them is offered to the
reader in this paper.

The second section of this paper reveals the main idea of the theory of evolution-
ary optimality at the level of point systems. Methodologically, it has a propaedeutic
character, in essence it has a historical sense. This section presents the simplest
point mathematical model being widely known as classic and elementary helping
in clarification of the nature of the ideas arising from the relationship of stability
and evolutionary optimality. Malthusian functions are optimized in this model and
these functions play the role of ‘lighthouses’ in construction of functionals for more
complex systems.

In the third section we formulate a key theorem of the general abstract theory
and also its corollary in the form of an extreme principle for the real part of the
spectrum of the operator entering the original system.

The fourth section presents applications of the theory to systems of equations
describing communities of biological populations with continuous age structure.
In this case, a functional constructed in a special manner (reproduction potential
of the population) is optimized, and this functional is calculated through original
functions.

The fifth section contains applications of the theory to spatially distributed bio-
logical systems. The basic model here is a system of ‘reaction–diffusion’ type equa-
tions with coefficients of diffusion not dependent on phase variables. In this case
right-hand sides of equations can contain bounded functions dependent not only on
values of phase variables, but also on some spatial functionals of those variables. A
certain ‘energy’ functional of spatial variables is optimized here.

The sixth section combines two preceding ones. We specify particular condi-
tions that help us to construct easily the functional for systems of interacting species
endowed with both the spatial and age structure. The structure of optimal distribu-
tions having separated spatial and age profiles is presented.

1. The principle of evolutionary optimality

The tendencies of natural selection in competition at intersections of ecological
niches lead in time corresponding to stabilization of processes to formation of struc-
tures that can be considered as stabilized (stable in mathematical terminology). Tak-
ing the simplest model of interaction of n biological species

dxi

dt
= xi fi(x), i = 1, . . . ,n, x = (x1, . . . ,xn) (1.1)
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as an example, we obtain the necessary stability condition for the equilibrium state
x̄ = (x̄1, . . . , x̄m,0, . . . ,0); x̄i > 0, i = 1, . . . ,m, representing the species structure of a
community containing only first m species from all possible ones in the form of the
equality

fi(x̄) = max
j
{ f j(x̄)}, 1 6 i 6 m, 1 6 j 6 n. (1.2)

For x = x̄ the Jacobian of system (1.1) has the following block structure:(
∂ (xi fi(x))

∂x j

)∣∣∣∣
x=x̄

=

(
A B
0 D

)
with a diagonal (n−m)× (n−m) matrix D having nonpositive elements f j(x̄),
j > m, on the main diagonal because of assumed stability and f j(x̄) = 0, j 6 m.

Equality (1.2) has a character of an extremal relation and expresses the prin-
ciple of evolutionary optimality. Its biological sense is that the species survived in
the equilibrium state must have maximal values of the Malthusian functions calcu-
lated in this state relative to all potentially admissible species. Just these parameters
characterize the strength of species in its Darwinian sense if we have in mind the
heuristic formulation of the rule on survival of the strongest.

Since in the equilibrium state x̄ the species with the numbers m+ 1 6 j 6 n
are absent, we can assume them virtual, i.e., we can add to them any other species
having a hypothetical possibility to be in the original set. In this case, the numbers
marking the species are not necessarily taken from a certain finite set, as in the
example considered above, but may have an arbitrary nature. In particular, those
marks can be taken as elements of some (usually bounded) domain Λ of a finite-
dimensional (and probably an infinite-dimensional as some class of functions) space
so that optimization problem (1.2) will be solved subject to this domain. (For this
reason, instead of the term ‘number’ in the context of this paper we can use its
synonym ‘parameter of selection’ more suitable in continuous interpretation.) This
extension allows us to find isolated points in the domain Λ in the typical case of
solution of the extremal problems, and these points contain the selection parameters
λ̄ ∈ Λ for which the equilibrium state x̄ is stable.

Note that in addition to necessary conditions of stability (1.2) mentioned here,
responsible for external stability, and characterizing the stability of the equilibrium
state of the community with respect to introduction of species not represented in
this state, we also need an internal stability characterizing the stability with respect
to small deviations of sizes of existing species. The determination of the values of
λ̄ ∈ Λ corresponding to really observed species in the given conditions (including
species community structure) can be used as a methodological base for identific-
ation of those parameters of observed (quasi)stationary biological systems which
determination by field measurements may be impossible or unreasonably difficult.

