
pp. 1–11 (2018)

Fast tetrahedral mesh generation and segmentation of
an atlas-based heart model using a periodic uniform grid

E. Vasilev∗, D. Lachinov∗, A. Grishin∗, and V. Turlapov∗

Abstract — A fast procedure for generation of regular tetrahedral finite element mesh for objects with
complex shape cavities is proposed. The procedure like LBIE-Mesher can generate tetrahedral meshes
for the volume interior to a polygonal surface, or for an interval volume between two surfaces having
a complex shape and defined in STL-format. This procedure consists of several stages: generation
of a regular tetrahedral mesh that fills the volume of the required object; generation of clipping for
the uniform grid parts by a boundary surface; shifting vertices of the boundary layer to align onto
the surface. We present a sequential and parallel implementation of the algorithm and compare their
performance with existing generators of tetrahedral grids such as TetGen, NETGEN, and CGAL. The
current version of the algorithm using the mobile GPU is about 5 times faster than NETGEN. The
source code of the developed software is available on GitHub.

Keywords: FE-mesh generation, tetrahedral mesh, regular mesh, segmentation, human heart model-
ling, fast generation

MSC 2010: 65M50

This research addresses the problem of fast generation of regular three-dimensional
tetrahedral mesh with complex shape cavities. Current existing open-source soft-
ware packages do not have such capabilities. For digital medicine, an important
example of objects with cavities having a complex shape is the human heart.

For a qualitative simulation of the electrical activity of the human heart and
obtaining reliable results, a reasonably detailed model of the heart should be used,
which will accurately approximate the real heart.

Nowadays, there is a number of finite element models (FE models) of the heart
for modelling electrical signals. For example, in some systems of heart electrical
modelling, the rabbit heart model is used [1, 3]. The rabbit heart model was con-
structed from a high resolution MRI dataset, with the use of an intensity based
level-set filter.

Early 3D models of cardiac anatomy were the simplistic models based on the
geometric shapes. This approach is still in use for applications where the anatom-
ical validity is not important for the purpose of the model [5, 12, 15]. Currently,
researches use the simple geometric shapes and make parameterized models based
on the segmented heart images [8].
∗Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod 603950. E-mail: eu-

gene.unn@gmail.com
The research was supported by the Ministry of Education and Science of the Russian Federation

(Contract No. 02.G25.31.0157).



2 E. Vasilev et al.

In many articles, studies are based on the models built on the segmentation
of CT [2, 4] or MRI [9, 10] scans. The models of this type are close to real heart
geometry, but describe only one heartbeat phase, rather than the whole cycle.

At present, the most common and popular open source mesh generators are:
TetGen, Ani3D, MFEM, NETGEN, GMSH, LBIE.

TetGen is a very popular software for generation of the three-dimensional tet-
rahedral meshes and three-dimensional Delaunay triangulations [13]. It is used in
Wolfram Mathematica and GMSH software and can be included as a plugin in
OpenCascade and other CAD systems.

Ani3D is a software package for generation of the unstructured tetrahedral
meshes and adapting them isotropically and anisotropically [16]. Ani3D can be used
to generate quasi-optimal meshes.

NETGEN is an automatic 3D tetrahedral mesh generator based on the abstract
rules [11]. The main idea is to transform the front triangle to a local coordinate
system and apply the most appropriate abstract rule. NETGEN developers offer
generation rules for tetrahedron generation for 27 different situations.

MFEM is an open-source library for finite element methods, including a parallel
generator of meshes [17], and now it is gaining popularity.

Open source LBIE-Mesher [19, 20] deserves special mention, because its goal
is very close to our one. The goal of LBIE (Level Set Boundary Interior and Ex-
terior) Mesher is to generate tetrahedral/hexahedral Finite Element (FE) meshes for
the volume interior to an isosurface, the volume exterior to an isosurface, or an
interval volume between two isosurfaces, and to do this directly from the volumet-
ric imaging data (CT or MRI tomography). Working capacity of LBIE in [19] is
demonstrated on the example of the human heart, which is especially interesting
for us. The development of LBIE was supported by the authors in 2003–2006. The
main drawback of the LBIE, in our opinion, was its rigid binding to the reconstruc-
tion of the isosurface. In practice, the task of reconstructing the isosurface according
to the tomography of human organs is the source of many artifacts. Today, in world
practice, the organ surfaces (instead of isosurfaces), are reconstructed enough suc-
cessfully, and this is usually done with the help of machine learning methods.

