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Electro-mechanical coupling in a one-dimensional model of
heart muscle fiber
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V. S. Markhasin∗†

Abstract — We developed a mathematical model that describes heart muscle fiber as a one-dimensional
continuous medium of electrically and mechanically coupled cardiomyocytes through which electrical
excitation propagates and initiates muscle contraction. The generic model simulates bilateral rela-
tions between the electrical and the mechanical activity of cardiomyocytes in the tissue and accounts
for both intracellular and intercellular electro-mechanical couplings and mechano-electric feedback
mechanisms.

Keywords: Cardiac mechano-electric feedback, heterogeneous myocardium, mathematical model-
ling.

Mathematical models are widely used in cardiovascular physiology to describe heart
function at different levels of its organization from molecules and cells to the whole
organ [1, 8, 16]. Earlier we developed mathematical and experimental models to
study the effects of electrical and mechanical interactions arising in myocardial tis-
sue due to regional asynchrony of electrical excitation and mechanical activity [14].
We implemented a so-called muscle duplex approach and discrete chain models,
where two or several cardiac muscle segments are connected in-series or in-parallel
and interact mechanically with each other [14,15]. In particular, we showed that the
time lag in electrical excitation of muscle segments in such cardiac models resulted
in slowly developing gradual changes in their functional characteristics, giving rise
to system heterogeneity [11].

The above mathematical models have certain limitations. The most substantial
is that the excitation sequence in these models was implemented via pre-described
timing of regional stimulation, while electrotonic interactions between cardiomyo-
cytes were not accounted for. So, these models utilized a rather simplified simulation
of excitation propagation through the tissue.

To avoid these limitations we developed a continuous one-dimensional (1D)
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Figure 1. Scheme of electro-mechanical coupling in the myocardium at the cellular level
and the tissue level.

mathematical model of the heart muscle fiber as a muscle strand formed of mech-
anically and electrically interacting cardiomyocytes connected in-series.

The model accounts for both micro- and macrocircuits of the electro-mechanical
and mechano-electric interactions in cardiac tissue (Fig. 1). At the cellular level,
electro-mechanical coupling (ECC) and mechano-electric feedback (MEF) between
the membrane action potential (AP) generation and cellular contraction are provided
by the mechano-dependence of intracellular calcium kinetics [15]. The mechanisms
of cooperativity in the kinetics of regulatory calcium-troponin complexes and force-
generating acto-myosin cross-bridges underlie this mechano-dependence. At the tis-
sue level, electrical waves of depolarization and repolarization and mechanical wave
of deformation arising due to the electrical and mechanical coupling between car-
diomyocytes also affect each other. ECC and MEF mechanisms in the heart on the
cellular level have been widely discussed [10], but the influence of the mechan-
ical interactions between cells on properties of the electrical wave in myocardium
remains largely under appreciated.

To assess effects of cardiac MEF by means of 1D modelling, we started with
the muscle strand consisting of cardiomyocytes with identical electrical and mech-
anical properties. In this case we evaluate effects of the initial electrical asynchrony
induced by the excitation wave propagation on tissue performance. This is a similar
approach to what we used earlier to study effects of cardiac heterogeneity in muscle
duplexes and chains of in-series muscle segments [14, 15]. It has been shown that
even in the inherently homogeneous cardiac system, the time delays in activation
and mechanical interactions between identical muscle segments result in a negative
inotropic response and produce gradients of the electro-mechanical characteristics
of cardiomyocytes in interacting elements [14]. Now we have a possibility to revise
these results by utilizing a more adequate model of cardiac tissue.

1. Mathematical model

We assume a heart muscle fiber as a 1D strand formed of coupled cardiomyocytes.
Excitation wave is originated at one edge of the strand and spreads through the
cardiomyocytes along the fiber, activating its contraction.
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As the size of the cardiomyocytes is sufficiently small compared to the char-
acteristic dimensions of myocardial fibers, any cardiomyocyte of the fiber can be
considered as an isopotential point of myocardial tissue [13]. In this case, the fiber
may be considered as a continuous 1D medium. On the other hand, each cardiomyo-
cyte of the fiber has its own local, dynamically changing geometry and continuously
changes its position in macrospace during the contractile cycle of the fiber. On the
macrolevel, local deformations originate the dynamic change in each point (cell)
position within the fiber geometry. Thus, an electrical wave of excitation propagates
along such a dynamically deformable medium. Therefore, two geometrical spaces
are considered in the model:

