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Analysis of a stochastic model for the spread of tuberculosis
with regard to reproduction and seasonal immigration of
individuals

N. V. Pertsev∗ and V. N. Leonenko∗

Abstract — A stochastic model for the spread of tuberculosis is proposed taking into account the
reproduction and seasonal immigration of individuals. The system of difference equations majorating
the system of equations for mathematical expectations of sizes of considered cohorts of individuals is
studied. Conditions for the parameters of the model are obtained so that under those conditions the
sizes of cohorts of afflicted individuals do not exceed the given mean level. The results of numerical
experiments are presented for the study of dynamics of mean sizes of cohorts of individuals subject to
parameters of immigration inflow.

Keywords: Stochastic recurrence equations, mathematical modelling, Monte-Carlo methods, epi-
demiology, tuberculosis.

Papers [6–8] present stochastic models and computation algorithms aimed to the
study of the dynamics of tuberculosis spread and HIV infection in regions of Rus-
sia. The development of models and algorithms used the following techniques: (1)
stochastic recurrence relations and integer variables reflecting the dynamics of the
sizes of cohorts of individuals, (2) a parametric description distinguishing individu-
als relative to certain characteristics, (3) a family of random variables specifying
the length of stay of individuals in different cohorts, (4) probabilistic schemes of
contacts of individuals similar to those arising in chain-binomial models [1, 3, 4].

The Monte Carlo method is used in combination with the technology of dis-
tributed computing on personal and hybrid computers for computational experi-
ments with the models. Results of selection of parameters of the stochastic models
of spread and control of tuberculosis are presented in [7] on the base of compar-
ison of mathematical expectations of cohorts of individuals with real data. It was
shown in [6, 8] that an analytic study of stochastic models of spread and control
of TB and HIV in the regions of Russia can be performed on the basis of systems
of nonlinear difference equations with given initial data. Solutions to these systems
serve as upper bounds for mathematical expectations of sizes of studied cohorts of
individuals. The presence of such systems of difference equations essentially sim-
plifies computational experiments with stochastic models and their application for
analysis of real data. The integer nature of variables in stochastic models and proper
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use of mathematical expectations of those variables are particularly important for
the study of the problem of total eradication of mentioned diseases.

The aim of the present paper is the development of the stochastic models pro-
posed in [6] subject to processes of reproduction and seasonal immigration of in-
dividuals in the regions of Russia. Note that these two factors were not explicitly
considered in previous deterministic and stochastic models. The objective of the
work includes the construction of equations of the model, analytical and numerical
study of the behaviour of mathematical expectations of model variables depending
on parameters of immigration inflows of individuals.

1. Stochastic model equations

We construct the equations of the model on the basis of [6]. Let us consider a certain
region where the adult population (individuals elder than 16 years) is divided into
the following six basic cohorts: S for non-infected individuals, L for infected indi-
viduals, D for undiagnosed sick individuals without bacterial excretion, B for un-
diagnosed sick individuals with bacterial excretion, D0 for detected sick individuals
without bacterial excretion, B0 for detected sick individuals with bacterial excretion.
In addition, let us introduce two auxiliary cohorts, E for died individuals or those
who left the considered region, N for individuals younger 16 years born and living
in this region. By C = {S,L,D,B,D0,B0} we denote the collection of basic cohorts.
We assume that the time t is discrete in the model, i.e., t = 0,1, . . . ,T , where T ∈ N
is fixed. The unit of time is 24 hours. We introduce the following notations:

xH is an individual x from the cohort H ∈C or the cohort H = N; xH(t) is the
number of individuals x in the cohort H ∈C at the time moment t; x̂H(t−1) is the
number of individuals xH living from the time moment t−1 to t and not leaving the
considered region, H ∈C;

uA,M(t) is the number of individuals xA passing to the cohort M in the time
interval (t−1, t], A,M ∈C, A =/ M; uA,A(t) is the number of individuals xA staying
in the cohort A within the period (t−1, t], A∈C; uA,E(t) is the number of individuals
xA leaving the region or died in the period (t−1, t], A ∈C;

gH(t) is the number of individuals elder than 16 years and passing to the cohort
H ∈C from other regions in the period (t−1, t]; fS(t) is the number of non-infected
individuals xN reaching the age of 16 years to the time moment t− 1 and entering
the cohort S in the period (t− 1, t]; fL(t) is the number of infected individuals xN
reaching the age of 16 years to the time moment t−1 and entering the cohort L in
the period (t−1, t].

