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Computational study of blood flow in lower
extremities under intense physical load

S. SIMAKOV∗†, T. GAMILOV∗, and Y. N. SOE∗

Abstract — This work is aimed at computational study of the blood flow in lower extremities under
intense physical load. We present a modified 1D cardiovascular systemmodel describing skeletal-
muscle pumping and autoregulation effects on the blood flow in lower extremities. Skeletal-muscle
pump effect is introduced as an external time-periodical pressure function applied to a group of veins.
The period of this function is associated with the two-stride period during running. The computa-
tional study reveals the explicit optimal stride frequency providing the maximum blood flow through
the lower extremities. It is shown that the optimal stride frequency depends on personal parameters.
The model is validated by a comparison to the stride frequencies of a number of top-level athletes,
therefore, providing a method to assess the level of physical conditioning.

The state-of-the-art modern cardiovascular system simulations include 1Dflow
modelling in the network of elastic tubes [3, 6, 8, 15, 16], which is in some cases
extended by 3D models for local regions resulting in the fluid-structure interaction
problem [6] and multidimensional 1D–3D coupling [5,6]. Most works in this field
consider a normal or quiet state of the organism. A deeper look into the cardio-
vascular system simulation should include the physiological reactions of the vessel
walls [3, 9] and their interaction with surrounding tissues, which is especiallyim-
portant for physical activity simulations.

This work is focused on the mathematical model of the cardiovascular system
capable to simulate the blood flow under a physical load. We use a 1D network
dynamical model of global circulation [8,16] taking only systemic circulation.This
model is supplemented with the models of vascular autoregulation and skeletal-
muscle pump, including venous valves. Along with general pressure and velocity
profile adjustments, we validate this model by the comparison of its response to the
laboratory observations for the cases of gravitational and occlusion sampling tests
and a changing body’s orientation in the gravitational field.

We have limited our discussion by periodic activity associated with lower ex-
tremities muscles. That can also be associated with short-distance running. The
mean blood flow in the anterior tibial vein is mainly observed as a measure of the
lower extremities muscle blood supply. The considered simulations reveal the de-
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pendence of the average blood flow and the stride frequency during walking and
running. As a result, we observe the particular value of the stride frequency provid-
ing the maximum average blood flow in the anterior tibial vein that is associated
with the optimal stride frequency. This value is calculated and compared for sev-
eral top-level athletes. Good coincidence allows us to conclude that it could be a
measure of a sportsman’s efficiency.

1. Methods
1.1. Systemic circulation
As a core model for blood circulation we have used 1D network dynamical model
[8, 16] taking into account the systemic arteries and veins. The model is based on
the model of a viscous incompressible fluid flow through a network of elastic tubes.
The flow in every vessel is described in terms of the mass and momentum balance:
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wherek is an index of the vessel,t is time,x is the distance along the vessel counted
from the vessel junction point,ρ is the blood density (a constant),Sk(t,x) is the
vessel cross-section area,pk is blood pressure,S0

k is the unstressed cross-sectional
area,uk(t,x) is the linear velocity averaged over the cross-section,g is the gravity
constant,θk is the angle between the vessel and the gravity field,ffr is the friction
force given by
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andµ is the blood viscosity.
In the statement of the boundary conditions it must be taken into account that

equations (1.1) and (1.2) are hyperbolic. Boundary conditions for this type of equa-
tions shall be set allowing for the behaviour of the characteristic curves on the
boundary of the integration domain. Namely, at any moment of time within the pe-
riod considered, the number of the boundary conditions at each point ofthe bound-
ary must correspond to the number of characteristic curves going out ofthe domain
at this point. Simultaneously, the conditions imposed by the equations of the char-
acteristic curves entering the domain (compatibility conditions) must be included.
Therefore, it is essential to determine the behaviour of the characteristic curves of
equations (1.1) and (1.2). Denoting

