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Stochastic modelling of age-structured population with time
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Abstract — A stochastic age-structured population model with immigration of individuals is con-
sidered. We assume that the lifespan of each individual is a random variable with a distribution func-
tion which may differ from the exponential one. The immigration rate of individuals depends on the
time and total population size. Upper estimates for the mean and variance of the population size are
established based on the theory of branching processes with constant immigration rate. A Monte Carlo
simulation algorithm of population dynamics is developed. The results of numerical experiments with
the model are presented.
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In the construction of mathematical models of population dynamics, it is essential
to consider the following factors: (1) the dependence of the immigration or repro-
duction rate of individuals on the population size; (2) the finiteness of life time of
individuals or the time of their stay in some stages with the ability to produce new in-
dividuals including individuals from other populations; (3) the interaction between
individuals leading to death of individuals or their transition to other populations;
(4) the environmental impact.

As a rule, stochastic models taking into account the total population size are
based on random birth and death processes [3, 4]. Stochastic models using the age
or stages of development of individuals are based on the theory of branching random
processes [11, 24]. An important aspect in the creation of stochastic models of pop-
ulation dynamics is the consideration of immigration and reproduction processes
of individuals. Mathematical foundations for construction of models of this family
were given in [10,12,18,25]. The development of the results of [10,12,18,25] with
respect to problems of dynamics of different populations was presented in [2,9,15].

The consideration of indicated and other factors entails the need for special
methods and algorithms for analytical and numerical study of stochastic model.
Examples of development of such methods and algorithms for stochastic models of
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specific types were presented in [7,19,20,27,28]. It should be noted that in the case
of exponential distribution of lifespan of individuals the models allow analytical
studies.

As a rule, deterministic models of population dynamics taking into account
the above factors are based on partial differential equations, differential equations
with delay, integro-differential or integral equations. Examples of such models were
given in [5,6,8,22,23,29]. An important aspect of the creation of deterministic mod-
els in such subject areas as immunology, hematology, epidemiology, ecology, etc.,
is the consideration of compartment and age structures of studied populations. In-
coming flows of individuals into different compartments can be regulated according
to the feedback principle. The stay lengths of individuals in different compartments
and the lifespan of individuals can be described by rather arbitrary distribution func-
tions. The presence of a large number of compartments or intermediate stages of
development of individuals leads to increase the dimension of the vector of used
variables and at the same time to reduction of typical sizes of individual compon-
ents of this vector. Therefore, using differential or integral equations in models, we
encounter the problem of interpretation of their solutions taking into account the
integer nature of variables. In addition, the description of the duration of stay of
an individual in a particular compartment by non-exponential distribution functions
actually means the use of the individual-based (agent-based) approach. Hence, in
some problems the adequate simulation of some or other process requires trans-
ition from a deterministic model to a stochastic one, each based on the same basic
assumptions. The stochastic model should take into account the integer nature of
variables and the age composition of the population.

The general idea of the paper is to construct and study a stochastic analogue
of the deterministic models of population dynamics [21, 22] under the following
assumptions: the rate of appearance of new individuals depends on the time and
population size; the distribution of lifespan of individuals differs from the exponen-
tial one. These assumptions lead to appearance of a new and previously unstudied
family of stochastic models of population dynamics.

The aims of the paper are: (1) the mathematical formalization of the stochastic
model; (2) the development of an approach to analytic study of some characterist-
ics of the population size; (3) the elaboration of a modelling algorithm based on
the Monte Carlo method; (4) numerical experiments with the stochastic model and
comparison of the simulation results with solutions to a deterministic analogue in
the form of integral equation.

1. Description of the model

Let the function r(t,x), t ∈ R, x ∈ Z+, and the distribution function F(t) be given.
We consider a population of individuals, where
– new individuals appear with the rate r(t,x(t)), where x(t) is the population size at
the time moment t;
– each individual lives random time with the distribution function F(t) and dies
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without leaving offspring;
– individuals do not interact with each other.

We assume that the function r(t,x) is nonnegative and piecewise-continuous
from the right with respect to t, and the function F(t) is such that F(+0) = 0.