The system of equations of the model has the form

xS(t) = x̂S(t−1)−uS,L∪D(t)+ fS(t)+gS(t) (1.1)

xL(t) = x̂L(t−1)+uS,L(t)+uD,L(t)+uD0,L(t)−uL,D(t)+ fL(t)+gL(t) (1.2)

xD(t) = x̂D(t−1)+uS,D(t)+uL,D(t)+uB,D(t)−uD,L(t)−uD,B(t)−uD,D0(t)+gD(t)
(1.3)
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xB(t) = x̂B(t−1)+uD,B(t)−uB,D(t)−uB,B0(t)+gB(t) (1.4)

xD0(t) = x̂D0(t−1)+uD,D0(t)+uB0,D0(t)−uD0,B0(t)−uD0,L(t)+gD0(t) (1.5)

xB0(t) = x̂B0(t−1)+uB,B0(t)+uD0,B0(t)−uB0,D0(t)+gB0(t) (1.6)

t = 1,2,3, . . . ,T

xS(0) = x(0)S , xL(0) = x(0)L , xD(0) = x(0)D (1.7)

xB(0) = x(0)B , xD0(0) = x(0)D0
, xB0(0) = x(0)B0

. (1.8)

We fix t = 1,2,3, . . . ,T and assume that each variable xH(t− 1), H ∈ C, takes
a fixed value. We describe conditional distribution laws for the variables entering
(1.1)–(1.6) under the assumption that in each time interval (t− 1, t] all individuals
behave independently and their behaviour does not depend on events preceding the
time moment t−1.

Let H ∈C be a certain cohort. By ρH ∈ (0,1) we denote the probability that the
individual xH residing in the considered region live from the moment t − 1 to the
moment t. The variable x̂H(t−1) has the binomial distribution with the parameters
(xH(t−1);ρH), i.e.,

x̂H(t−1)∼ B
(
xH(t−1);ρH

)
, H ∈C. (1.9)

We assume that in the time period (t − 1, t] the individuals xB, xB0 visit ξ
(B)
t

and ξ
(B0)
t places where they may have contacts with the individuals xS, xL, xN . We

assume

ξ
(B)
t =

x̂B(t−1)

∑
n=1

ψ
(B)
nt , ξ

(B0)
t =

x̂B0 (t−1)

∑
n=1

ψ
(B0)
nt (1.10)

where each variable ψ
(B)
nt and ψ

(B0)
nt denotes the number of places visited by par-

ticular individuals from xB, xB0 living from the time moment t− 1 to the moment
t. The variables {ψ(B)

nt } are identically distributed, mutually independent, and do
not depend on x̂B(t−1); the variables {ψ(B0)

nt } are identically distributed, mutually
independent, and do not depend on x̂B0(t − 1); {ψ(B)

1t }, {ψ
(B0)
1t } are nonnegative

integer-valued random variables with given distribution laws. In particular, we as-
sume that for any fixed T the following equality holds: Eψ

(B)
1t = rB, Eψ

(B0)
1t = γB0rB,

t = 1, . . . ,T , where rB > 0, γB0 ∈ [0,1] are some constants.
We consider individuals from the cohorts S and L living from the time moment

t−1 to the moment t. We introduce the following parameters: λS,λL ∈ (0,1) are the
probabilities to visit the place of probable contact with the individuals xB, xB0 for the
individuals xS, xL in the time interval (t− 1, t]; δS,δL ∈ (0,1) are the probabilities
of infection for the individuals xS, xL after their contacts with the individuals xB,
xB0 ; pS,D ∈ (0,1) is the probability of disease development for the individual xS
infected after the contact with the individuals xB, xB0 ; ϑL ∈ (0,1) is the probability
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of spontaneous activation of disease for the individual xL during the time interval
(t − 1, t]. Fix ξ

(B)
t , ξ

(B0)
t , x̂S(t − 1), x̂L(t − 1). The probability of infection for the

individual xS within the time interval (t−1, t] is equal to

µ
(S)
t = 1− (1−λSδS)

ξ
(B)
t +ξ

(B0)
t . (1.11)

The distribution of the variable uS,L∪D(t) is given under the fixed µ
(S)
t by the bino-

mial law
uS,L∪D(t)∼ B

(
x̂S(t−1); µ

(S)
t
)
. (1.12)

For fixed uS,L∪D(t) we assume that

uS,D(t)∼ B
(
uS,L∪D(t); pS,D

)
(1.13)

and uS,L(t) = uS,L∪D(t)− uS,D(t). The probability of disease development for the
individual xL in the time interval (t−1, t] equals

µ
(L)
t = 1− (1−ϑL)(1−λLδL)

ξ
(B)
t +ξ

(B0)
t . (1.14)

For the fixed µ
(L)
t we assume

uL,D(t)∼ B
(
x̂L(t−1); µ

(L)
t
)
. (1.15)