Vk = {Sk,uk}, Fk = {Skuk,u
2
k/2+ pk/ρ}, gk = {ϕk,ψk}

we write equations (1.1) and (1.2) in a divergence form:
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Then, using the scalar multiplication by the left eigenvectorsωωωki (i = 1,2) of the
Jacobi matrixAk = ∂Fk/∂Vk we obtain the characteristic form of (1.1) and (1.2)
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whereλki are the eigenvalues of the matrixAk.
The specific expression forAk, by definition
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the solution of this equation is given by
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The left eigenvectorsωωωki are determined from the equations (except for the con-
stant factor)

ωωωki(Ak−λkiE) = 0, i = 1,2

and it is possible to choose, for example
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The value
√

(Sk/ρ)(∂ pk/∂Sk) from (1.5) is the velocity of small disturbances.
In all parts of the cardiovascular system during the normal functioning and in the
cases of most pathologies, the velocity of small disturbances is bigger than the blood
flow velocity uk. For such flows, as follows from (1.5), at each point of the consid-
ered domain at any moment of time one of the characteristic curves has a positive
slope and the other one has a negative slope. In the statement of the boundary con-
ditions, therefore, only one condition should be set at the inlet and the outlet of the
elastic tube.

At the entry point of the vessel connected to the heart, the blood flow is assigned
as the boundary condition

u(t,0)S(t,0) = QH (t) . (1.7)



4 S. Simakov, T. Gamilov, and Y. N. Soe

At the terminal point of the venous system (x= xH) the pressure is set as the bound-
ary condition

pH(t,xH) = pH . (1.8)

At the vessels junctions the Poiseuille’s pressure drop condition and the mass con-
servation condition are posed

pk (Sk (t, x̃k))− pl
node(t) = εkR

l
kSk (t, x̃k)uk (t, x̃k) , k = k1,k2, . . . ,kM (1.9)

∑
k=k1,k2,...,kM

εkQk (t, x̃k)uk (t, x̃k) = 0 (1.10)

whereM is number of the connected vessels,{k1, . . . ,kM} is the range of the indices
of the connected vessels,pnode(t) is the pressure at the junction point,ε = 1, x̃k = 0
for the incoming vessels,ε = −1, x̃k = Lk for the outgoing vessels.

Every boundary condition (1.7)–(1.10) is supplemented with the compatibility
condition of the hyperbolic set (1.1), (1.2). After finite differences discretization it
provides a linear dependence between the linear velocityuk(tn+1, x̃k) and the cross-
section areaSk(tn+1, x̃k) at the upper time layer at the end or at the beginning of
every vessel composing a node

uk(tn+1, x̃k) = αkSk(tn+1, x̃k)+βk. (1.11)

The nonlinear set (1.9)–(1.11) of 2M + 1 equations can be reduced to the set ofM
equations [4] and can be effectively solved by the Newton method.

The coefficientsα andβ for (1.11) can be derived using finite differences dis-
cretization of (1.4) (indexk is suppressed, but implicitly assumed until the end of
this section). For each vessel we use a uniform 1D mesh
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whereh is the spatial step,τp is the p-th time step. For the beginning of the ves-
sel outgoing from the node we are looking forV (0, tn+1) takingV (0, tn) from the
previous time step andV (x1, tn+1) from the internal points explicit computational
algorithm [4]. Taking
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we can discretize (1.4) for the inlet (i = 1) as
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That can be rewritten in form (1.11) taking

α = w

β =
w(σS(x1, tn+1)−S(0, tn))+u(0, tn)−σu(x1, tn+1)− τn+1(wϕ −ψ)

1−σ
.

The same method applied to the outlet conditions results in

α = −w

β =
w(σS(xJ−1, tn+1)+S(xJ, tn))+u(xJ, tn)+σu(xJ−1, tn+1)+ τ(wϕ +ψ)
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.

1.2. Wall-state equation

The elastic properties of the vessel wall material are described by the wall-state
equation providing response to the transmural pressure (the difference between the
blood pressure and the pressure in the tissues surrounding the vessel):

pk(Sk)− p∗k = ρc2
k f (Sk) (1.13)

where theS-like function f (S) is approximated as
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and p∗k is the pressure in the tissues surrounding the vessel,ck is the small distur-
bance propagation velocity of the wall material in the relaxed state (Sk = S0

k), which
can be interpreted as the pulse wave velocity (PWV) in the unstressed vessel [19].