(1) microspace representing the cellular geometry;
(2) macrospace representing the fiber geometry.
In addition, a relationship between these spaces should be defined in the model

to determine the mechanical activity of both the fiber and its cells.
Let us consider a 1D muscle strand of a fiber with slack length L and with

a single spatial coordinate x varying along the fiber (see Fig. 2). The left bound-
ary of the strand is assigned with the origin x = 0, the right boundary has a co-
ordinate xF = L (see Fig. 2). We assume that the unstretched fiber consists of un-
stretched cardiomyocytes of identical lengths with a corresponding sarcomere slack
length of 1.67 µm. Thus, each point of the medium is identified by a coordinate
x {x| x ∈ [0,xF ]}, meaning the distance from the left end of the fiber to this point
when the fiber is unstretched and unexcited. The Lagrangian point coordinate does
not depend on possible displacements of the material point along the axis during
the contractile cycle of the fiber. In other words, if the material point is labeled as x
at the slack length state of the fiber, this label will further identify this point (cell)
during any fiber deformations.

Electrical and mechanical activity of cells is described by the Ekaterinburg–
Oxford mathematical model (EO model) of a single cardiomyocyte [5, 15].

1.1. Cellular mechanics (microlevel)

Figure 2 shows a rheological scheme of a single cardiomyocyte at point x (fur-
ther, cell x). Active contractile element CEx is associated with the cardiomyocyte
sarcomeres. Sarcomeres generate mechanical force in cell x and cell shortening dur-
ing auxotonic contractions due to interactions between actin and myosin and cross-
bridges formation. This occurs in consequence of calcium binding to the regulatory
protein troponin C (CaTnC complexes). Detailed interactions between these mo-
lecular processes are described in our previous papers [3,6]; the full list of equations
is presented at a CellML repository (see http://models.cellml.org/e/b9/).

Suppose l1(x, t) is the relative change in the length of CEx the cell x against
its slack length (normalized by the sarcomere slack length of 1.67 µm). The force
generated by CEx is defined in the model as

FCEx = FCE(x, t) = λ (x)N(x, t) p(x, l̇1(x, t)) (1.1)
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Figure 2. Scheme of a 1D heart muscle strand. The rheological scheme shows a model of
a single cardiomyocyte of coordinate x, where a contractile element (CEx) is connected to
in-series and parallel passive elastic elements (SEx, PEx), and a viscous element (V Sx) is in-
parallel to PEx. XSE is an external in-series elastic element. Variables l(x, t), l1(x, t), lex(t)
define deformations of PEx, CEx, and XSE, respectively, relative to their slack lengths.

where p(x, l̇1(x, t)) is an explicit function that specifies the average force developed
by a cross-bridge depending on l̇1(x, t), which is the velocity of CEx shorten-
ing/stretching; N(x, t) is the concentration of force-generating cross-bridges in CEx;
λ (x) is a scale coefficient.

Further, we often skip coordinate x for intracellular variables and coefficients,
keeping in mind that each cell x in the fiber may have its own set of coefficient
values.

Cross-bridge concentration N(t) in cell x at moment t results from the kinetics
of cross-bridges attachment/detachment. Concentration N(t) not only directly af-
fects mechanical behaviour of the contractile element but the cross-bridge kinetics
depends on the mechanical conditions as follows:

dN
dt

= k+([CaTnC], l1, l̇1)(1−N)− k−(l̇1)N (1.2)

where k+([CaTnC], l1, l̇1) and k−(l̇1) are the on- and off-rate ‘constants’, respectively,
of force-generating cross-bridges cycling. This kinetics depends non-linearly on the
concentration of CaTnC complexes ([CaTnC](t)) and on both the length of CEx and
on the velocity of its deformation (i.e., on the variables l1(t) and l̇1(t)).

The kinetics of [CaTnC] is described by the equation

d[CaTnC]

dt
= kon · ([CaTnC]tot− [CaTnC]) · [Ca2+]i− koff(N, [CaTnC]) · [CaTnC] (1.3)

where [Ca2+]i(t) is the intracellular Ca2+ concentration; kon is the rate constant
of CaTnC association, koff(N, [CaTnC]) is the rate ‘constant’ of CaTnC dissociation,
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which is a function of the mechanical state of the contractile element (variable N(t))
and calcium kinetics ([CaTnC](t)).