By pK,M ∈ (0,1) we denote the probability of passing individual xK , K,M ∈C,
K =/ M, to the cohort M in the time interval (t − 1, t]. We assume that for each
K ∈C the relation ∑M∈C,M =/ K pK,M < 1 is valid. We assume pD,D = 1− pD,L− pD,B−
pD,D0 , pB,B = 1− pB,D− pB,B0 , pB0,B0 = 1− pB0,D0 , pD0,D0 = 1− pD0,B0− pD0,L. We
introduce the following groups of variables:

uD(t) = (uD,L(t),uD,B(t),uD,D0(t),uD,D(t))

uB(t) = (uB,D(t),uB,B0(t),uB,B(t)), uB0(t) = (uB0,D0(t),uB0,B0(t))

uD0(t) = (uD0,B0(t),uD0,L(t),uD0,D0(t))

representing the individuals passing from the cohorts D, B, B0, D0 to other cohorts
in the time interval (t − 1, t] and also the remaining individuals. Under the fixed
x̂D(t), x̂B(t), x̂B0(t), x̂D0(t) we deal with the following multinomial distribution law:

uD(t)∼M
(
x̂D(t); pD,L; pD,B; pD,D0 ; pD,D

)
(1.16)

uB(t)∼M
(
x̂B(t); pB,D; pB,B0 ; pB,B

)
(1.17)

uB0(t)∼M
(
x̂B0(t); pB0,D0 ; pB0,B0

)
(1.18)

uD0(t)∼M
(
x̂D0(t); pD0,B0 ; pD0,L; pD0,D0

)
. (1.19)
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We consider (1.1), (1.2) and the summands fS(t) and fL(t) representing the sup-
plement of the cohorts S and L due to the growing young generation of the region.
By τ = 5840 days (16 years) we denote the boundary of the age group of individuals
xN . For t = 1, . . . ,τ assume that fS(t), fL(t) are given deterministic functions f (0)S (t),
f (0)L (t) taking nonnegative integer values. Further, let t = τ + 1, . . . ,T . We assume
that G(t− τ−1) describes the number of individuals born in this region in the time
interval It = [t− τ−1, t− τ) and supplying the cohort N (It = (0,1) for t = τ +1).
The function G(t−τ−1) takes nonnegative integer values and is a random process
with given probability characteristics. We introduce the parameter σ(τ +1) ∈ (0,1)
as the probability that a newborn individual xN lives up to the age of τ +1 and does
not leave the region due to migration. We assume that the individuals xN behave
independently. We define the random variable v(t,τ + 1) describing the number of
individuals from G(t−τ−1) living up to the age of τ+1 and not leaving the region.
Assuming that t and G(t− τ−1) are fixed, we obtain

v(t,τ +1)∼ B
(
G(t− τ−1);σ(τ +1)

)
. (1.20)

Fix the values ξ
(B)
t−τ−1+ j, ξ

(B0)
t−τ−1+ j, j = 1, . . . ,τ +1, given by formulas (1.10). By the

analogy with (1.11), we assume that the probability of infection for the individual
xN born in the time interval (t− τ−1, t− τ] and reaching the age τ +1 to the time
moment t in the region is equal to

ν
(N)
t = 1−

τ+1

∏
j=1

(1−λ jδ j)
ξ
(B)
t−τ−1+ j+ξ

(B0)
t−τ−1+ j (1.21)

where λ j ∈ (0,1) is the probability that the individual xN of age a ∈ ( j−1, j] visits
the place of probable contact with the individuals xB, xB0 in the time interval (t−
1, t], δ j ∈ (0,1) is the probability of infection for the individual xN of age a ∈ ( j−
1, j] after his contact with the individuals xB, xB0 , j = 1, . . . ,τ +1. We fix v(t,τ +1),
ν
(N)
t and assume

fL(t)∼ B
(
v(t,τ +1);ν

(N)
t
)
, fS(t) = v(t,τ +1)− fL(t). (1.22)

In the equations of system (1.1)–(1.6) the summands gH(t) represent the immig-
ration inflows of individuals into the cohort H ∈C, take nonnegative integer values,
and are random processes with the given probability characteristics. Without loss of
generality, assume that x(0)S , x(0)L , x(0)D , x(0)B , x(0)D0

, x(0)B0
entering (1.7), (1.8) are given

integer nonnegative constants.
Completing the description of the model, we assume that all random variables

entering (1.1)–(1.22) are independent in common except for the variables which in-
terconnections are given in a specially stipulated form. System (1.1)–(1.8) of model
equations determines the random process

X(t) = (xS(t),xL(t),xD(t),xB(t),xD0(t),xB0(t)), t = 0,1, . . . ,T
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with integer-valued nonnegative components. The description of this process for
t > τ requires both preceding values of X(t− 1) and a ‘prehistory’ of the process
X(t− 2), X(t− 3), . . . ,X(t− τ − 1). The nonnegativity of the components of X(t)
follows from the structure of the equations of the model. The variant of the model
where the summands gH(t), H ∈C, are absent is of certain importance. In this case
the system of model equations can have the solution in the form of a random process
X(t) = X0(t) so that

X0(t) = (xS(t),0,0,0,0,0), t = t0, t0 +1, . . . ,T

where t0 > 0 is some time moment. The process X0(t) reflects the dynamics of the
population size in the considered region under the absence of tuberculosis.