1. Source data

As the initial data, anatomical segments of heart surface from the Plastic boy ana-
tomy (Plastic boy store) were used. The model was segmented and supplemented
by the heart conduction system (Sinoatrial node, Atrioventricular node, His bundle
branches, Bachmann’s bundle). We have several types of meshes (see Fig. 1): the
outer surface of the heart; atria and ventricles; fibrous tissue; heart conduction sys-
tem. All surfaces must be polygonal and defined in STL-format.



Fast tetrahedral mesh generation and segmentation 3

Figure 1. The outer surface of the heart
and internal heart surfaces.

Figure 2. Regular tetrahedron formula
[18].

2. Regular mesh generation

The algorithm consists of several parts: regular mesh generation; classification of
atria and ventricles; removal of cavities and protruding parts.

2.1. Initial mesh generation

The main idea is to calculate all vertices independently of each other using a regular
grid and write a highly parallel code. This is of particular importance for the calcula-
tions performed on a finite element mesh of the heart. Nowadays, such calculations
on a supercomputer can take hours. For the performance of finite element calcu-
lations, it is also important that the regular grid has a grain, formed by a number
of tetrahedra, which allows to organize a periodic and hierarchical structures. When
adapting such a grid to the surface of a given shape, it is more interesting to preserve
the grid structure, if possible, by changing only the positions of the vertices.

To generate regular mesh, we use aspect ratios of a tetrahedron (see Fig. 2). The
optimal angle ω is about 54.7356◦, the edge length l can be specified arbitrarily by
the user. The position of each vertex in parallelepiped can be calculated using the



4 E. Vasilev et al.

Figure 3. One layer of tetrahedra.

Figure 4. The kernel of the regular tetrahedral
mesh structure proposed here (left) and its cross-
section (right).

formulas:

x = ix ·
√

3 l cos(w)+ iy ·
√

3
2

l cos(w)+ iz ·
√

3
2

l cos(w)

y = iy ·
3
2

l cos(w)+ iz ·
1
2

l cos(w)

z = iz · l sin(w)

(2.1)

where x, y, and z are the vertex coordinates and ix, iy, and iz are the indices in a
3-dimensional array.

The volume cannot be filled with identical tetrahedra because tetrahedron is not
a self-similarity figure, so there is some free space left between the tetrahedra (see
Fig. 3). The free space forms some octahedra, and we divide each of them into 4
tetrahedra.

To assess the mesh quality, we use aspect ratio (Lmax/(2 ·
√

6 · rin)), where Lmax
is the length of the longest edge of a tetrahedron and rin is the radius of the sphere
inscribed in a tetrahedron) [6,14]. Using the angle ω = 54.7356◦ we have the aspect
ratio 1.0 for the main tetrahedron and 1.5236 for the tetrahedra formed from the
octahedron.

As a result, after creating the vertices and the tetrahedra, we have a regular mesh
in the form of an inclined parallelepiped (see Fig. 4).



Fast tetrahedral mesh generation and segmentation 5

Figure 5. Even-rule algorithm (2D schem-
atic). If the point is on the inside of the polygon
then it will intersect its edge an odd number of
times, and if it is on the outside, an even num-
ber of times.

By changing the formulas, we can make a number of figure shapes bounding
the mesh (such as a cube, a cylinder, etc.). In the general case, the bounding shape
is not so important, because at the next stage we have to remove the vertices not
belonging to the heart.

An important advantage of mesh generation by this method is that there is no
need to store the full mesh during generation on the GPU. We can generate mesh
layers independently, and move mesh layers from the GPU after generation to free
the GPU memory for a new mesh layer. This approach allows one to built the meshes
of large dimensions.