This highly non-linear functional dependence of koff on the current state of sar-
comere activity reflects mechanisms of cooperative calcium activation of the con-
tractile proteins: the affinity of troponin C for Ca2+ increases (koff decreases) with an
increase in (a) the fraction of force-generating cross-bridges N(t) and (b) [CaTnC](t).
Mechano-dependent cross-bridges kinetics affect the CaTnC kinetics and thereby
the Ca2+ kinetics, i.e., both become mechano-sensitive. Cooperative mechanisms
of CaTnC kinetics as well as respective equations are identified and justified in our
previous papers [3, 5, 15].

Thus, direct links and feedback between Ca2+ kinetics, CEx deformations, and
force generation are defined in the EO model and ensured from the cooperative
mechanisms of myofilament Ca2+ activation.

Besides the active contractile element CEx, in the rheological scheme of car-
diomyocyte x there are also elastic and viscous elements (SEx, PEx and V Sx, see
Fig. 2), which mainly determine mechanical properties of passive myocardium but
also may modulate the active myocardial mechanics [5].

Suppose l(x, t) is a relative change in the cell x length per sarcomere (normal-
ized by its sarcomere slack length). In correspondence with the rheological scheme,
l(x, t) coincides with the deviation of the length of the parallel elastic element PEx
from its slack length.

The forces generated by SEx and PEx are defined as follows:

FSEx = FSE(x, t) = β1 (eα1(l(t)−l1(t))−1) (1.4)

FPEx = FPE(x, t) = β2 (eα2·l(t)−1) (1.5)

with parameters α1, β1, α2, and β2 justified in our previous works.
The viscosity coefficient of the damper V Sx in the rheological scheme of the

cardiomyocyte is considered to be dependent on the degree of stretching the cell
[5]. The damper V Sx, being parallel to PEx (and the entire length of CEx + SEx),
generates a force proportional to the velocity of the cell shortening l̇(t):

FV Sx = FV S(x, t) = kvis l̇(t)

kvis = βv eαv·l(t) (1.6)

where kvis is the length-dependent viscosity coefficient for V Sx [5].
The following equations define the force Fx that is developed by cardiomyocyte

at point x:

Fx = FCEx +FPEx +FV Sx

FCEx = FSEx . (1.7)
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1.2. Fiber mechanics (macrolevel)

Let l̂(x, t) define a deviation of cell x from its reference position in the unstretched
and unexcited fiber. Therefore, the current time-dependent position of the cell x at a
given moment during the contractile cycle is x̂ = x+ l̂(x, t).

An external serial elastic element XSE is introduced in the rheological scheme
of the fiber macromodel (Fig. 2). It allows us to reproduce experiments on multicel-
lular muscle strips and accounts for a compliance in the area of the cut muscle edge,
which is bound to a servomotor arm [5].

Let lex(t) be a deviation of XSE length from its slack length. The force generated
by XSE is defined as follows:

FXSE = FXSE(t) = β3 (eα3 lex(t)−1) (1.8)

where α3 and β3 are model parameters.
Kinematic conditions of the in-series connection between the cells in the fiber

suggest that the force Fx generated by each cell x is equal to the force of any other
cell in the strand and equal to the force of XSE:

Fx = FXSE . (1.9)

Additional conditions completing Fx determination are governed by the mode of the
fiber contraction.

The isometric contraction is characterized by a fixed length of the fiber during
the contractile cycle. Let lm(t) be a fiber deformation against its slack length. It is
determined by the initial fiber prestretch due to an applied preload ρ and remains
constant during the entire isometric contraction/relaxation. In the isometric mode,
a displacement of the right end of the fiber l̂(xF , t) during an active contraction is
balanced by stretching the external passive-elastic element XSE so that the sum of
their deformations remains constant:

lm(t) = l̂(xF , t)+ lex(t)≡ const. (1.10)

In the isotonic mode of the fiber contraction, the fiber undergoes active short-
ening/lengthening under a fixed afterload F ≡ const. In this case the overall fiber
force, each cell force, and XSE force are equal to each other and to this afterload:

Fx = FXSE = F . (1.11)

Thus, dynamics of l̂(x, t) and lex(t) describe the macroscopic mechanics of the
fiber.