The greatest practical difficulty in mathematical models of specific structured
biological communities is in construction of maximized functionals of distributions
whose role in the considered point example is implemented by the functions of sizes
fi(x). If we succeed in construction of such functionals, then analogues of the results
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presented above (as well as the technique of subsequent calculations) can be derived
from the more general theory of interrelation of stability and optimality for the case
of distributed quasilinear systems developed by the author (see [18, 19]).

2. Some results of the general theory

This section presents formulations of fundamental results of the theory joining the
stability and evolutionary optimality in the models of distributed biological systems.
We restrict ourselves with autonomous systems with continuous time that fit struc-
turally into the description of quasilinear dynamic systems in Banach spaces. The
proofs can be found in [18].

The original dynamic system in its autonomous formulation has the form

dx
dt

= (hx +a(x,y))x

dy
dt

= hyy+b(x,y)
(2.1)

where t ∈ J = [0,T ], T > 0, x ∈ X , y ∈ Y , X , and Y are Banach spaces, a ∈C1(X ⊕
Y,B(X)), b ∈ C1(X ⊕Y,Y ), B(X) is the space of bounded linear operators in X .
The linear operators hx,y are taken as infinitesimal generators of strongly continuous
semigroups of linear bounded operators acting in X and Y , respectively. Recall that
the family of such operators T (t), t > 0, acting in X is called a semigroup if for
any t,s > 0 the equality T (t + s) = T (t)T (s) holds. The strong continuity means
the continuity of the family T (t)x, t > 0 for any x ∈ X . In this case its infinitesimal
generator hx is given for x ∈ X as the limit hxx = limt↘0(T (t)x− x)/t with the
domain of definition D(hx) ⊂ X for which the indicated limit exists for x ∈ D(hx).
In particular, such operators are closed (i.e., the set {(x,hxx), x ∈ D(hx)} is closed
in X⊕X) and have a dense domain of definition D(hx)⊂ X .

The variables of system (2.1) are initially divided into two following groups:
x are evolutionary variables (are characterized by vanishing of their variation at
zero values) and y are nonevolutionary ones (required only to achieve the generality
necessary for applications; can be omitted in mathematical constructions for the
sake of brevity). The shortened notation of system (2.1) is

dw
dt

= hw+K(w)

where

w = (x,y) ∈W = X⊕Y, h =

(
hx 0
0 hy

)
.

The issues of correct solvability, extension in time, positivity (construction of
invariant cones), (Hölder) smoothness with respect to initial conditions were con-
sidered in details in [18]. However, some of them can be clarified from classic results
(see, e.g., [16]).
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In its original variant [18] the system was not autonomous and with periodic
coefficients. The periodicity was required for reducing the original problem (for
flows) to a simpler (with bounded operators in the right-hand side) one for cascades
(in a period). The autonomous case fits into the general scheme for any positive
value of the period. The stability of the stationary solution w̄ = (x̄, ȳ) is understood
for it in the sense of localization in the unit circle of the spectrum of the Jacobian
for the mapping calculated in positive time in w̄.

A projector P, i.e., a linear bounded idempotent (P2 = P) operator in W is called
admissible relative to h if its domain of definition satisfies the relation PD(h)⊂D(h)
and, in addition, hP = PhP (i.e., the operator h has an upper triangular form in the
coordinates (P, I−P), where I is the identity operator in W ).

A projector P in W is said to be admissible relative to w ∈W if Pw = w, P
is admissible relative to h, commutes with IY (projector on Y ), and for a certain
neighborhood O(w)⊂W the relation v ∈ PW ∩O(w) implies K(v) ∈ PW .

The Jacobian of system (2.1) calculated in the state of equilibrium w̄ = (x̄, ȳ) is
split into the sum l(w̄) = l0(w̄)+ l1(w̄), where

l0(w̄) =
(

hx +a(w̄) 0
0 0

)
.

If by C−δ , δ > 0, we denote the left complex half-plane translated to the left by δ ,
then the result most interesting for the autonomous case of the theory of [18] (except
for some generalizations aimed to a greater adequacy to biological statements) can
be formulated in the following way.