Let us give a formal definition of the random process describing such popula-
tion. To do that, we introduce the following notations:
– W is a fixed set of individuals isomorphic to the set Z of integer numbers;
– bi is the moment of appearance of the individual i ∈W in the population;
– `i is the lifespan of the individual i ∈W . We assume that the random variables `i
have the distribution function

F(t) = P(`i < t)

and are independent in common;
– di = bi + `i is the moment of death of the individual i ∈W ;
– X(t) = {i ∈W : t ∈ [bi;di)} is the set of individuals existing at the moment t in the
population;
– x(t) = |X(t)| is the population size at the moment t;
– X(t,s) = {i ∈ X(t) : s ∈ [bi;di)}, t 6 s, is the set of individuals of the population
existing at the moment t and living to the moment s;
– x(t,s) = |X(t,s)|, t 6 s, is the number of individuals in the population existing at
the moment t and living to the moment s;
– ν(t) = max{i ∈W : bi 6 t} is the last individual among all individuals appeared
before the time t inclusive;
– Ft = σ{X(s), `i, s 6 t, i ∈ X(s)} is the σ -algebra of events generated by the
moments of appearance and lifespans of all individuals existing in the population
to the moment t inclusive. We call the family of σ -algebras {Ft}t∈R the history of
population.

We assume that for any t and h > 0 and for h tending to zero the following
equalities hold:

P(X(t +h) = X(t)∪{ν(t)+1} |Ft) = r(t,x(t))h+o(h) (1.1)
P(X(t +h) = X(t) |Ft) = 1− r(t,x(t))h+o(h). (1.2)

Formula (1.1) specifies the probability that exactly one individual i appears in the
population in the time (t; t +h] and this individual is chosen from the set W accord-
ing to the equality i = ν(t)+1. For this individual we have bi ∈ (t; t +h]. Formula
(1.2) specifies the probability that in the time (t; t +h] the content of the population
does not change. The probability of other possible changes in the population content
in the time (t; t +h] is o(h).

Point out two peculiarities in definition (1.1)–(1.2). First, the individuals do not
die for small h. This follows from the fact that the random variables di, i ∈ X(t), are
measurable relative to Ft and hence h can be taken so that t +h < mini∈X(t) di.

Second, probabilities (1.1)–(1.2) are measurable relative to the σ -algebra σ{x(t)}.
Therefore, for small h the appearance of a new individual during the time interval
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[t; t +h) depends only on the population size at the moment t and does not depend
on other events A ∈Ft \σ{x(t)}.

2. Time distribution of intervals between appearance of individuals in
the population

Consider the set X(t) of individuals of the population existing at the moment t. If no
new individual appears in the population in the time interval (t;s) and individuals
only die during this period, then we have the inclusion X(s)⊂ X(t). By

ξ (t) = sup{s ∈ R : X(s)⊂ X(t)}

we denote the closest to t from the right moment of appearance of a new individual
in the population. Some properties of ξ (t) are presented in the following lemmas.

Lemma 2.1. For any t ∈ R and s > t the following relation holds:

P(ξ (t)< s |Ft) = 1− exp

− s∫
t

r(u,x(t,u))du

 . (2.1)

Proof. Fix a moment t ∈ R and consider the function

G(s) = P(ξ (t)< s |Ft), s > t

for this moment. In this case for s > t and h > 0 we have

G(s+h) = P(ξ (t)< s+h |Ft) = P(ξ (t)< s |Ft)P(ξ (t)< s+h | ξ (t)< s,Ft)

+P(ξ (t)> s |Ft)P(ξ (t)< s+h | ξ (t)> s,Ft)

= G(s)+(1−G(s))P(ξ (t)< s+h | ξ (t)> s,Ft).

The probability P(ξ (t)< s+h | ξ (t)> s,Ft) is equal to the probability that a new
individual appears in the population in the time interval [s;s+h) under the condition
that the history of the population is known until the moment t inclusive and no new
individuals appear during the time period [t;s).