2.2. Mesh cutting

The next step is to remove vertices that extend beyond the bounding surface. To
remove them, we need to mark vertices for deleting. We mark the vertices located
inside tissue meshes (see Fig. 1) using the ray casting algorithm. A two-dimensional
version of the algorithm is shown in Fig. 5.

We start the ray from the vertex being tested in any fixed direction and calculate
the number of intersections with heart tissue shells. If the point is outside the shell,
the ray will intersect it an even number of times. If the point is inside the shape, then
the ray will intersect the edge an odd number of times. Having tested vertices with
all shapes, we can delete tetrahedra containing the marked vertices.

After marking, we know which vertices we want to exclude from our mesh. We
also need to exclude the tetrahedra incident to these vertices.

The main idea of the cutting algorithm is generating vector match pairs ‘old
vertex index’—‘new vertex index’. We create a new vertex array by removing the
vertices from the old one and moving the ‘surviving’ vertices to the places of deleted
vertices. For each tetrahedron we check all its vertices: if at least one vertex is not
contained in the ‘new vertex index’, then we delete it, otherwise we change old
indices to new indices.

A more complex option is to remove the marked vertices adjacent to the un-
marked vertices. In this case, an incidence matrix is constructed, and before deleting
we check whether the unmarked neighbour has a vertex.

After deleting the vertices we obtain the model shown in Fig. 6.



6 E. Vasilev et al.

Figure 6. Figure after fast cutting
operation.

Figure 7. Smoothing algorithm
(2D schematic).

2.3. Mesh surface smoothing

After the cutting stage, we get an unsmoothed mesh (see Fig. 6), the boundaries of
which do not coincide with the boundaries of the surface, which we meshed with.

The smoothing algorithm is labelled as Algorithm 2.1. We calculate the distance
from the vertex to the surface. If this distance is more than 0.4 of edge length, then
we remove this vertex and incident tetrahedra, and move the adjacent vertices to the
boundary. If this distance is less than 0.4 of edge length, then we move this vertex
to the boundary (see Fig. 7). Applying algorithm to one layer shown in Fig. 8: top
pictures show compaction of tetrahedra layer, bottom pictures show stretch of one
tetrahedron layer.

As a result of all operations we have a regular mesh, and the regularity is only
violated at the boundary (see Fig. 9).

In some cases the final check-aspect-ratio step may accidentally delete some
internal tetrahedra leaving holes inside the domain, especially in parts with high
curvature boundary and respectively big edge lengths. While the vertices are pro-
jected to the surface, they change the aspect ratios of both boundary and internal



Fast tetrahedral mesh generation and segmentation 7

Algorithm 2.1 Mesh surface smoothing
for each outside vertex in mesh do

calculate distance between vertex and boundary
if distance > 0.4 · edge length then

delete this vertex
add neighbours to special vertices list

else
calculate new vertex position as projection of vertex onto a shape and replace
old vertex

end if

end for
for each vertex in special vertex list do

move this vertex to the boundary

end for
for each tetrahedron incident to special vertices do

check aspect ratio
if aspect ratio > 3.0 then

delete tetrahedron

end if

end for

(a) Compacted mesh layer

(b) Stretched mesh layer
Figure 8. Shifting operations with the bound-
ary layer of tetrahedra.



8 E. Vasilev et al.

Figure 9. Resulting mesh.

Table 1.
Measurement
results.

Parameter NETGEN TetGen CGAL Our approach

Number of points 343862 892420 2326140 386797
Number of tetrahedra 1920978 4608171 7152246 2220448
Average aspect ratio 1.38692 3.37772 2.92473 1.35397
Maximum aspect ratio 4.91937 148.163 9858.46 7.53282
Average edge length 0.062730 0.082872 0.039632 0.114907
Maximum edge length 0.160629 1.24866 2.27701 0.1589
time 290 sec. 195 sec. 909 sec. 59 sec.

tetrahedra. Also, the algorithm can make a low-quality mesh for walls that are smal-
ler than the size of the tetrahedron.

3. Performance measurement
To measure the performance, we created tetrahedral meshes using four different
mesh generators with the same heart surface. It consists of 15350 triangular faces.
We compared 4 mesh generators: TetGen, NETGEN, CGAL and our approach.