As is shown in Section 2, the purely mechanical model presented in this sec-
tion fails to describe correctly some of the features related to the transient states,
e.g. the changing body orientation in the gravity field, vessel occlusion, and others.
Real vascular networks include the regulatory and venous blood returnmechanisms
(muscle pump, venous valves, respiratory pump etc. [14]) that can substantially af-
fect the pressure and velocity profiles. Some of these effects are introduced in the
following section.

1.3. Autoregulation

We consider blood flow autoregulation as the response of the arteries wallelasticity
to changes in the averaged blood parameters (such as mean pressure, mean blood
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Figure 1. The effect of subsequent pressure steps on diameter of rat artery[1].

flow, or oxygen concentration). A laboratory study presented in Figure1 reveals
the vessel’s initial expanding (passive phase) and subsequent gradual contraction
(active phase) under the induced blood pressure increase. It results in maintaining a
constant mean blood flow despite the changes in pressure.

Autoregulation is a local effect occurring even in isolated blood vessels.Ac-
cording to [7], there are many potentially important mechanisms of autoregulation:
myogenic, metabolic, tissue pressure, etc. Each mechanism has its own experimen-
tal evidence. We are using only the myogenic hypothesis in this work, as it has
a straightforward mechanical interpretation and probably plays the dominant role
under intensive physical loads considered in this work.

According to the myogenic hypothesis, the vascular smooth muscle respondsto
variations in the mean pressure. A mean pressure increase produces contraction in
the vascular smooth muscle, which results in the vessel’s increased stiffness, con-
sequently providing a higher pulse wave velocity. The same is valid for a mean
pressure decrease resulting in the vascular smooth muscle relaxation and decreas-
ing both stiffness and pulse wave velocity.

The vascular smooth muscle cells responding to the mean pressure variationsare
located in tunica media (the middle layer of a blood vessel wall). This layer is quite
thick in arteries and relatively thin in veins. As a result, myogenic autoregulation
in veins provides no substantial impact on the blood flow and we remove it from
consideration.

These observations may be incorporated in our model as follows. The cross-
section areaSk and blood pressurepk are related by the parameterck. Assuming
the cross-section area to be constant and applying (1.13) to it, we will derive the
following dimensionless time-independent parameter

pk− p∗k

ρc2
k

= f (Sk) = const. (1.15)

It requires a computational algorithm modification. Autoregulation is not an instant
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process. To avoid significant changes in the vessel properties duringa single heart
period, we should take an average of (1.15) over the time. Assumingp∗k = 0 in the
arteries andρ = const we have

pk

c2
k

= const. (1.16)

Taking the average pressure during two subsequent averaging periodsT1, T2 through-
out the vesselk we can recalculate the new valueck for the next periodT3 and so
on:

ck,new

ck,old
=

√

pk2

pk1
(1.17)

wherep̄k j is the average transmural pressure for the averaging periodTj . The short-
est averaging period should be greater or equal to the heart period, as the mean pres-
sure may substantially change during shorter periods. We use 4 secondsfor all av-
eraging periods, as it provides a more stable solution in our numerical experiments.
This value is substantially smaller than a characteristic time of the simulations, that
is 100–200 seconds.

1.4. Skeletal-muscle pump

In this work we consider physical load specific for running. It is characterized by
periodic activity of the muscles of the lower extremities. Due to the anatomical
structure the skeletal-muscle pump does not affect large arteries [14] and we remove
them from further consideration. Assuming the force compressing the veinto be
directed perpendicularly to its axis enables us to relate muscle pumping to external
pressurep∗k in (1.13). The maximum value of this pressure may be derived if we
consider muscle as a cylinder holding the weight of a human body, which gives
us [11]:

p∗k =
mg
S

σ
1−σ

(1.18)

wherem is the mass of the body,S is the muscle average cross-section,σ is the
muscle’s Poisson ratio. Taking for a trained athletem= 60 kg,σ = 0.49 andS=
600 cm2 we evaluatep∗k as 10 kPa.