1.3. Micro- and macromechanics coupling

The specific feature of a continuous model of muscle mechanics is a combination of
the global deformations of the fiber and the local geometry of its cells. We suggest
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a displacement l̂(x, t) of point x from its reference position in the unloaded fiber to
be an integral of the relative changes in the cell lengths over the fiber segment [0,x]
at time t:

l̂(x, t) =
∫ x

0
l(ξ , t)dξ . (1.12)

In other words, the local deformation of the fiber at the point x in macrospace is
equal to the relative deformation of the cell x in microspace:

∂ l̂(x, t)
∂x

= l(x, t). (1.13)

The above equations govern the coupling between micro- and macromechanics
in the model.

Thus, during the propagation of the electrical signal from the left to the right
end of the fiber, the lengths of all contracting cells continuously change, providing
for the global deformation of the fiber and overall force generation.

The boundary conditions (at x = 0 and x = xF ) for equation (1.12) during iso-
metric contractions is given by equation (1.10):

l̂(0, t) = 0 (1.14)

l̂(xF , t)+ lex(t)≡ l̂(xF ,0)+ lex(0). (1.15)

The initial conditions at t = 0 for l̂(x,0) and lex(0) arise from the equations (1.7),
(1.11) with a preload ρ applied to the fiber and prestretching it up to the value lm(0)
over the slack length.

Similarly, in the isotonic mode of contraction, fiber deformations l̂(xF , t) and
lex(t) are determined from the equations (1.7), (1.11) for a given afterload F .

1.4. Micro- and macroelectrical coupling

The mathematical description of the dynamics of membrane potential and ionic cur-
rents in an individual cell x is inherited from the cellular EO model [15]. The charac-
teristics of the depolarization and repolarization waves determine the macroscopic
electrophysiology of the fiber.

Let the excitation wave propagate from the left fiber end (x = 0) towards the
right end (x = xF ).

Let us start with the assumption that positions of material points in the 1D fiber
model do not change during the contraction-relaxation cycle. Note that such a static
model is a widely used simplification in electrophysiological mathematical mod-
elling. In this case, the electrical excitation of the fiber is governed by the cable
reaction-diffusion equation [7] for the membrane potential V (x, t) in the cell x at
time t:

∂V (x, t)
∂ t

= D
∂ 2V (x, t)

∂x2 − 1
Cm(x)

∑ iion(x, t) (1.16)
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where Cm(x) denotes the membrane capacity of the cell x and D is the conductiv-
ity coefficient, which determines the velocity of excitation propagation along the
fiber. The coefficient D is also conventionally called a diffusion coefficient of the
equation (1.16).

The first term of the equation determines the excitation spread through dif-
fusively coupled cells along the fiber (macrolevel), and the second term describes
change in membrane potential V (x, t) in the cell x due to local transmembrane ionic
currents iion(x, t) in this cell (microlevel).

However, if the mechanical activity is taken into consideration in the fiber
model, it should account for the fact that the position of the cell x in the phys-
ical space is inevitably shifted from the reference slack position x due to the ini-
tial fiber prestretching and further contraction-relaxation movements. Therefore, the
electrical signal propagating through the cell x finds it in the other position of the
macrospace.

Let the cell x (material point) move to point x̂ = x+ l̂(x, t), where l̂(x, t) is the
deviation of the point x from the reference coordinate.

In this case, the diffusion term in equation (1.16) has to be calculated relatively
to the point x̂ as D∂ 2V/∂ x̂2 as follows:

∂V
∂ x̂

=
∂V
∂x

∂x
∂ x̂

=
∂V
∂x

1
1+ l(x, t)

.

Here, we used equation (1.13) for the coupling between the local deformation of the
fiber and relative deformation of the cell x:

∂ x̂
∂x

=
∂ (x+ l̂(x, t))

∂x
= 1+ l(x, t)

∂ 2V
∂ x̂2 =

∂

∂ x̂

(
∂V
∂x

)
(1+ l(x, t))− ∂V

∂x
· ∂ l(x, t)

∂ x̂
(1+ l(x, t))2 = [· · · ] =

∂ 2V
∂x2 · (1+ l(x, t))− l

′
x(x, t) ·

∂V
∂x

(1+ l(x, t))3 .