2. Upper estimates of mathematical expectations of the components of
the random process X(t) and the indicator R0

Let Eη denote the mathematical expectation of a certain random variable η . Assume
that EgH(t) = ϕH(t)> 0, H ∈C, EG(t) = ϕN(t)> 0, t = 1, . . . ,T , are finite for any
fixed T and, in addition, there exists a constant ϕ∗N > 0 such that

ϕN(t)6 ϕ
∗
N , t = 0,1,2, . . . . (2.1)

We denote rN, j = − ln(1− λ jδ j), j = 1, . . . ,τ + 1, rN = ∑
τ+1
j=1 rN, j, rS = − ln(1−

λSδS), rL =− ln(1−λLδL), dL = 1−ϑL, and

h1(x,y) = 1− exp(−rSrB(ρBx+ γB0ρB0y))
h2(x,y) = 1−dL exp(−rLrB(ρBx+ γB0ρB0y)), x > 0, y > 0.

We fix t = 0,1, . . . ,T and introduce the following numeric characteristics:

c1(t) = ExS(t), c2(t) = ExL(t), c3(t) = ExD(t)
c4(t) = ExB(t), c5(t) = ExD0(t), c6(t) = ExB0(t).

Using the results of [6, 8], for any fixed T we obtain the estimates

0 6 ci(t)6 zi(t), i = 1, . . . ,6, t = 0,1, . . . ,T (2.2)

where the variables z1(t), . . . ,z6(t) satisfy the following system of nonlinear differ-
ence equations with the given initial data:

z1(0) = z(0)1 = x(0)S , z2(0) = z(0)2 = x(0)L , z3(0) = z(0)3 = x(0)D

z4(0) = z(0)4 = x(0)B , z5(0) = z(0)5 = x(0)D0
, z6(0) = z(0)6 = x(0)B0

(2.3)
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z1(t) = ρSz1(t−1)+ f (0)S (t)+ϕS(t)
z2(t) = (1− pS,D)ρSz1(t−1)h1(z4(t−1),z6(t−1))+ρLdLz2(t−1)

+ pD,LρDz3(t−1)+ pD0,LρD0z5(t−1)+ f (0)L (t)+ϕL(t)
z3(t) = pD,DρDz3(t−1)+ pS,DρSz1(t−1)h1(z4(t−1),z6(t−1))

+ ρLz2(t−1)h3(z4(t−1),z6(t−1))+ pB,DρBz4(t−1)+ϕD(t) (2.4)
z4(t) = pB,BρBz4(t−1)+ pD,BρDz3(t−1)+ϕB(t)
z5(t) = pD0,D0ρD0z5(t−1)+ pD,D0ρDz3(t−1)+ pB0,D0ρB0z6(t−1)+ϕD0(t)
z6(t) = pB0,B0ρB0z6(t−1)+ pB,B0ρBz4(t−1)

+ pD0,B0ρD0z5(t−1)+ϕB0(t), t = 1, . . . ,τ

z1(t) = ρSz1(t−1)+ϕ
∗
Nσ(τ +1)+ϕS(t)

z2(t) = (1− pS,D)ρSz1(t−1)h1(z4(t−1),z6(t−1))+ρLdLz2(t−1)+ϕ
∗
Nσ(τ +1)

×
(

1− exp
(
−

τ+1

∑
j=1

rN, jrB(ρBz4(t− τ−2+ j)+ γB0ρB0z6(t− τ−2+ j))
))

+ pD,LρDz3(t−1)+ pD0,LρD0z5(t−1)+ϕL(t)
z3(t) = pD,DρDz3(t−1)+ pS,DρSz1(t−1)h1(z4(t−1),z6(t−1))

+ ρLz2(t−1)h2(z4(t−1),z6(t−1))+ pB,DρBz4(t−1)+ϕD(t) (2.5)
z4(t) = pB,BρBz4(t−1)+ pD,BρDz3(t−1)+ϕB(t)
z5(t) = pD0,D0ρD0z5(t−1)+ pD,D0ρDz3(t−1)

+ pB0,D0ρB0z6(t−1)+ϕD0(t)
z6(t) = pB0,B0ρB0z6(t−1)+ pB,B0ρBz4(t−1)+ pD0,B0ρD0z5(t−1)+ϕB0(t)

t = τ +1, . . . ,T.

Rewrite system (2.4), (2.5) in a more compact form. Let

u( j) = col(u( j)
1 ,u( j)

2 ,u( j)
3 ,u( j)

4 ,u( j)
5 ,u( j)

6 ) ∈ R6
+, j = 1, . . . ,τ +1

u = (u(1),u(2), . . . ,u(τ+1))

f1(u) = ρSu(1)1 +ϕ
∗
Nσ(τ +1)

f2(u) = (1− pS,D)ρSu(1)1 h1(u
(1)
4 ,u(1)6 )+ρLdLu(1)2

+ϕ
∗
Nσ(τ +1)

(
1− e−∑

τ+1
j=1 rN, jrB(ρBu(τ+2− j)