We consider running as a periodical process with a periodT. This period is
equal to the time needed for two complete strides. Thus the stride frequency is

ν =
2
T

. (1.19)

As a result, muscle-pumping pressure can be given by

p∗k =
Pmax

2

(

1+sin

(

2πt
T

+Φ
))

(1.20)
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Figure 2. Venous valves.

wherePmax = 10 kPa,Φ is the phase (Φl = 0 for the left leg andΦr = π/2 for the
right leg).

The additional feature of the major leg veins significant for muscle-pumping is
the valve functioning preventing the backward blood flow [14]. The mechanism of
the valve functioning is shown in Fig. 2.

We propose to simulate this feature by modifying friction force (1.3) as

Ffr =

{

ffr(s,u) , u > 0
A, u < 0

(1.21)

where ffr(s,u) is friction force used in a general non-valved vessel (1.3),A≫ ffr (in
this studyA = 100ffr) is a virtual force used to prevent the backward flow. It differs
of course from the actual venous valve functioning. Here we implicitly assume the
instant venous valve activation immediately after the linear velocity comes below
zero. For the real case a small time-lag is observed and some relatively smallneg-
ative value of the linear velocity may be achieved. We neglect this kinetic energy
losses, especially within the scope of the short-time simulations performed in this
work.

1.5. Integration domain and model identification

We suppose that the networks of arteries and veins have the same structure. The
corresponding vessels have the same length

(

Lart
k = Lven

k

)

, the diameters of the cor-
responding veins are twice as large as those of the arteries

(

dart
k = 2dven

k

)

. The total
network of systemic circulation is composed by joining the arterial and venousnet-
works by virtual vessels having averaged properties correspondingto the peripheral
circulation. The parameters of these terminal vessels were specified to contain about
20% of the total blood volume and provide the adequate pressure and bloodveloc-
ity difference between the arteries and veins according to [14]. The general scheme
of the network is shown in Fig. 3. The structural and functional parameters of the
network were specified according to the available data [14,15,17]. A more detailed
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Figure 3. The scheme of arterial and venous vessel networks.

description of the methods of integration and model identification can be found
in [8,16].

The specific case considered in this work relates to cardiovascular simulation
under an intense physical load. This is generally applicable to sportsmen and other
specially trained persons. We use the PWV index to specify the vessel wallelasticity
more adequately, since trained athletes are characterized by increased elasticity and,
consequently, lower PWV values [12, 13]. The vascular network was also fitted to
the body height by appropriate scaling of the vessel lengths.

2. Results

The developed model has been identified, tested and validated by different meth-
ods described in [8, 16]. Most related works just provide pressure,linear velocity
or blood flow profile adjustment to some laboratory or generally known physiology
data. This of course confirms the models. For the case of physical activitysimu-
lations where autoregulation plays an important role it is also important to adjust
the model response to some static and dynamical disturbances. In the beginning of
this section we validate our model by comparing its response to laboratory obser-
vations for the cases of gravitational and occlusion sampling tests and the changing
body orientation in the gravitational field. The rest of the section presents the results
of the computational study of the blood flow in lower extremities under an intense
physical load.

2.1. Model validation

The scheme of gravitational sampling is presented in Fig. 4. The arterial volume
distensibility was experimentally measured in [20] from the electrocardiogramand
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Figure 4. The scheme of the experiment [20].

the finger and ear photoplethysmogram records from 15 subjects with the right arm
at five different positions (90◦, 45◦, 0◦, −45◦ and−90◦ degrees with respect to the
horizontal level). By definition, the arterial volume distensibilityDv gives a relative
blood volume change in a selected vascular region with a known change in arterial
pressure

Dv =
1

∆P
∆V
V

.

According to [20] it can be rewritten as

Dv =
1

ρa2 (2.1)

wherea is the pulse wave velocity. Formula (2.1) is used for the validation of the
model presented in this work.

The experimental series described in [20] were simulated by our model. The
results of numerical simulations are presented in Fig. 5 along with the data from
[20]. The conclusion is that they are in quite good qualitative and even quantitative
agreement.