Accordingly, we come to the following modified equation:

∂V
∂ t

= D ·

∂ 2V
∂x2 · (1+ l(x, t))− l

′
x(x, t) ·

∂V
∂x

(1+ l(x, t))3 − 1
Cm(x)

·∑ iion(x, t). (1.17)

Note that the macro-level diffusional term of equation (1.17) now contains the
mechanical phase variable l(x, t) of the cellular microlevel.

Boundary conditions for the problem (1.17) are set as follows:

(1) A short-term stimulating depolarizing current istim(t) = −3nA is applied for
2–3 ms (inherited from Noble’98 model [12]) at the left end of the fiber (at
point x = 0), initiating excitation in the boundary cell. Then, the boundary
value for V (0, t) is calculated from the ordinary differential equation (ODE)
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of the cellular EO model taking into account the mechanical interactions with
neighbour cells but ignoring the electrical influence from the right adjacent
cells: V (0, t) =VODE(t).

Depolarization of the membrane in all other cells is initiated by the electrical
wave propagation from cell to cell without any additional stimulating trans-
membrane currents.

(2) The right end of the fiber (x = xF ) is assumed to be electrically isolated, i.e.,
there are no ionic currents through the boundary point:

∂V (xF , t)
∂x

= 0.

A resting potential value is used for all fiber cells as initial conditions at t = 0,
which is the same as in the EO model:

V (x,0) =Vrest(x).

Thus, the model equations define mechanisms of electro-mechanical coupling
and mechano-electric feedback both at the cellular level (via mechano-dependence
of Ca2+ kinetics, which contributes to the time course of Ca2+–dependent ionic
currents) and at the fiber level (via length-dependence of the diffusion component
of the modified cable equation).

Several functional parameters were calculated to characterize the electrical
wave. An average velocity of the depolarization wave Vdw along the fiber was cal-
culated as the ratio of the initial fiber length to the propagating time ∆tdep from
the left to the right end of the fiber. The latter was also called as the dispersion of
depolarization DD = ∆tdep throughout the strand. The dispersion of repolarization
DR = ∆trep in the strand was calculated as the difference between the time to reach
90% of repolarization in the fiber ends. The average velocity of the repolarization
wave Vrw was characterized by the ratio of the initial fiber length and ∆trep.

1.5. Numerical methods

We used a method of splitting [4] to solve the boundary problem for equation (1.17).
During each discreet time interval ∆t, first we calculated the membrane potential

in each point x from the non-linear ordinary differential equation:

dV (x, t)
dt

=− 1
Cm(x)

∑ iion(x, t)

using explicit Euler or Runge–Kutta methods.
Then we used these values as initial values to solve the linear diffusion equation

with corresponding boundary conditions for the same time step ∆t :
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∂V
∂ t

= D

∂ 2V
∂x2 (1+ l(x, t))− l

′
x(x, t)

∂V
∂x

(1+ l(x, t))3 .

A stable implicit difference scheme was built to solve the problem. The equa-
tions were discretized with a time step of ∆t = 10−5 s and a spacial step of ∆x= 0.25
mm. This gives a system of linear algebraic equations with a tridiagonal matrix for
numerical values V j

i for action potential V (x, t) at point xi at time t j. The linear
system was solved by a tridiagonal matrix algorithm.

The mechanical block of the model was solved in the same discretization nodes.
Macrovariables l̂(xi, t j) and lex(t j) were calculated by numerical solution of equa-
tions (1.7), (1.9) in parallel with numerical integration of (1.12) with consistent
boundary conditions (1.10) or (1.11). Cellular mechanics was calculated together
with ionic concentrations and membrane potential at each discreet point xi by nu-
merical integration of the corresponding cellular EO model.

2. Numerical simulations

Figures 3 and 4 illustrate results of numerical simulations of the electrical and mech-
anical activity of contracting myocardial strand produced by the created 1D electro-
mechanical model (EMM) consisting of identical virtual cells. The data are derived
from the steady-state twitches of the strand of a fixed 50.5 mm length (26 in every
cell) in the isometric mode of contraction with stimulation frequency of 1 Hz.

Presented data reveal essential gradients in both electrical and mechanical activ-
ity of coupled cells along the strand, which was originated from the excitation wave
spread and both intra- and inter-cellular mechano-electrical coupling in myocardial
tissue. The electrical and mechanical gradients turned out to be dependent on the
conduction velocity (diffusion coefficient D) in the tissue.

