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Computational study of blood flow in lower
extremities under intense physical load

S. SIMAKOV*T, T. GAMILOV* and Y. N. SOE

Abstract — This work is aimed at computational study of the blood flow in lower extremitieder
intense physical load. We present a modified 1D cardiovascular syatatel describing skeletal-
muscle pumping and autoregulation effects on the blood flow in lower eittesmSkeletal-muscle
pump effect is introduced as an external time-periodical pressootidun applied to a group of veins.
The period of this function is associated with the two-stride period duringingn The computa-
tional study reveals the explicit optimal stride frequency providing theimam blood flow through
the lower extremities. It is shown that the optimal stride frequency depengersonal parameters.
The model is validated by a comparison to the stride frequencies of aerushitop-level athletes,
therefore, providing a method to assess the level of physical condigionin

The state-of-the-art modern cardiovascular system simulations includéodD
modelling in the network of elastic tubes [3, 6, 8, 15, 16], which is in somescase
extended by 3D models for local regions resulting in the fluid-structureaictien
problem [6] and multidimensional 1D-3D coupling [5, 6]. Most works in thesdfi
consider a normal or quiet state of the organism. A deeper look into th@e€ard
vascular system simulation should include the physiological reactions oétselV
walls [3, 9] and their interaction with surrounding tissues, which is espedrally
portant for physical activity simulations.

This work is focused on the mathematical model of the cardiovascular system
capable to simulate the blood flow under a physical load. We use a 1D network
dynamical model of global circulation [8, 16] taking only systemic circulatidris
model is supplemented with the models of vascular autoregulation and skeletal-
muscle pump, including venous valves. Along with general pressure elndity
profile adjustments, we validate this model by the comparison of its response to th
laboratory observations for the cases of gravitational and occlusioplisey tests
and a changing body’s orientation in the gravitational field.

We have limited our discussion by periodic activity associated with lower ex-
tremities muscles. That can also be associated with short-distance runhimg. T
mean blood flow in the anterior tibial vein is mainly observed as a measure of the
lower extremities muscle blood supply. The considered simulations reveaéthe d
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pendence of the average blood flow and the stride frequency duritking/aand
running. As a result, we observe the particular value of the stride fregymovid-

ing the maximum average blood flow in the anterior tibial vein that is associated
with the optimal stride frequency. This value is calculated and comparec¥er s
eral top-level athletes. Good coincidence allows us to conclude thatld beua
measure of a sportsman’s efficiency.

1. Methods

1.1. Systemic circulation

As a core model for blood circulation we have used 1D network dynamicdkmo
[8, 16] taking into account the systemic arteries and veins. The model ésl lwas
the model of a viscous incompressible fluid flow through a network of elastestu
The flow in every vessel is described in terms of the mass and momentumdaalanc
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wherek is an index of the vessdiljs time,x is the distance along the vessel counted
from the vessel junction poinp is the blood density (a constang(t,x) is the
vessel cross-section arga, is blood pressureﬁfj is the unstressed cross-sectional
area,u(t,x) is the linear velocity averaged over the cross-sectis,the gravity
constantf is the angle between the vessel and the gravity figlds the friction

force given by
ffr(sk,Uka$) = _4HHUK (Sk + S2> (1.3)

S \& &
andyu is the blood viscosity.

In the statement of the boundary conditions it must be taken into account that
equations (1.1) and (1.2) are hyperbolic. Boundary conditions for thesdy equa-
tions shall be set allowing for the behaviour of the characteristic curneth®
boundary of the integration domain. Namely, at any moment of time within the pe-
riod considered, the number of the boundary conditions at each pdim dound-
ary must correspond to the number of characteristic curves going thet dbmain
at this point. Simultaneously, the conditions imposed by the equations of the char
acteristic curves entering the domain (compatibility conditions) must be included.
Therefore, it is essential to determine the behaviour of the charactertistiescof
equations (1.1) and (1.2). Denoting

Vie={Sc U}, Fr={SUUe/2+pk/p}, g = {d, U}
we write equations (1.1) and (1.2) in a divergence form:
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Then, using the scalar multiplication by the left eigenvectoggi = 1,2) of the
Jacobi matrixAx = dFy/dV we obtain the characteristic form of (1.1) and (1.2)

~(OVk | OF\ [0V oV .
Wi - ((711+(9)(> = Q- <(9t +/\k'dx> =i o 1=12 (1.4)

whereAy; are the eigenvalues of the mati.
The specific expression f@, by definition

Uk <
JFy
w5 (e o)

Eigenvalues\j can be found from

10
det(Ak—/\kE) =0, E= <0 1)

the solution of this equation is given by

_ SO0
)\k,_uk+( l) péSk’ i=12 (1.5)