The occlusion sampling test is described in [10]. It involves measuring the Pe-
ripheral Arterial Tone (PAT) signal from a finger during brachial artery occlusion.
Healthy subjects show an increased PAT signal during recovery, whichcorresponds
to the average blood pressure increase in the peripheral arteries, whileunhealthy
subjects with inadequate autoregulation show a blunted response. The results of nu-
merical simulation of this test are shown in Fig. 6. We only mention the qualitative
coincidence here, since the available analog PAT signal is not directly recalculated
to pressure. In most cases a higher average pressure leads to a higher arterial tone
and PAT amplitude, but it can be invalid for some specific cases, such as obstructive
sleep apnea [18].

The next dynamic test of our model is based on the simulation of the body
orientation in the gravitational field. It is known that a change in the body position
from horizontal to vertical one causes the blood pressure increase, e.g. in the anterior
tibial artery. The cross-section initially increases and then returns towards its normal
level due to the autoregulation effect. In this simulation we have considered the
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Figure 5. Relationship between mean arterial pressure and arterial volume distensibility.

Figure 6. A and B are PAT signals (measured from a finger) during cuff occlusion [10] for healthy
and diseased subjects. C and D are numerically calculated pressure in a finger during occlusion with
and without autoregulation.

vascular network to be at rest for the first 80 seconds. After that a gravitational
impact is activated by the right part of (1.2). We assume it corresponds tothe body
position changing from horizontal to vertical. The calculated anterior tibial artery
cross-sections with the time are shown in Fig. 7. Qualitatively the model behaviour
corresponds to the loaded rat arteries behavior [1] presented in Fig. 1.

Figure 7 shows that the model with autoregulation is capable of providing a cor-
rect response to some external disturbances, such as the body positionchange. After
standing up, the leg arteries contract to neutralize the blood pressure increase in the
lower extremities. An excessive blood pressure in the lower body could lead to an
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Figure 7. The effect of changing body position on cross-section of anterior tibialartery without (A)
and with (B) autoregulation.

Figure 8. Stride frequency for the networks fitted to the body height of 175 cm and 195 cm.

Figure 9. Optimal stride frequency for trained athletes.
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increased load on the venous valves resulting in their malfunctioning. This, inturn,
is the reason for such vascular decease as varicose veins etc. The other important
physiological reason for maintaining blood pressure in the lower body at the same
level as before standing is to neutralize the sudden pressure drop in the brain. The
sudden pressure drop in the upper body could be the reason for orthostatic hypoten-
sion [2], such as dizziness, blurred or dimmed vision, or even faint. It is especially
important for adults generally experiencing regulatory mechanism malfunctions.

2.2. Skeletal-muscle pump

The developed model allows us to simulate the blood flow in legs during an intense
exercise, taking into account the specific vessel elasticity of trained athletes and
their height. In each simulation we consider the vascular network to be at rest for
the first 90 seconds to assure the pseudo steady pulsate state maintained allover
the network. After that an external pressure (1.20) is applied to the leg veins for
the following 70 seconds. Mainly the anterior tibial vein (see Fig. 3) was observed.
The blood flow was averaged over 4 cardiac cycles. The results of the first series
include the simulations of the mean blood flow in the tibial vein for different stride
frequencies (see Fig. 8). From Figure 8 one can observe an increase in the blood
flow, along with the stride frequency increase until some optimal value is achieved.
A further increase in the stride frequency results in the blood flow decrease. We
regard this value as the optimal stride frequency, since it provides the maximum
blood supply, consequently, resulting in the maximum muscles oxygen supply due
to convective transport by blood.

The next computational series showed that the optimal stride frequency depends
on the total length of the vessel network and the elastic properties of the vessel walls
and does not depend on the boundary conditions for the heart. In the simulations
presented in this work the elastic properties were set according to the PWV data for
trained athletes [12,13]. Figure 8 demonstrates the stride frequency dependence on
the body height. In this simulations the vessel lengths were fitted to the height by
linear scaling

Lk2 =
H2

H1
Lk1 (2.2)

whereH1,2 is the height of the body in two simulations,Lk1,2 is the length of the
k-th vessel in two simulations.