To measure the performance, a computer with the following characteristics was
used: CPU Intel Core i7 4710HQ@2.50GHz and NVIDIA GeForce GTX 850M
GPU with 2 GB of DDR3 memory, 128 bit interface, 902 MHz, 640 CUDA cores,
operating system Windows 8.1 x64.

Measurement results are given in Table 1.
The current version of the algorithm using the mobile GPU is about 5 times

faster than NETGEN. The total time of the mesh generation consists of the following
parts:

• Mesh generation: 0.752 seconds;

• Mesh marking: 7.416 seconds;

• Mesh cutting: 6.668 seconds;

• Mesh surface refinement: 44.063 seconds;



Fast tetrahedral mesh generation and segmentation 9

(a) Our approach aspect ratio distribution (b) NETGEN aspect ratio distribution

(c) TetGen aspect ratio distribution (d) CGAL aspect ratio distribution

Figure 10. Comparison of tetrahedra quality for different mesh generators.

Parameter GTX 850M GTX 680

Architecture Maxwell GM107 Kepler GK104
Number of cores 640 1536
Memory bandwidth 32 GB/s 192.3 GB/s
Mesh generation time 0.721 sec. 0.594 sec.
Mesh marking time 6.839 sec. 1.559 sec.

Table 2. Algorithm GPU part
measurements.

It can be seen that three-quarters of the time is occupied by the smoothing oper-
ation of the surface. Currently, it is sequential algorithm, but after creating a parallel
version for the GPUs, its execution time will be reduced by 80%. The mesh cutting
operation is also sequential at present, but by parallelizing all operations we expect
an acceleration of up to 15x with low-end GPUs, and up to 60x with hi-end GPUs
to be achieved.

The comparison of tetrahedra quality for different mesh generators is presented
in Fig. 10.

Performance comparison of the GPU part of the algorithm on two different
video cards is shown in Table 2. We see the superior performance of a more powerful
GPU. Tasks are performed faster due to a higher frequency and a greater number of
GPU cores. In the computationally complex part of the algorithm, the performance
gap between GPUs is even more evident.



10 E. Vasilev et al.

It can be concluded from the analysis of this comparison results that our ap-
proach is well suited for generating tetrahedral meshes with a small step size.

4. Conclusion

We described and implemented a finite-element mesh constructing algorithm based
on the trimming procedure of periodical regular tetrahedral mesh. The main advant-
age of the algorithm is that the tetrahedra in the periodical regular tetrahedral mesh
are generated independently of each other at the generation stage, therefore this
procedure is much better parallelized compared to wave propagation algorithms. At
the cutting and smoothing stages of the algorithm, the tetrahedra are also processed
independently of each other, so these stages do not slow down the algorithm.

The vertices are simply projected to the boundary surface, therefore the sharp
edges of the initial domain will not be always preserved. This is not a big issue for
cardiac simulations, since cardiac domains do not have sharp edges.

The proposed algorithm can be best applied to create meshes with cavities and
dense meshes consisting of small-size tetrahedra. The algorithm offers excellent
parallelization opportunities for architectures with a large number of computing
processors like GPU.

Source codes of the developed software are available on GitHub: https://github.
com/FenixFly/Parallel-Mesh-Generator.

References
1. H. J. Arevalo, P. M. Boyle and N. A. Trayanova, Computational rabbit models to investigate the

initiation, perpetuation, and termination of ventricular arrhythmia. Progress Biophys. Molecul.
Biology 112 (2016), No. 2, 185–194.

2. O. V. Aslanidi, T. Nikolaidou, J. Zhao, B. H. Smaill, S. H. Gilbert, A. V. Holden, T. Lowe, P.
J. Withers, R. S. Stephenson, J. C. Jarvis, J. C. Hancox, M. R. Boyett, and H. Zhang, Applica-
tion of micro-computed tomography with iodine staining to cardiac imaging, segmentation, and
computational model development. IEEE Trans. Medical Imaging 32 (2013), No. 1, 8–17.