According to formula (1.1), the probability that a new individual appears in the
population in the time period [s;s + h) depends on the size of the population at
the moment s only. By construction, the σ -algebra Ft contains information on the
moments of birth and death of all individuals appeared in the population until the
moment t inclusive. Therefore, the random variable x(t,s) is measurable relative
to Ft and equals the size of the population at the moment s under the condition
{ξ (t)> s}. Therefore,

P(ξ (t)< s+h | ξ (t)> s,Ft) = r(s,x(t,s))h+o(h).
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Substituting the obtained expression into the formula for G(s+h), we get

G(s+h) = G(s)+(1−G(s))
(
r(s,x(t,s))h+o(h)

)
.

Dividing this equality by h and passing to the limit for h→+0 we obtain the Cauchy
problem

G′(s) = (1−G(s))r(s,x(t,s)), G(t) = 0.

Function (2.1) is the solution to this problem.

Lemma 2.2. The equality bi+1 = ξ (bi) is valid for each i ∈W.

Proof. Consider the moments t = bi and s = ξ (t). Since no new individuals
appear in the population in the time period [t;s), then the individual i is the last
in the population for all time moments u ∈ [t;s), i.e., i = ν(u) for all u ∈ [t;s).
Therefore, X(s) equals X(t,s)∪{i+ 1}. This means that at the time moment s the
individual i+1 appears in the population. Thus, s = bi+1.

3. The case of constant rate of appearance of new individuals

Lemma 3.1. If r(t,x)≡ r∗ = const, then for any t > 0 and under the condition
F0 the random variable x(t)− x(0, t) has the Poisson distribution with the para-
meter

λ (t) = r∗
∫ t

0
(1−F(s))ds. (3.1)

In particular,

E(x(t) |F0) = x(0, t)+λ (t)

E(x2(t) |F0) = x2(0, t)+(2x(0, t)+1)λ (t)+λ
2(t).

Proof. Lemmas 2.1 and 2.2 imply that for r(t,x) ≡ r∗ = const the difference
bi+1− bi between subsequent moments of appearance of individuals has the expo-
nential distribution with the parameter r∗. In this case we can use the results of [10]
where it was established that the generating function

H(s, t) = E(sz(t) |F0)

of the variable z(t) = x(t)− x(0, t) has the form

H(s, t) = exp
(
−r∗

∫ t

0
(1−h0(Φ(s,u)))du

)
where in the case of considered model the functions h0 and Φ(s, t) are

h0(x) = x, Φ(s, t) = EsI(t6`) = s+(1− s)F(t).
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Here I(·) is an indicator function and ` is a random variable with the distribution
function F(t). Substituting h0 and Φ(s, t) into the expression for H(s, t), we get

H(s, t) = exp
(
λ (t)(s−1)

)
.

Therefore, under the condition F0 the random variable x(t)−x(0, t) has the Poisson
distribution with the parameter λ (t).

The variable x(0, t) is measurable relative to F0. Therefore,

E(x(t) |F0) = x(0, t)+E(x(t)− x(0, t) |F0) = x(0, t)+λ (t).

The formula for E(x2(t) |F0) can be proved similarly.

The assertion of Lemma 3.1 is formulated relative to the zero time moment, but
it remains valid for any other basic time moment t0. In this case the assertion of
the lemma can be formulated as follows: for any t > t0 and under the condition Ft0
the random variable x(t)− x(t0, t) has the Poisson distribution with the parameter
λ (t− t0).

4. Upper estimate of the population size

Theorem 4.1. Let there exist a constant r∗ > 0 such that

r(t,x)6 r∗, t ∈ R, x ∈ Z+.

In this case the inequality x(t)6 x(0, t)+ z(t) holds under the condition F0, where
the random variable z(t) has the Poisson distribution with the parameter λ (t) de-
termined by formula (3.1).

In particular,

E(x(t) |F0)6 x(0, t)+λ (t)

E(x2(t) |F0)6 x2(0, t)+(2x(0, t)+1)λ (t)+λ
2(t).