More detailed computational analysis is presented in Fig. 9. The optimal stride
frequency is simulated for several selected body heights. It is comparedto several
well-known results in the recent world-level competitions. We selected the gold (A)
and bronze (B) medal winners in 100 meters sprint in Beijing 2008 Olympiad, the
bronze medal winner in 100 meters sprint in London 2012 Olympiad (C) and the
gold medal winner in 100 meters sprint in World Dwarf Games 2008 (D). The actual
sportsmen’s stride frequency and height was measured from the free online video
available in the World Wide Web. These parameters are summarized in Table 1.

From Fig. 9 one can observe quite good agreement between the simulated and
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Table 1.
Actual parameters of the athletes. A, B, C, and D notations are presentedin the text.

A B C D

Height, cm 195 175 183 124
Stride frequency, str/sec 4.27±0.05 4.7±0.1 4.54±0.02 6.40±0.05

the actual optimal stride frequencies within a wide range of heights. We should
mention that the model used for these simulations provides rather a qualitative than
a quantitative description. It includes some physiological effects, such as muscu-
lar pumping with venous valves and the myogenic autoregulation mechanism. But
many other important effects, such as metabolic and tissue pressure autoregulation
mechanisms, other regulatory systems, the heart rate variability, oxygen transport,
respiratory system, energy production and release by the organism, andothers are
not included. Nevertheless, the computed values are very close to the actual data
(see Fig. 9). It provides evidence of the valid blood flow simulation under an in-
tense physical load using the proposed approach. Further simulations are needed to
validate this model, which should include more of different athletes specializingin
long-distance running as well.

Conclusion

It should be pointed out that the above numerical experiments in computing the
optimal stride frequency consider the blood flow optimization for sprinters. But the
period of 70 seconds selected for calculating the optimal stride frequencyis far
beyond the actual time needed to finish 100 meters distance, which is less than 10
seconds. The model application is also limited by the fact that a 4 second period
is selected for averaging the mean blood pressure for the next stage controlled by
the autoregulation response of again 4 seconds. It should also be mentioned that
blood supply plays a minor role for short-distance runners, since the majorenergy
is anaerobically produced by tissues. So if sprint is considered, there isno direct
analogy with a real competition, even if actual parameters are set for simulations.
In addition, the computational domain structure used in this work is quite far from
the real vascular network, as only the major arteries and veins are included and only
systemic circulation is considered.

Inlet and outlet boundary conditions (1.7)–(1.8) on the vascular network cor-
responding to the heart junctions cannot guarantee the mass conservation in the
system in general. Nevertheless, a wide range of previously performedsimulations
revealed good quantitative coincidence in the quiet state of the system [4, 8, 16]. In
the case of the intense physical load such approach produces more error. Along with
the other assumptions, such as a constant heart rate and the absence ofthe barore-
flex regulation, it will be one of the central questions of future studies. Wehave just
used this simplified approach for a very limited time range (less than 70 seconds).
Thus the model sensibility to these effects is negligible. We also conclude that the



Computational study of blood flow 15

flow maximum at the optimal stride frequency is mostly related to the local elastic
properties of the lower extremities region.

We can assume that professional sprinters have stride frequencies that are very
close to the optimal ones. It might be due to a natural inbred talent or years of hard
work. It is possible to adjust the vessel elastic properties via combining endurance-
and strength-based exercises. It looks like the elite sprinters train their circulatory
system (involuntarily) in a way that their optimal frequency and the stride frequency
are very close.

Nevertheless, it seems that the optimal stride frequency computed by our method
strongly correlates with the observations. It seems to be a possible measureof a
sportsman’s efficiency, as far as ordinary organism simulations providegreater de-
viations from this value. Such simulations cannot be presented in systematic way
due to substantial variability in untrained persons. Moreover, it may provide a more
realistic criterion if other sport events with periodical physical loads and longer time
periods would be considered. This is a starting point for the evolution of thepresent
study.
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