The left eigenvectoray; are determined from the equations (except for the con-
stant factor)
wki(Ak—/\kiE) = O, i = 1,2

and it is possible to choose, for example

I X SN L
wk'_{‘/paa’( 1)}, =12 (1.6)

The value\/(S/p) (9p«/d) from (1.5) is the velocity of small disturbances.
In all parts of the cardiovascular system during the normal functioningirathe
cases of most pathologies, the velocity of small disturbances is bigger thalotd
flow velocity uk. For such flows, as follows from (1.5), at each point of the consid-
ered domain at any moment of time one of the characteristic curves has agositi
slope and the other one has a negative slope. In the statement of thebocoid-
ditions, therefore, only one condition should be set at the inlet and thed ofitlee
elastic tube.

At the entry point of the vessel connected to the heart, the blood flowigass
as the boundary condition

u(tvo) S(t,()) = Qn (t) . (1.7)
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At the terminal point of the venous syster xy) the pressure is set as the bound-
ary condition

PH(t,XH) = PH- (1.8)

At the vessels junctions the Poiseuille’s pressure drop condition and trsecmias
servation condition are posed

P (S (1,%)) — Phodelt) = &RSc(t, %) Uk (1, %), k=ka,ko,....km  (1.9)

Z &Qx (1, %) Uk (t, %) = 0 (1.10)
k=kq,ko,...,km

whereM is number of the connected vesséls,, ..., ky } is the range of the indices
of the connected vesselsoqdt) is the pressure at the junction poiat= 1, X =0
for the incoming vessels, = —1, Xx = Ly for the outgoing vessels.

Every boundary condition (1.7)—(1.10) is supplemented with the compatibility
condition of the hyperbolic set (1.1), (1.2). After finite differences diszation it
provides a linear dependence between the linear velogity, 1, %) and the cross-
section are&(th+1,%) at the upper time layer at the end or at the beginning of
every vessel composing a node

Uk (th1, %) = OieS(tng, %) + B (1.11)

The nonlinear set (1.9)—(1.11) o2+ 1 equations can be reduced to the sel/lof
equations [4] and can be effectively solved by the Newton method.

The coefficientsx and for (1.11) can be derived using finite differences dis-
cretization of (1.4) (index is suppressed, but implicitly assumed until the end of
this section). For each vessel we use a uniform 1D mesh

n
M:{(xj,tn):xj:hj, hl=L, j=0,...,J; th= z Tp}
p=1

whereh is the spatial steprp is the p-th time step. For the beginning of the ves-
sel outgoing from the node we are looking #6(0,t,.1) takingV (0,t,) from the
previous time step and (xi,tn+1) from the internal points explicit computational
algorithm [4]. Taking

07V ~ V (X1, th1) — V(0,thi1) dl ~ V(0,th;1) — V(O,tn)
ox h ’ ot

ovtn+1 Tn+1

(wi>0,tn+1 ~ (Wi)oy, (Ai)o,tm ~ (Ai)oy,

Otni1

and denoting

_ JL(op w1 o= T
W—w/p<as>m’ W= w (-1} o= T,
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we can discretize (1.4) for the inlat€ 1) as

V(0,th:1) — V(O,t V(Xg,th1) —V(O,t
W < : n+i)+1 Ot + (Ai)og, (1 n+l)h : ”*1)> -We (42
n

That can be rewritten in form (1.11) taking

a=w

B = W(OS(X1,thi1) — S(0,t)) +U(0,th) — OU(X1,thyi 1) — Tay 1 (W — )
N 1-0

The same method applied to the outlet conditions results in

a—=-—Ww

B = W(OS(X3-1,th+1) + S(X3,th)) +U(X3,th) + OU(Xg-1,th11) + T(WP + )
N 1+o0

1.2. Wall-state equation

The elastic properties of the vessel wall material are described by thestatdl-
equation providing response to the transmural pressure (the difeebateween the
blood pressure and the pressure in the tissues surrounding the vessel)

Pu(S) — Pukc= PO (So) (1.13)
where theSlike function f (S) is approximated as
_Jexp(S/-1)-1, S>§
f<sk)_{|n(3</$), S < (1.14)

and p, is the pressure in the tissues surrounding the vegséd,the small distur-
bance propagation velocity of the wall material in the relaxed s&te qg), which
can be interpreted as the pulse wave velocity (PWV) in the unstresses jd3s

As is shown in Section 2, the purely mechanical model presented in this sec-
tion fails to describe correctly some of the features related to the transiéed,sta
e.g. the changing body orientation in the gravity field, vessel occlusiahotiners.
Real vascular networks include the regulatory and venous blood machanisms
(muscle pump, venous valves, respiratory pump etc. [14]) that catesiady af-
fect the pressure and velocity profiles. Some of these effects areuonwddn the
following section.