Theorem 2.1. Let w̄ = (x̄, ȳ) be a stable stationary solution to system (2.1). In
this case for any admissible relative to w̄ projectors P1,P2 in W such that P1P2 =
P2P1 = P2 and P2IY = P1IY there exists δ > 0 such that σ((Ql0(w̄))QW )⊂C−δ .

Here Q = P1−P2 is a projector in W , AV is the restriction of the linear operator
A : W →W onto the subspace V ⊂W invariant relative to it, σ(A) is the spectrum
of the operator A.

Due to (2.1), x̄ ∈ Ker (hx +a(w̄)) (kernel of the operator), therefore, in the case
x̄ =/ 0 interesting for applications we have the following corollary.

Corollary 2.1 extreme principle. The maximum of the upper bound for the
real part of the spectrum of restrictions of the operator hx + a(w̄) onto QW ⊕
{lx̄}, l ∈ R, with the stable equilibrium position w̄ = (x̄, ȳ) is attained on the vector
x̄ =/ 0 implemented in w̄ and is equal to zero.

The assertion formulated above is a direct generalization of the necessary ex-
ternal stability condition presented in the previous section in the case considered
here.



The use of evolution optimality principles 7

3. Models with continuous age structure

The original system of equations describing the dynamics of a community with
species endowed with continuous age structure has the form

∂xλ =−mλ xλ , λ ∈ Λ (3.1)

with the boundary conditions

xλ (0, t) =
∫

∞

0
bλ (a)xλ (a, t) da, λ ∈ Λ (3.2)

and appropriate initial conditions. Here t denotes the time, a is the age, ∂t = ∂/∂ t,
∂ = ∂t +∂a, λ is the number (possibly from an uncountable set Λ) of species with the
population density in age xλ = xλ (a, t). System (3.1)–(3.2) is assumed autonomous
in time so that each of the mortality rates mλ =mλ (a,x) of individuals of the species
with the number λ is dependent only on the age a of those individuals and the
values of the distribution vector x =

{
xρ(·, t)

}
, ρ ∈ Λ, describing the current (i.e.,

for a fixed time moment t) state of the community structure. Here and below the dot
instead of a distribution variable means consideration of the distribution as a whole,
i.e., as an element of an appropriate functional space. In particular, this means a
functional dependence of mortality rates on the state of the community as a whole.
The birth rates bλ (a) are assumed not dependent on the current form of distributions.
The study of correct solvability of such systems can be found in [26].

In application to a community with the age structure, the main result can be
formulated as follows.

If system (3.1), (3.2) has a stable position of equilibrium x̄ = {x̄λ (a)}, λ ∈ Λ,
then for λ̄ ∈ supp(x̄) (the set of values of the parameter λ where x̄λ (a) does not
vanish to identical zero) the following relation holds:

ϕ
(
λ̄
)
= max

λ∈Λ

(ϕ (λ )) (3.3)

with the functional

ϕ (λ ) =
∫

∞

0
bλ (a)exp

(
−
∫ a

0
mλ (s, x̄)ds

)
da. (3.4)

From the practical viewpoint, this means that in order to determine the values
of the collection of parameters λ realized for a priori established stationary dis-
tribution x̄, we have to solve the optimization problem (3.3) with respect to λ for
functional (3.4). Note that the maximal theoretical value of this functional equals
one.

The substantial meaning of the functional (3.4) originating from basic construc-
tions of Lotka [9] is the mean value of the number of descendants of fixed age per
one parent individual of the same age.
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4. Models with continuous spatial structure

The continuous model most frequently used now for spatially distributed biological
communities describes such communities with the use of systems of second order
quasilinear parabolic equations with homogeneous boundary condition in the con-
sidered spatial domain. If the realized stationary distribution of biological species
is known a priori, then we can construct a minimization problem for an appropri-
ate integral functional in order to calculate selection parameters corresponding to
survived species.