4 +γB0 ρB0 u(τ+2− j)
6 ))+ pD,LρDu(1)3 + pD0,LρD0u(1)5

f3(u) = pD,DρDu(1)3 + pS,DρSu(1)1 h1(u
(1)
4 ,u(1)6 )+ρLu(1)2 h2(u

(1)
4 ,u(1)6 )+ pB,DρBu(1)4

f4(u) = pB,BρBu(1)4 + pD,BρDu(1)3
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f5(u) = pD0,D0ρD0u(1)5 + pD,D0ρDu(1)3 + pB0,D0ρB0u(1)6

f6(u) = pB0,B0ρB0u(1)6 + pB,B0ρBu(1)4 + pD0,B0ρD0u(1)5
f (u) = col( f1(u), . . . , f6(u)).

In all calculations below we assume that the inequality w(1) 6 w(2) is con-
sidered component-wise for the vectors w(1),w(2) ∈ Rm. It is not difficult to show
that f (u) is a nonnegative and nondecreasing function of its arguments, namely, for
any w(1),w(2) from the domain of definition of f (u) and such that w(1) 6 w(2) we
have the inequality 0 6 f (w(1))6 f (w(2)).

By z(t) = col(z1(t), . . . ,z6(t)) we denote the column vector given by relations
(2.3)–(2.5). We assume

ϕ(t) = col(ϕS(t),ϕL(t),ϕD(t),ϕB(t),ϕD0(t),ϕB0(t)).

We write the system of equations for z(t) in a vector form. We have

z(t) = f (z(t−1), . . . ,z(t− τ−1))+ϕ(t), t = τ +1, . . . ,T (2.6)

z(t) = z(0)(t), t = 0,1, . . . ,τ. (2.7)

The initial conditions in (2.7) are taken from solutions to system (2.3), (2.4). One
can see that z(0)(t) > 0, t = 0,1, . . . ,τ . Relation (2.6) implies z(t) > 0 for each t =
τ +1, . . . ,T . Note that the solution z(t) to system (2.6), (2.7) is determined for any
fixed T > 0. This allows us to study the behaviour of z(t) for t → ∞. We apply the
approach based on the theory of monotone operators [2, 5]. We suppose there exists

w(0) ∈ R6, 0 6 f (w(0), . . . ,w(0))6 w(0) (2.8)

and construct w(t) ∈ R6
+ according to the rule

w(t) = f (w(t−1), . . . ,w(t− τ−1)), t = τ +1,τ +2, . . . (2.9)

w(t) = w(0), t = 0,1, . . . ,τ. (2.10)

Based on the properties of f (u) and on formulas (2.8)–(2.10), we get

w(0) > w(τ +1)> w(τ +2)> w(τ +3)> . . .> 0. (2.11)

Relation (2.11) implies that there exists limt→∞ w(t) = w(∗) ∈ R6
+ and (2.9) implies

that w(∗) satisfies the relations

w ∈ R6, w = f (w, . . . ,w), 0 6 w 6 w(0). (2.12)

Note that one of the solutions to (2.12) is the vector

w(∗) = col(w(∗)
1 ,0,0,0,0,0), w(∗)

1 = ϕ
∗
Nσ(τ +1)/(1−ρS). (2.13)
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We consider the solution z(t) to problem (2.6), (2.7) in the case

ϕ(t) = 0, t = 0,1, . . . ,τ,τ +1,τ +2, . . . (2.14)

Relations (2.14) mean that the immigration inflows gH(t) are absent, H ∈C. Let the
initial data for (2.7) be such that

z(0)(t)6 w(0), t = 0,1,2, . . . ,τ. (2.15)

Using (2.6)–(2.15), we get the inequalities

0 6 z(t)6 w(t)6 w(0), t = τ +1,τ +2, . . . (2.16)

Relation (2.16) implies

0 6 liminf
t→+∞

z(t)6 limsup
t→+∞

z(t)6 w(∗). (2.17)

Suppose w(∗) is the unique solution to (2.12). Relation (2.17) implies

0 6 liminf
t→+∞

z1(t)6 limsup
t→+∞

z1(t)6 w(∗)
1 , lim

t→+∞
zi(t) = 0, i = 2, . . . ,6.

Below we use Chebyshev’s inequality, i.e., if η is a nonnegative random vari-
able with a finite mathematical expectation Eη > 0 and ε > 0 is a given number,
then P{η > ε} 6 Eη/ε . Based on (2.2), we apply Chebyshev’s inequality to the
components xL(t), xD(t), xB(t), xD0(t), xB0(t) of the process X(t) substituting the
estimates of z2(t)–z6(t) instead of the second–sixth components of EX(t).