1.3. Autoregulation

We consider blood flow autoregulation as the response of the arterieslastltity
to changes in the averaged blood parameters (such as mean pressurdylooe



6 S. Simakov, T. Gamilov, and Y. N. Soe
diameter (umy)}
2004

100

150 4 Pressure (mmHg)

100+
i _l—l—\__
100 200 300 400 500 600 700

Time (s)
Figure 1. The effect of subsequent pressure steps on diameter of rat Hrtery

flow, or oxygen concentration). A laboratory study presented in Figureveals
the vessel’s initial expanding (passive phase) and subsequeniagi@htraction
(active phase) under the induced blood pressure increase. ltsriesoaintaining a
constant mean blood flow despite the changes in pressure.

Autoregulation is a local effect occurring even in isolated blood vessels.
cording to [7], there are many potentially important mechanisms of autoregulatio
myogenic, metabolic, tissue pressure, etc. Each mechanism has its owimexpe
tal evidence. We are using only the myogenic hypothesis in this work, as it ha
a straightforward mechanical interpretation and probably plays the dotrriolen
under intensive physical loads considered in this work.

According to the myogenic hypothesis, the vascular smooth muscle resjgonds
variations in the mean pressure. A mean pressure increase prodatesion in
the vascular smooth muscle, which results in the vessel’s increased stjftoes
sequently providing a higher pulse wave velocity. The same is valid for a mean
pressure decrease resulting in the vascular smooth muscle relaxatioeardsd
ing both stiffness and pulse wave velocity.

The vascular smooth muscle cells responding to the mean pressure vaaations
located in tunica media (the middle layer of a blood vessel wall). This layer is quite
thick in arteries and relatively thin in veins. As a result, myogenic autoregnlatio
in veins provides no substantial impact on the blood flow and we removenit fro
consideration.

These observations may be incorporated in our model as follows. Tke-cro
section are&g, and blood pressurpy are related by the parametey. Assuming
the cross-section area to be constant and applying (1.13) to it, we wiledidre
following dimensionless time-independent parameter

B Pk _F55 = const 1.15
e (So (1.15)

It requires a computational algorithm modification. Autoregulation is not aarims
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process. To avoid significant changes in the vessel properties dusmgle heart
period, we should take an average of (1.15) over the time. Assumijng 0 in the
arteries angb = const we have

o]

K — const (1.16)

Ry

Taking the average pressure during two subsequent averagindggrid, through-
out the vessek we can recalculate the new valogfor the next periodlz and so
on:

Cknew _ [ Prz (1.17)
Ckold Pra

wherepy; is the average transmural pressure for the averaging péridde short-

est averaging period should be greater or equal to the heart pesithe nean pres-
sure may substantially change during shorter periods. We use 4 sdooadlsav-
eraging periods, as it provides a more stable solution in our numericalieqres.

This value is substantially smaller than a characteristic time of the simulations, that
is 100—200 seconds.

1.4. Skeletal-muscle pump

In this work we consider physical load specific for running. It is chemdzed by
periodic activity of the muscles of the lower extremities. Due to the anatomical
structure the skeletal-muscle pump does not affect large arteries [d%earemove
them from further consideration. Assuming the force compressing thetodie
directed perpendicularly to its axis enables us to relate muscle pumping toadxtern
pressurep,k in (1.13). The maximum value of this pressure may be derived if we
consider muscle as a cylinder holding the weight of a human body, whids giv
us [11]:
mg o

Sl-0
wherem is the mass of the bodg is the muscle average cross-sectionis the
muscle’s Poisson ratio. Taking for a trained athlete- 60 kg, 0 = 0.49 andS=
600 cnt we evaluatep,y as 10 kPa.

We consider running as a periodical process with a pefiodhis period is
equal to the time needed for two complete strides. Thus the stride frequency is

Pik = (1.18)

2
= —. 1.19
v==c (1.19)

As a result, muscle-pumping pressure can be given by

Puk = P“;""X <1+sin (sz +q>>> (1.20)
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Figure 2. Venous valves.

whereRnax = 10 kPa,® is the phased, = 0O for the left leg andp, = 17/2 for the
right leg).

The additional feature of the major leg veins significant for muscle-pumping is
the valve functioning preventing the backward blood flow [14]. The meisha of
the valve functioning is shown in Fig. 2.