Proof. Let V be one more fixed set of individuals isomorphic to Z and not in-
tersecting W . We define the random process Y (t) ⊂ V similar to the process X(t)
and introduce the following notations:
– b j is the moment of appearance of the individual j ∈V in the population Y ;
– ` j is the lifespan of the individual j ∈ V , {` j} j∈V are independent in common
random variables with the distribution function F(t);
– d j = b j + ` j is the moment of death of the individual j ∈V ;
– Y (t) = { j ∈ V : t ∈ [b j;d j)} is the set of individuals of the population Y existing
at the moment t;
– η(t) = max{ j ∈ V : b j 6 t} is the last individual among all individuals of the
population Y appeared before the moment t inclusive;
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– Gt = σ{Ft , Y (s), ` j, s 6 t, j ∈ Y (s)} is the σ -algebra of events generated by
the moments of appearance and lifespans of all individuals existing in the popula-
tions X and Y until the moment t inclusive.

We assume that Y (t) =∅ for t 6 0 and define the appearance of new individuals
in the population Y in the following way:

P(Y (t +h) = Y (t)∪{ j} | Gt) = (r∗− r(t,x(t)))h+o(h)
P(Y (t +h) = Y (t) | Gt) = 1− (r∗− r(t,x(t)))h+o(h)

where t > 0, h > 0, j = η(t)+1 ∈V .
Consider the random process

Z(t) =∅, t 6 0, Z(t) = (X(t)\X(0))∪Y (t), 0 6 t.

Under the condition F0 for any t > 0 and h > 0 we have

(X(t)\X(0))⊂ Z(t)
x(t)− x(0, t) = |X(t)\X(0)|6 z(t) := |Z(t)| (4.1)
P(Z(t +h) = Z(t)∪{i} | Gt) = r(t,x(t))h+o(h) (4.2)
P(Z(t +h) = Z(t)∪{ j} | Gt) = (r∗− r(t,x(t)))h+o(h) (4.3)

P(Z(t +h) = Z(t) | Gt) = 1− r∗h+o(h)

where i = ν(t)+1, j = η(t)+1.
Since the sum of probabilities (4.2) and (4.3) equals r∗h+ o(h), the rate of ap-

pearance of new individuals in the population Z is constant and equal to r∗. There-
fore, according to Lemma 3.1, under the condition F0 the random variable z(t) has
the Poisson distribution with the parameter λ (t), which together with estimate (4.1)
completes the proof.

Similar to Lemma 3.1, the assertion of Theorem 4.1 is valid not only relative to
zero time moment, but relative to any other moment t0.

5. Simulation algorithm
Construct an algorithm for generation of implementations of the random process
x(t) on the time segment [0;T ]. Each implementation of the random process x(t)
is a piecewise-constant function continuous from the right. Therefore, in order to
construct implementations of x(t), we have to generate the moments

0 < t1 < t2 < · · ·< tn 6 T

at which the process x(t) changes its value and the values xk = x(tk), k = 1, . . . ,n, at
those time moments.

The size of the population x(t) can change in two following cases: at the moment
of death of an individual (or a group of individuals) and at the moment of appearance
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of a new individual. If at the moment t we know the moments di of death of all
individuals i ∈ X(t), then the function x(t,s) is determined and hence distribution
(2.1) of the closest to t from the right moment ξ (t) of appearance of a new individual
in the population is also determined.

The direct simulation of the random variable ξ (t) requires the solution of the
nonlinear equation

1− exp

− s∫
t

r(u,x(t,u))du

= α (5.1)

relative to the variable s ∈ (t;∞) for each t, where α is a random number uniformly
distributed in (0;1). To avoid this procedure, assume that r(t,x)6 r̂(x)<+∞ for all
t > 0 and x ∈ Z+, where r̂(x) is some bounding function. This assumption allows us
to use the algorithm of maximal section (see [26, p. 227] and [1]) for generation of
the random variable ξ (t) and not to solve equation (5.1) at each step.

As a result we come to Algorithm 1 where we use the following notations: |D|
is the number of elements in the list D, minD is the first (minimal) element in the
list D (if the list D is empty, then we assume that minD = +∞), uniform(0,1) is a
generator of pseudo-random numbers uniformly distributed on (0;1). For generation
of the values α and ` indicated in Algorithm 1 we can use the formulas and pseudo-
random generators described in [13, 14, 16].