Assertion 2.1. We suppose inequality (2.1) holds, there exists w(0) satisfying (2.8),
and relations (2.14), (2.15) are valid. In this case, we have
(1) 0 6 ExH(t)6 w(0), H ∈C, t = 0,1, . . . ,τ,τ +1,τ +2, . . .;
(2) if, in addition, w(∗) is the unique solution to system (2.12), then

0 6 liminft→+∞ ExS(t) 6 limsupt→+∞ ExS(t) 6 w(∗)
1

lim
t→+∞

ExH(t) = 0, lim
t→+∞

P{xH(t) = 0}= 1, H = L,D,B,D0,B0.

Now we consider the behaviour of the solution z(t) to problem (2.6), (2.7) for
the case of seasonal migration. We use the following description of ϕ(t) instead of
(2.14). We define the following sequence of time moments:

0 = t0 < t1 < t2 < .. . < tk−1 < tk < .. . (2.18)

so that tn−1 6 τ < tn for some n = 1,2, . . . . We assume

ϕ(t) = 0, t ∈ (tk−1, tk), ϕ(tk)> 0,
6

∑
i=1

ϕi(tk)> 0, k = 1,2, . . . (2.19)
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Assertion 2.2. Let inequality (2.1) be valid and the following conditions hold: there
exists w(0) satisfying (2.8); w(∗) is the unique solution to (2.12); the initial data
z(0)(t) satisfy (2.15); the function ϕ(t) given by (2.18), (2.19) is such that z(tn)+
ϕ(tn)6w(0), z(tk+1)+ϕ(tk+1)6w(0), k= n,n+1, . . . In this case 06ExH(t)6w(0),
H ∈C, t = τ +1,τ +2, . . .

Completing this section, consider inequality (2.8) that plays a leading role in the
construction of estimators for z(t). Inequalities (2.8) have the following component-
wise form:

w(0)
1 > 0, . . . ,w(0)

6 > 0 (2.20)

ρSw(0)
1 +ϕ

∗
Nσ(τ +1)6 w(0)

1 (2.21)

(1− pS,D)ρSw(0)
1 h1(w

(0)
4 ,w(0)

6 )+ρLdLw(0)
2 + pD,LρDw(0)

3 + pD0,LρD0w(0)
5

+ϕ
∗
Nσ(τ +1)h3(w

(0)
4 ,w(0)

6 )6 w(0)
2

(2.22)

pD,DρDw(0)
3 + pS,DρSw(0)

1 h1(w
(0)
4 ,w(0)

6 )+ρLw(0)
2 h2(w

(0)
4 ,w(0)

6 )

+pB,DρBw(0)
4 6 w(0)

3

(2.23)

pB,BρBw(0)
4 + pD,BρDw(0)

3 6 w(0)
4 (2.24)

pD0,D0ρD0w(0)
5 + pD,D0ρDw(0)

3 + pB0,D0ρB0w(0)
6 6 w(0)

5 (2.25)

pB0,B0ρB0w(0)
6 + pB,B0ρBw(0)

4 + pD0,B0ρD0w(0)
5 6 w(0)

6 (2.26)

where h3(x,y) = 1− exp(−rNrB(ρBx+ γB0ρB0y)), x > 0,y > 0. Take the solution to
inequality (2.21) in the form w(0)

1 = w(∗)
1 +∆

(0)
1 , where ∆

(0)
1 > 0 is an arbitrary fixed

number. We consider inequalities (2.24)–(2.26) in the form of equalities. Transform-
ing (2.21)–(2.26), we obtain the following system for w(0)

2 and w(0)
4 :

w(0)
2 > 0, w(0)

4 > 0 (2.27)

w(0)
2 > β1w(0)

4 +β2(1− e−β3w(0)
4 )+β4(1− e−β5w(0)

4 ) (2.28)

β6(1− e−β7w(0)
4 )+ρLw(0)

2 (1−dLe−β8w(0)
4 )6 β9w(0)

4 (2.29)

where the coefficients β1 > 0, . . . ,β9 > 0 are expressed through w(0)
1 and the coef-

ficient of system (2.21)–(2.26). It is seen from (2.27)–(2.29) that there exists w(0)

satisfying (2.8) and w(∗) is the unique solution to system (2.12) if

R0 = (ρLϑL(β1 +β2β3 +β4β5)+β6β7)/β9 < 1. (2.30)

In order to obtain appropriate w(0) explicitly, we apply the following technique.
For fixed γ > 0 we have

1− e−γx 6 γx, 1−dLe−γx 6 dLγx+ϑL, x > 0. (2.31)
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Taking into account (2.31), we estimate the nonlinear expressions in (2.28), (2.29)
from above and consider the system of inequalities

w(0)
2 > (β1 +β2β3 +β4β5)w

(0)
4 (2.32)

β6β7w(0)
4 +ρLw(0)

2 (dLβ8w(0)
4 +ϑL)6 β9w(0)

4 (2.33)

which we study in association with (2.27). We assume in (2.32) that

w(0)
2 = (β1 +β2β3 +β4β5)w

(0)
4 (2.34)

and for (2.33) we take the maximal admissible solution, i.e.,

w(0)
4 = ŵ4

(0) =
β9(1−R0)

ρLdL(β1 +β2β3 +β4β5)β8
. (2.35)

The other components of the vector w(0) = ŵ(0) are obtained from formulas indic-
ated above.