The original system of equations has the form

∂txλ = hλ xλ + âλ (x)xλ , λ ∈ Λ (4.1)

where xλ = xλ (ξ , t) is the spatial density of biomass of the species with the number
λ at a spatial point ξ ∈ Ω (here Ω ⊂ Rn is a connected bounded domain with a
sufficiently smooth boundary ∂Ω used for description of habitat of the community)
at a time moment t, hλ are elliptic operators of the form

hλ xλ = div (Aλ (ξ )(gradxλ + xλ gradqλ (ξ )))

with sufficiently smooth coefficients aικ
λ
(ξ ),qλ (ξ ), for ι , κ = 1, . . . ,n, in the clos-

ure of the domain Ω, and symmetric matrices Aλ (ξ ) =
∥∥aικ

λ
(ξ )
∥∥ are assumed to be

uniformly positive definite in the domain Ω (i.e., (Aλ (ξ )ζ ,ζ ) > kλ (ζ ,ζ ) > 0 for
ζ ∈ Rn\{0}). The divergence and gradient are calculated here in the spatial vari-
ables ξ , the standard notation (u,v) = ∑

n
i=1 uivi is used here for the scalar product in

Rn. Such operators are used for the description of diffusion in the case of a noniso-
tropic space (relative to possible migration of individual of species with the number
λ ; the isotropic case corresponds to the diffusion matrix Aλ (ξ ) proportional to an
identity one) and the presence of spatial translation given by the gradient vector of
the potential qλ (ξ ) (for example, in chemotaxis problems this is a specific function
of attractant concentration).

The nonpercolation conditions holds on the boundary ∂Ω, i.e.,

(gradxλ + xλ gradqλ (ξ ),Aλ (ξ )ν)|∂Ω
= 0 (4.2)

where ν is the normal vector to the boundary at the point ξ ∈ ∂Ω. The operator
âλ (x) determines here the pointwise (with respect to ξ ) multiplication of the func-
tion xλ (ξ , t) by the function (strictly speaking, functional) aλ (x(·, t),ξ ) where we
have used the notation for the vector x = x(·, t) =

{
xρ(·, t)

}
, ρ ∈ Λ. This operator

plays the role of a Malthusian function (see the second section) of the species with
the number λ . The set of such operators determines both intra- and interspecific
relations in the community.

In application to the considered system with spatial structure, the main result
of the theory can be formulated in the following way. If system (4.1), (4.2) has a
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stable stationary position of equilibrium x̄, then the following relation is valid for
λ̄ ∈ supp(x̄):

ϕ
(
λ̄
)
= min

λ∈Λ

ϕ (λ ) (4.3)

with the functional

ϕ (λ ) =

∫
Ω

eqλ (ξ )
[
(wλ (ξ ),Aλ (ξ )wλ (ξ ))− âλ (x̄)x̄

2
λ̄
(ξ )
]

dξ∫
Ω

eqλ (ξ )x̄2
λ̄
(ξ )dξ

(4.4)

where we have introduced the notation wλ (ξ ) = grad x̄
λ̄
(ξ )+ x̄

λ̄
(ξ )gradqλ (ξ ).

Remark 4.1. Replacing nonpercolation boundary condition (4.2) by the homo-
geneous Dirichlet conditions xλ (ξ , t) ≡ 0, ξ ∈ ∂Ω, corresponding to an absorbing
boundary, we obtain the same result.

Remark 4.2. If we replace the functional by a monotone function of it, then the
solution to the optimization problem remains the same.

Remark 4.3. Minimization problem (4.3) requires less smoothness of functions
entering functional (4.4) than that for equation (4.1). It occurs in this case that
the functions providing the minimal solutions possess the smoothness required for
equations. Therefore, in practical calculations we may approximate only those de-
rivatives that participate in functional (4.4).

In essence, expression (4.4) is the spatial energy functional of the correspond-
ing stationary boundary value problem adapted for translations along the gradient
of the potential qλ (ξ ). For a fixed value of λ it attains the minimal value ϕmin(λ )
on the eigenfunctions x̄λ (ξ ) corresponding to the maximal eigenvalue of the dif-
ferential operator from the right-hand side of system (4.1) self adjoint in the norm
determined by the denominator of expression (4.4). The comparison of variational
properties (see, e.g., [11]) of such functions with the corresponding properties of
actually observed distributions allows us to make the conclusion that the process
of spatial succession is completed in the community. For example, the presence of
spatial ‘ripple’ observed without any external cause and having sufficiently regular
periodic structure indicates that the community must go a long way to its evolution-
ary final.