6. Computational experiments
The aim of numerical experiments with the model was the study of typical modes
of population dynamics.

6.1. Influence of the function r(t,x) on the population dynamics

In the first experiment we compare the cases of constant and controlled inflows of
individuals, i.e., r(t,x) = r1(t,x) = r∗ or r(t,x) = r2(t,x) = (a1 +a2 x)/(1+a3 x2),
where r∗, a1, a2, and a3 are positive constants. The function r2(t,x) relates to the
family of unimodal functions. Such functions are often used in control models for
biological processes and reflect positive and negative feedback between the size of
the population and the rates of inflow or reproduction of individuals. The function
r2(t,x) is nonnegative, continuous, and bounded from above for x > 0.

For F(t) we used the uniform distribution in (0;ω). In this case the function
λ (t) defined by formula (3.1) has the form

λ (t) = r∗
(

t− t2

2ω

)
, t ∈ (0;ω), λ (t) = 1

2 r∗ω, t ∈ [ω;+∞).

The values of scalar parameters were the following: x(0) = 0, ω = 10, r∗ = 17320,
a1 = 107, a2 = 1.5 ·107, and a3 = 10−2.

Let E1(t), σ1(t), E2(t), σ2(t) be the mathematical expectations and mean square
deviations of x(t) for the cases r(t,x) = r1(t,x) and r(t,x) = r2(t,x), respectively.



Stochastic modelling of age-structured population 9

Algorithm 1: Generation of an implementation of the random process x(t)
on the segment [0;T ].

Input:
T > 0 is a finite time moment;
D is an ordered list of real numbers with repetitions containing the death
moments di of individuals i ∈ X(0) existing at the moment t = 0;

Output:
n is the number of time moments of population size changes in the time
segment [0;T ];
0 < t1 < · · ·< tn 6 T are the time moments of population size changes;
x1, . . . ,xn are the population sizes at the moments t1, . . . , tn;

1: t := 0 is the current time moment;
2: x := |D| is the current population size;
3: n := 0 is the number of generated moments for changes in the popula-

tion size;
4: While t < T do:
5: d := minD is the closest moment of death of an individual;
6: α := uniform(0,1);
7: ξ :=− ln(α)/r̂(x) is the supposed moment of appearance of a new

individual;
8: If d 6 ξ , then:
9: t := d;

10: If T < t, then exit;
11: Remove all moments equal to d from the list D;
12: n := n+1; tn := t; xn := x := |D|;
13: Else:
14: t := ξ ;
15: If T < t, then exit;
16: α := uniform(0,1);
17: If α r̂(x)< r(t,x), then:
18: Generate the random variable ` with the distribution func-

tion F(t);
19: Add the moment d := t + ` into the list D;
20: n := n+1; tn := t; xn := x := |D|.

The interval estimates of E j(t), σ j(t), j = 1,2, with the confidence level 95% are
presented in Tables 1 and 2 for different time moments. For each of two variants
of specification of the function r(t,x) we generated 1000 implementations of the
random process x(t).

Table 1 shows that the dynamics and numeric values of E1(t), σ1(t) completely
correspond to the assertion of Lemma 3.1 and to the values of the function λ (t).
The data of Table 1 can be considered as a result of test calculations confirming the
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Table 1. Interval estimates
of E1(t), σ1(t). t λ (t)

√
λ (t) E1(t) σ1(t)

0 0 0 0 0
0.5 8443.5 91.89 8443.01±5.85 94.21±4.32
2.5 37887.5 194.65 37894.64±12.37 199.35±9.14
4.5 60403.5 245.77 60408.82±15.61 251.59±11.54
8.5 84651.5 290.95 84674.48±18.27 294.41±13.51

12.5 86600 294.28 86602.97±17.92 288.74±13.24
20 86600 294.28 86602.04±17.89 288.31±13.22
30 86600 294.28 86592.64±18.76 302.31±13.86
50 86600 294.28 86605.33±18.25 294.07±13.49