Remark 2.1. Let R0 < 1 and ŵ(0) satisfy inequalities (2.15). For the required
w(0) we can take w(0) = w̃(0) so that 0 < w̃(0)

4 < ŵ4
(0) and inequalities (2.15) hold

for w̃(0).

3. Numerical experiments

The aim of numerical experiments was to study the dynamics of mathematical ex-
pectations EX(t) of the components of the process X(t) subject to immigration in-
flows of individuals. The simulation of implementations of the process X(t) used
the Monte Carlo method. The results of calculations are presented in the form of
graphs and tables of the following numeric characteristics:

c1(t)+ c2(t) = ExS(t)+ExL(t), c3(t)+ c4(t) = ExD(t)+ExB(t),

c5(t)+ c6(t) = ExD0(t)+ExB0(t). (3.1)

The calculations were performed for the time intervals t = 1, . . . ,τ; t = τ+1, . . . ,2τ;
. . . ,T , where T = 18250 days. On each of these intervals, a simulation algorithm
similar to that described in [6] was applied. The new elements in the simulation al-
gorithm were auxiliary variables containing weighted sums of the random variables
ξ
(B)
t−τ−1+ j and ξ

(B0)
t−τ−1+ j entering (1.21). These variables reflect the ‘prehistory’ of

development of the cohorts S and L. Numeric characteristics (3.1) were estimated
by standard formulas of mathematical statistics. Statistical estimates for (3.1) and
confidence intervals for them were obtained from 30 implementations of the pro-
cess X(t). The dynamics of statistical estimates of numeric characteristics (3.1) is
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presented in Fig. 1 (digits 1–4 denote the number of numerical experiment). For
each fixed t (years) the rows of Table 1 contain the interval estimates of numeric
characteristics (3.1), P = 0.95.

The initial data were the following: x(0)S = 250000, x(0)L = 350000, x(0)D = 6800,
x(0)B = 650, x(0)D0

= 2000, x(0)B0
= 2500. The variable G(1), . . . ,G(t), . . . were mutu-

ally independent. For fixed t the variable G(t) possesses the Poisson distribution,
EG(t) = ϕN(t) = 50. The other parameters were σ(τ + 1) = 0.92, ρS = 0.99995,
ρL = 0.99995, ρD = 0.999, ρB = 0.992, ρD0 = 0.9998, ρB0 = 0.9992, λS = 2 ·10−5,
δS = 10−3, λL = 2 ·10−5, δL = 10−4, ϑL = 0.00015, rB = 2, γB0 = 0.2, pS,D = 0.05,
pD,L = 0.001, pD,B = 0.002, pD,D0 = 0.004, pB,D = 0.005, pB,B0 = 0.009, pD0,L =
0.012, pD0,B0 = 0.008, pB0,D0 = 0.007, λ j = 10−6, δ j = 10−4, j = 1, . . . ,3000,
λ j = 10−5, δ j = 10−4, j = 3001, . . . ,5841, f (0)S (t) = 40, f (0)L (t) = 5, t = 1, . . . ,5840.
For these parameters, R0 = 0.834 < 1. If we assume ∆

(0)
1 = 5000, then, using (2.34)

and (2.35), we get ŵ(0)
1 = 925000, ŵ(0)

2 = 2630477, ŵ(0)
3 = 62751, ŵ(0)

4 = 5728,
ŵ(0)

5 = 15969, ŵ(0)
6 = 10261. It is clear that the inequalities EX(0)6 ŵ(0) hold.

Experiment 1 assumes no immigration inflows, experiments 2–4 take into ac-
count such flows. Sequence (2.18) is simulated by the formula t0 = 0, tk = tk−1+vk,
where v1, . . . ,vk, . . . is a set of mutually independent, identically distributed ran-
dom variables; each vk has the geometric distribution with the parameter Evk = mv,
k = 1,2, . . . , mv > 0 is a given constant. We assume that mv = 90, 30, 10 days for ex-
periments 2, 3, 4, respectively. For fixed t = tk the random variables gH(t) have the
Poisson distribution with the parameters EgH(t) = ϕH(t): ϕS(t) = 180, ϕL(t) = 230,
ϕD(t) = 15, ϕB(t) = 10, ϕD0(t) = 8, ϕB0(t) = 12. The values of the constant mv and
the parameters EgH(t) = ϕH(t) are taken so that the mean annual immigration in-
flow of individuals Vimm does not exceed the mean annual number of born individu-
als lived up to the age of 16, i.e., Vsur = 365ϕN(t)σ(τ +1) = 16790 (people/year).
We have Vimm = 1845.28;5535.83;16607.5 people per year for experiments 2, 3, 4,
respectively.