The use of the methods described in this section allows us to justify the construc-
tion of the models of phenomena forming the base of the correlation adaptometry
widely used in medical and biological practice (see [21]). Paper [22] contains a brief
description of the model and application of the method to one of problems related
to estimation of obesity treatment efficiency.
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5. Models with continuous spatial-age structure

In the case when we have to take into account both the age and spatial population
distributions considered above, we can construct conditions [20] for which there
exists a sufficiently simple functional taking extremal values for the species consol-
idated in the course of evolution.

Constructing the model below, we use notations from previous sections whenever
possible. Let xλ = xλ (a,ξ , t) denote the spatial-age distribution density of the spe-
cies with the number λ ∈ Λ, hλ xλ = div (Dλ (ξ )gradxλ ), where Dλ (ξ ) > Dλ > 0
is the operator of diffusion in spatial variables. Further, let x = {xλ} , λ ∈ Λ be the
vector of current distributions, mλ = mξ

λ
(ξ ,x)+ma

λ
(a,x) be the mortality rates split

into spatial dependent and age dependent ones, ∂ = ∂t +∂a. The model of the pro-
cess of evolutionary selection is implemented under the indicated conditions in the
following system of equations:

∂xλ = (hλ −mλ )xλ , λ ∈ Λ (5.1)

with the conditions on the boundary of the age interval

xλ (0,ξ , t) =
∫

∞

0
bλ (a)xλ (a,ξ , t) da (5.2)

and the conditions on the boundary of the spatial domain

xλ (a,ξ , t) |ξ∈∂Ω = 0. (5.3)

From the viewpoint of possible biological interpretations, the hypotheses im-
plemented in system (5.1)–(5.3) are quite acceptable, though they go back to the
conditions specified by the general quasilinear theory ( [18, 19]). For example, the
assumption that the species-specific birth rate bλ (a) depends only on the age means
a regularization of the reproduction process on the genetic level without any inter-
ference of population factors. For example, this hypothesis is confirmed for many
species of protozoa. The hypothesis on splitting of the mortality rate appears to be
considerably more discussion. However, from the viewpoint of conformity of this
hypothesis to the practice of field studies, we should not forget that the most real
data for theoretical consideration are connected to one-dimensional distributions in
one way or another, which often poses a theoretical problem of constructing some
functions associating simple one-dimensional observations to many-dimensional
distributions more or less adequate to reality. Finally, boundary conditions (5.3)
characterize the spatial domain as common for all considered species. Alternative
nonpercolation conditions are also quite acceptable, so that the nature of the results
does not differ from those described below.

Considering system (5.1)–(5.3), the main result of the theory is formulated in
the following way. If the indicated system has a stable position of equilibrium x̄,
then the values λ̄ ∈ supp(x̄) are solutions to the optimization problem

max
λ∈Λ

max
w∈H1

0 (Ω)
ϕ (λ , x̄,w)
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with the functional

ϕ (λ , x̄,w) =
∫

∞

0
bλ (a)exp

(
−κa−Mλ (x̄,w)−

∫ a

0
ma

λ
(s, x̄)ds

)
da

where

Mλ (x̄,w) =

∫
Ω

[
(Dλ (ξ ) gradwλ (ξ ), gradwλ (ξ ))−mξ

λ
(ξ , x̄)w2

λ
(ξ )
]

dξ∫
Ω

w2
λ
(ξ )dξ

.

Here H1
0 (Ω) is the set of functions continuously differentiable with respect to spatial

variables and satisfying boundary condition (5.3). In this case the optimal station-
ary solution is split, i.e., x̄

λ̄
(a,ξ ) = v̄

λ̄
(a)w̄

λ̄
(ξ ) with the following partial profiles:

the spatial one w̄
λ̄
(ξ ) realizing the minimum of the functional M

λ̄
(x̄,w) on the set

H1
0 (Ω) equal to −κ

λ̄
, and the age one v̄

λ̄
(a) being the solution to the boundary

value problem

∂av
λ̄
(a) =

(
κ

λ̄
−ma

λ̄
(a, x̄)

)
v

λ̄
(a)

v
λ̄
(0) =

∫
∞

0
b

λ̄
(a)v

λ̄
(a) da.

A particular example of application of the construction presented in this section
was presented in [20] where the metabolism rate was used as the selection para-
meter.
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