Table 2. Interval estimates of E2(t), σ2(t). t E2(t) σ2(t)

0 0 0
0.5 37755.61±7.08 114.19±5.24
2.5 75709.56±10.54 169.83±7.79
4.5 89790.12±12.56 202.41±9.28
8.5 91039.43±12.84 206.93±9.49

12.5 85187.99±12.85 207.12±9.51
20 86682.08±13.16 212.11±9.73
30 86614.34±13.03 209.99±9.63
50 86610.28±13.03 210.01±9.63

proper work of the simulation algorithm described above.
Table 2 shows that the dynamics of E2(t), σ2(t) has an expressed transition

character going out to a steady level.
The parameters of the model were chosen so that the confidence intervals for

E1(t), E2(t) were distinct in the interval [0;20) and intersect on the segment [20;50].
At the same time, the estimates of σ1(t), σ2(t) are essentially different on the whole
segment [0;50]. In particular, for t ∈ [12;50] we can write σ1(t)≈ 1.42σ2(t) and this
relation is caused by distinct behavior of the functions r1 and r2 in a neighbourhood
of the point x∗= λ (ω)= 86600. Therefore, taking into account this type of feedback
in the inflow rate of new individuals (r(t,x) = r2(t,x)), we get a lesser amplitude
range for the size of the population with respect to its mean value in comparison to
the case of constant inflow rate (r(t,x) = r∗).

According to Lemma 3.1, for r(t,x) = r1(t,x) and for any fixed t the random
variable x(t) has the Poisson distribution with the parameter λ (t). If the parameter
of this Poisson distribution is large, then it can be approximated by a normal distri-
bution. Given the generated implementations, we applied the Pearson χ2 criterion
to test the hypothesis that the variable x(t) has a normal distribution at the time
moments t = 1,2, . . . ,50. This hypothesis was accepted at the 5% level of signific-
ance for each indicated time moment and for each of the cases r(t,x) = r1(t,x) and
r(t,x) = r2(t,x) (the minimal observed p-value was equal to 0.074). The fact that
the distribution law of the function x(t) is normal allows us to use justifiably a set
of well-known statistical methods for processing real data within the framework of
the studied model.
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6.2. Comparison with deterministic model

In the second experiment we compared the constructed stochastic model with the
deterministic model in the form of an integral equation [21, 22]:

y(t) =
∫

∞

t
P(a)e−µ a

ϕ(t−a)da+
∫ t

0
P(a)e−µ a f (y(t−a))da, t > 0. (6.1)

The following notations are used in equation (6.1): y(t) is the size of the population
at the moment t, ϕ(t) is the rate of appearance of individuals before the moment
t = 0, f (y) is the inflow rate of new individuals depending on the population size,
µ > 0 is a constant, P(a) does not increase and is non-negative on [0;∞), P(0) = 1,
and there exists a constant σ > 0 such that P(σ) = 0.

Model (6.1) is based on the same assumptions as those presented at the begin-
ning of Section 1: the function f (y) has the same sense as the function r(t,x) in
the stochastic model, and the role of the distribution function for the lifespan of
individuals is implemented by the function

L(t) = 1−P(t)e−µ t , t ∈ [0;∞).

The general properties of solutions to equation (6.1) and to its more general
form were established in [21], namely, those are the existence, uniqueness, and non-
negativity on the semiaxis [0;∞). The following assertions were proved in [22]: (1)
if the solution y(t) to equation (6.1) has a limit y∗ for t → +∞, then y∗ is a root of
the equation

y∗ = JP,µ f (y∗), JP,µ =
∫

∞

0
P(a)e−µ a da (6.2)

(2) all nonnegative solutions to equation (6.2) are steady state solutions to equa-
tion (6.1), (3) if the functions P(a), ϕ(t), f (y) are sufficiently smooth, y∗ is a
root of equation (6.2), the function f (y) satisfies the Lipschitz condition on R and
JP,µ f ′(y∗) < 1, then the stationary solution y∗ is asymptotically stable relative to
small perturbations of the function ϕ(t) in the sense of mean.