Figure 1 and Table 1 show that in Experiment 1 the numeric indicators c3(t)+
c4(t) and c5(t)+c6(t) decrease in the course of time (see Assertion 2.1). For Exper-
iments 2 and 3 the values of c3(t)+c4(t) and c5(t)+c6(t) first increase slightly and
then decrease to a relatively low level. The behaviour of these numeric indicators is
in accordance with Assertion 2.2. The results of Experiment 4 are principally differ-
ent, a considerable intensification of immigration inflow causes an essential growth
of all studied numeric indicators.

We consider Remark 2.1 and construct the vector w̃(0) which allows us to de-
termine admissible parameters of inflow ϕ(t) in Assertion 2.2. We require that the
mean size of the cohort B does not exceed w̃(0)

4 = 1500 people. In this case

w̃(0) = (925000,688837,16432,1500,4183,2687).



A stochastic model for the spread of tuberculosis 13

550000 

650000 

750000 

850000 

950000 

1050000 

1 5 9 13 17 21 25 29 33 37 41 45 49 

N
um

be
r 

of
 in

di
vi

du
al

s 

Time, years 

1 

3 

4 

c1(t)+c2(t) 

2 

3000 

5000 

7000 

9000 

11000 

13000 

15000 

1 5 9 13 17 21 25 29 33 37 41 45 49 

N
um

be
r 

of
 in

di
vi

du
al

s 

Time, years 

1 

3 

4 

c3(t)+c4(t) 

2 

2000 

4000 

6000 

8000 

10000 

12000 

1 5 9 13 17 21 25 29 33 37 41 45 49 

N
um

be
r 

of
 in

di
vi

du
al

s 

Time, years 

1 

3 

4 

c5(t)+c6(t) 

2 

Figure 1. The dynamics of statistical estimates of numeric indicators (3.1). Digits indicate the num-
bers of numerical experiments.
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Table 1. Confidence intervals for numeric indicators (3.1).

t c1(t)+ c2(t) c3(t)+ c4(t) c5(t)+ c6(t)

Experiment 1
16 594391±46.06 6075±101.92 4397.5±20.58
32 608113±1211.28 4439±39.21 3272±23.52
48 630237±617.39 3369±19.61 2389.49±10.78

Experiment 2
16 615866±884.34 6496.31±26.03 4814.59±31.71
32 643848±989.04 5236.71±32.86 3854.29±29.37
48 673352±1015.28 4425.73±26.94 3242.37±30.26

Experiment 3
16 658633±2041.04 7283.77±50.72 5498.91±44.28
32 712785±2026.13 6688.69±54.03 5026.41±43.97
48 757183±1576.93 6479.31±50.08 4866.43±48.06

Experiment 4
16 803213±2467.32 10057.31±54.31 7949.13±62.52
32 945886±3026.69 12170.69±74.94 9551.47±81.43
48 1033610±3566.93 14248.81±110.14 11097.29±91.01

Therefore, the expected upper bounds for the studied numeric indicators are

c1(t)+ c2(t)6 1613837, c3(t)+ c4(t)6 17932

c5(t)+ c6(t)6 6870, t = 1, . . . ,T. (3.2)

Note that inequalities (3.2) hold in experiments 1–3 and are violated for the indicator
c5(t)+ c6(t) in experiment 4 for t > 5 years (see Fig. 1).

Varying the values of the parameters EgH(t) and the constant mv, one can estim-
ate the admissible mean level of immigration inflows of individuals of the cohorts D
and B which cannot cause the growth of the numeric indicator c5(t)+ c6(t). In par-
ticular, we assume that the immigration inflow consists only of non-detected patients
(cohorts D and B), namely, ϕD(t) = 355, ϕB(t) = 100, ϕS(t) = ϕL(t) = ϕD0(t) =
ϕB0(t) = 0. The calculations show that for mv = 90 days we have c5(t)+ c6(t) 6
4725; if mv = 30 days, then c5(t)+c6(t)6 6075 (on the whole simulation interval).
In both these cases the maximal mathematical expectation of the total size of the co-
horts D0 and B0 (detected afflicted individuals) does not exceed the level presented
in (3.2). The dynamics of c5(t)+ c6(t) is practically the same as in Fig. 1 (experi-
ments 2 and 3). For mv = 10 days this result is not true, i.e., c5(t)+ c6(t) monoton-
ically increases, c5(t)+ c6(t) > 10000 for t = 25 years and c5(t)+ c6(t) > 14500
for t = 48 years. We come to the conclusion that for sufficiently rare immigration
inflows the particular portion of afflicted persons in the group of individuals coming
to the region does not influence the dynamics of the mean sizes of the cohorts D0
and B0.

In conclusion, we consider inequality (2.30) that leads to the study of sufficiently
complicated relations between the parameters of the model appearing in R0. From
the practical viewpoint, it is necessary to construct an indicator R1 such that R0 < R1
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and the inequality R1 < 1 can be verified on the base of available official statistics.
The problem of calculation of R0 or construction of its estimator R1 from real data
is an important problem for verification of the model and its practical use.
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