The data calculated for various values of the diffusion coefficient D are shown
in the figures in comparison with each other and with the reference model (RM).
The latter simulates purely homogeneous strand with simultaneous excitation of
identical cells. Electrical and mechanical asynchrony are excluded, and any factors
of cellular interaction are totally eliminated in the RM. Therefore contracting cells
in the RM behave exactly like isolated cardiomyocytes in the isometric contraction
mode.

The results of simulations demonstrate essential effects of cell coupling in the
tissue on their electrical and mechanical activity as compared with isolated cells.
The effects of asynchronous excitation on the strand function increase with a de-
crease in the conduction velocity in the tissue.
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Figure 3. Characteristics of the electrical waves in the 1D electro-mechanical model (EMM) of the
muscle fibre. (A) Dependence of the velocity of depolarization wave (Vdw) and the velocity of repolar-
ization wave (Vrw) on the diffusion coefficient D. (B) Dependence of the dispersion of depolarization
(DD) and the dispersion of repolarization (DR) on the diffusion coefficient D. (C) Distribution of ac-
tion potential duration (APD) along the strand in EMM at various diffusion coefficients (solid lines,
D = 50, 100, 150, 400 mm2/s ) against the reference model (RM, dashed line).

Figure 4. Mechanical activity in the EMM at various diffusion coefficients. (A), (B) Time course of
cellular deformations (expressed as % of initial cell length) along the fiber at high (A, D = 400 mm2/s)
and low (B, D = 50 mm2/s ) conduction velocity. Excitation onsets in the border cells are shown by up
and down arrows, respectively. Dashed line shows cell deformation in the reference model (RM). (C)
Force generated by the EMM (solid lines) in the case of (A) and (B) against the isometric contraction
of the RM (dashed line). Force is normalized to the peak force in the RM.

3. Conclusion

Mathematical models in cardiac physiology are widely used but they often do not
give an entire picture of mechanisms underlying electro-mechanical behaviour of
myocardium. We have developed a mathematical model of the heart muscle fiber,
describing both electrical excitation propagation and contraction in myocardial
strand. The main advantage of the 1D model is the integration of cardiac excitation-
contraction coupling and mechano-electric feedback mechanisms at both the cellu-
lar and the tissue levels.

The model predictions suggest that a decrease in the conduction velocity (a de-
crease in the diffusion coefficient D) in the fiber causes much steeper decrease in
the velocity of the repolarization wave, and an increase in dispersion of repolariza-
tion producing a substrate for arrhythmia (see Fig. 3). Moreover, an increase in the
asynchrony of regional mechanical activation caused by the slowing down of ex-
citation spread, increases local cell deformations and has a negative effect on fiber
contractility slowing down both contraction and relaxation and decreasing maximal
force production (see Fig. 4).
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Model analysis allows us to reveal cellular mechanisms underlying the macro-
scopic effects of electro-mechanical coupling in myocardium. Mechanical interac-
tions of the asynchronously activated cells evolve dynamic strain fields in the tissue
(see Fig. 4). This via cooperativity mechanisms affects mechano-dependent cal-
cium activation of myofilaments in the cells, and therefore modulates intracellular
calcium kinetics and action potential generation (see Fig. 3). Therefore, mechanical
wave affects the electrical wave of repolarization and decreases dispersion of repol-
arization against dispersion of depolarization in the fiber (compare DR and DD for
each given value of D in Fig. 3).

In this study we have tried to integrate important pathways of regulation of
myocardium contraction involving various intracellular and inter-cellular mechano-
electric feedbacks. Of course, the feedback loop in the present model is far from
comprehensive, as it also is known to include contributions from several other dir-
ectly mechano-dependent mechanisms on the cellular and tissue levels. Some of
them are worth special mentioning.

• On the intracellular level, there are stretch-activated ion channels in the sar-
colemma and intracellular mechano-dependent membrane systems including
Ca2+ stores [2, 9].

• On the tissue level, there is a length-dependence of the cell conductivity (a
length-dependence of the diffusion coefficient D), which should account for
dynamic change in the cross-section of cells at their constant volume.

We are going to introduce the above mechanisms in the tissue model later on
and assess their contributions to the electrical and mechanical performance of the
heart muscle.
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