Assume that µ = 0.0475, P(t) = max{0,1− t/12}, t > 0,

f (x) =


0.1x+50, x ∈ [0;800]
x−670, x ∈ [800;1000]
max{−1.8x+2130,0}, x ∈ [1000;+∞).

The function f (x) is unimodal, nonnegative, continuous, and bounded from above.
The parameters were taken so that JP,µ = 5, equation (6.2) has three roots

y∗1 = 500, y∗2 = 837.5, y∗3 = 1065

and the following inequalities hold:

JP,µ f ′(y∗1)< 1, JP,µ f ′(y∗2)> 1, JP,µ f ′(y∗3)< 1.
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Figure 1. Heat map of implementations of the random process x(t).

Figure 1 presents the heat map of implementations of the random process x(t)
in the case when the inflow of individuals is described by the function r(t,x) = f (x)
and the lifespan is described by the function F(t) = 1−P(t)e−µ t . The darker areas
correspond to points (t,x) such that implementations of the random process x(t)
occur more frequently in the neighbourhoods of those points. The lines of constant
frequency are drawn for the levels 0.24, 0.12, 0.06, 0.03, 0.015, 0.0075, 0.0037,
0.0019. To construct this heat map, we generated 500000 implementations of the
random process x(t). In all the implementations the initial population size was taken
randomly and uniformly from the set {300,301, . . . ,1200}, the ages of initial indi-
viduals were distributed uniformly in (0;12).

It is seen that for large t the distribution of the variable x(t) is concentrated in
neighbourhoods of the points y∗1 and y∗3, and the value of x(t) almost never falls into
a neighbourhood on the point y∗2 even if the initial size of the population is close to
y∗2. This observation is in accordance with the stability of the stationary solutions y∗1
and y∗3 of deterministic model (6.1).

7. Conclusion
In this paper we present the model of population dynamics in the form of a random
process where the inflow rate of new individuals depends on time and the total size
of the population and the distribution of lifespan of individuals may differ from ex-
ponential one. The model develops and generalizes stochastic models of population
dynamics with constant inflow of individuals or models with exponential distribu-
tion functions of lifespan of individuals.

The paper contains the results of analytical and numerical studies of the con-
structed model including its comparison with the deterministic analogue in the form
of an integral equation. The analytical results of the study of the stochastic model
are used twice. First, they are used to test the numerical simulation algorithm and
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compare the results of numerical experiments with theoretical values of the math-
ematical expectation and variance of the population size at constant rate of inflow
of individuals. Second, the presence of upper estimates of the mathematical expect-
ation and variance of the population size in the case of a non-constant rate of inflow
of individuals provides the finiteness of these numerical characteristics in a fixed
time interval. As a consequence, the application of standard methods of mathemat-
ical statistics becomes feasible for determination of point and interval estimates of
the mathematical expectation of population size.

The results of computational experiments indicate some similarities and differ-
ences in the behavior of solutions of the stochastic and deterministic models con-
structed under the same assumptions. The analysis of solutions of the determin-
istic model allows us to evaluate the behavior of implementations of the stochastic
model. The presence of stable or unstable stationary solutions of the integral model
determines possible areas of attraction of implementations of the stochastic model.
In particular, the estimate of the mathematical expectation of the population size rel-
ative to implementations falling within a neighbourhood of the asymptotically stable
stationary solution y∗ to the integral equation practically coincides with y∗. Such a
priori information is quite important from the viewpoint of planning computational
experiments with the stochastic model.

The approach proposed in the present paper can be used to construct stochastic
models of population dynamics in immunology and epidemiology. Thus, in partic-
ular, the studies of the dynamics of small populations in the human immune sys-
tem taking into account the structure of lymphoid system [17] or in processes of
epidemic spread described within the framework of the SEIRS formalization [29]
are rather important. Initial stages of infection in the human body or first few days
(weeks) of the spread of an epidemic process in the population of a certain region re-
quire consideration of the discreteness of studied variables. The results of stochastic
simulations can be used as initial data for the corresponding deterministic models.
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