3. R. Bordas, K. Gillow, Q. Lou, I. R. Efimov, D. Gavaghan, P. Kohl, V. Grau, and B. Rodriguez,
Rabbit-specific ventricular model of cardiac electrophysiological function including specialized
conduction system. Progress Biophys. Molecul. Biology 107 (2011), No. 1, 90–100.

4. D. Deng, P. Jiao, X. Ye, and L. Xia, An image-based model of the whole human heart with de-
tailed anatomical structure and fiber orientation. Comp. Math. Methods Medicine (2012). Article
ID 891070, 16p.

5. P. C. Franzone, L. Guerri, M. Pennacchio, and B. Taccardi, Spread of excitation in 3D models
of the anisotropic cardiac tissue. II. Effects of fiber architecture and ventricular geometry. Math.
Biosciences 147 (1998), No. 2, 131–71.

6. P. J. Frey and P.-L. George, Mesh Generation: Applications to Finite Elements. Hermes Science
Publishing, Oxford–Paris, 2000.

7. M. Kremer, D. Bommes, and L. Kobbelt, OpenVolumeMesh—a versatile index-based data struc-
ture for 3D polytopal complexes. Proc. 21st Int. Meshing Roundtable (2013), 531–548.

8. P. Lamata, M. Sinclair, E. Kerfoot, A. Lee, A. Crozier, B. Blazevic, S. Land, A. J. Lewandowski,



Fast tetrahedral mesh generation and segmentation 11

D. Barber, S. Niederer, and N. Smith, An automatic service for the personalization of ventricular
cardiac meshes. J. Royal Society Interface 91 (2013), No. 11, 62–72.

9. A. Lopez-Perez, R. Sebastian, and J. M. Ferrero, Three-dimensional cardiac computational mod-
elling: methods, features and applications. Biomed. Engrg. Online 14 (2015), Art. 35.

10. M. Plotkowiak, B. Rodriguez, G. Plank, J. E. Schneider, D. Gavaghan, P. Kohl, and V. Grau,
High performance computer simulations of cardiac electrical function based on high resolution
MRI datasets. Computational Science ICCS 2008. pp. 571–580.

11. J. Schöberl, NETGEN—an advancing front 2D/3D-mesh generator based on abstract rules. Com-
put. Visualiz. Science 1997, 41–52.

12. M. Sermesant, P. Moireau, O. Camara, J. Sainte-Marie, R. Andriantsimiavona, R. Cimrman, D.
L. Hill, D. Chapelle, and R. Razavi, Cardiac function estimation from MRI using a heart model
and data assimilation: advances and difficulties. Medical Image Analysis 10 (2006), No. 4, 642–
656.

13. H. Si, TetGen, a Delaunay-based quality tetrahedral mesh generator. ACM Trans. Math. Software
41 (2015), No. 2, Article 11, 36 p.

14. C. Simpson, C. D. Ernst, P. Knupp, P. P. Pébay, and D. C. Thompson, The Verdict Library Ref-
erence Manual. Sandia National Laboratories, April 2007.

15. F. A. Syomin and A. K. Tsaturyan, Mechanical model of the left ventricle of the heart approx-
imated by axisymmetric geometry. Russ. J. Numer. Anal. Math. Modelling 32 (2017), No. 5,
275–291.

16. Yu. V. Vassilevski and K. N. Lipnikov, An adaptive algorithm for quasioptimal mesh generation.
Comput. Math. Math. Phys. 39 (1999), No. 9, 1468–1486.

17. P. S. Vassilevski, Sparse matrix element topology with application to AMG(e) and precondition-
ing. Numer. Linear Algebra Appl. (2002), No. 9, 429–444.

18. H. N. G. Wadley, Multifunctional periodic cellular metals. Phil. Trans. R. Soc. A 364 (2005),
31–68.

19. Y. Zhang, Tetrahedral/hexahedral finite element meshing from volumetric imaging data: pro-
posal for a dissertation. Inst. Comput. Engrg Sci. The Univ. Texas at Austin (USA), 2003.

20. Y. Zhang and C. Bajaj, Adaptive and quality quadrilateral/hexahedral meshing from volumetric
data. Computer Methods Appl. Mech. Engrg. (CMAME) 195 (2006), No. 9-12, 942–960.