We propose to simulate this feature by modifying friction force (1.3) as

fr(s,u), u>0
Fr = 1.21
fr {A, u<0 ( )

wherefs (s,u) is friction force used in a general non-valved vessel (A3}; f (in

this studyA = 100ff) is a virtual force used to prevent the backward flow. It differs
of course from the actual venous valve functioning. Here we implicitly rasstie
instant venous valve activation immediately after the linear velocity comes below
zero. For the real case a small time-lag is observed and some relativelynegall
ative value of the linear velocity may be achieved. We neglect this kinetiggner
losses, especially within the scope of the short-time simulations performed in this
work.

1.5. Integration domain and model identification

We suppose that the networks of arteries and veins have the same strdter
corresponding vessels have the same Ielﬁgﬁﬁ = L‘lée”), the diameters of the cor-
responding veins are twice as large as those of the artig{és= 2dy*"). The total
network of systemic circulation is composed by joining the arterial and vemetds
works by virtual vessels having averaged properties correspotuthg peripheral
circulation. The parameters of these terminal vessels were specified&incaimout
20% of the total blood volume and provide the adequate pressure andvaioad
ity difference between the arteries and veins according to [14]. Thergkescheme
of the network is shown in Fig. 3. The structural and functional parametethe
network were specified according to the available data [14, 15, 17]. & chetailed
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Figure 3. The scheme of arterial and venous vessel networks.

description of the methods of integration and model identification can be found
in [8, 16].

The specific case considered in this work relates to cardiovascular simulation
under an intense physical load. This is generally applicable to sportsriestizsr
specially trained persons. We use the PWV index to specify the vessdalasticity
more adequately, since trained athletes are characterized by increestmityg and,
consequently, lower PWV values [12, 13]. The vascular network \gasfated to
the body height by appropriate scaling of the vessel lengths.

2. Results

The developed model has been identified, tested and validated by diffeetin-

ods described in [8, 16]. Most related works just provide pressimesr velocity

or blood flow profile adjustment to some laboratory or generally knowniplogsy

data. This of course confirms the models. For the case of physical adtirity
lations where autoregulation plays an important role it is also important to adjust
the model response to some static and dynamical disturbances. In theibhggihn
this section we validate our model by comparing its response to laboratoey- obs
vations for the cases of gravitational and occlusion sampling tests andahginb
body orientation in the gravitational field. The rest of the section presemtsshilts

of the computational study of the blood flow in lower extremities under an intense
physical load.

2.1. Model validation

The scheme of gravitational sampling is presented in Fig. 4. The arteriaheolu
distensibility was experimentally measured in [20] from the electrocardiograim



10 S. Simakov, T. Gamilov, and Y. N. Soe

LG 3 5
ECG and PPG Data

signed = capiure
conditioning

CirCus

computer

S 3 Finger PPG |
i ':’4 s

Ear PPG

Figure 4. The scheme of the experiment [20].

the finger and ear photoplethysmogram records from 15 subjects witlgttearm
at five different positions (90 45°, 0°, —45° and—90° degrees with respect to the
horizontal level). By definition, the arterial volume distensibility gives a relative
blood volume change in a selected vascular region with a known changeiimlar
pressure

_1av
APV
According to [20] it can be rewritten as

Dy

1

wherea is the pulse wave velocity. Formula (2.1) is used for the validation of the
model presented in this work.

The experimental series described in [20] were simulated by our model. The
results of numerical simulations are presented in Fig. 5 along with the data from
[20]. The conclusion is that they are in quite good qualitative and eventidaid/e
agreement.

The occlusion sampling test is described in [10]. It involves measuringehe P
ripheral Arterial Tone (PAT) signal from a finger during brachiakay occlusion.
Healthy subjects show an increased PAT signal during recovery, wbirtbsponds
to the average blood pressure increase in the peripheral arteries,unhialthy
subjects with inadequate autoregulation show a blunted response. Tilie oésu-
merical simulation of this test are shown in Fig. 6. We only mention the qualitative
coincidence here, since the available analog PAT signal is not directictdated
to pressure. In most cases a higher average pressure leads to radnigtial tone
and PAT amplitude, but it can be invalid for some specific cases, suctsasictive
sleep apnea [18].

The next dynamic test of our model is based on the simulation of the body
orientation in the gravitational field. It is known that a change in the boditipos
from horizontal to vertical one causes the blood pressure incregsi the anterior
tibial artery. The cross-section initially increases and then returns tevtandormal
level due to the autoregulation effect. In this simulation we have consideeed th
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Figure 6. A and B are PAT signals (measured from a finger) during cuff ocalufi6] for healthy
and diseased subjects. C and D are numerically calculated pressuregeradiiring occlusion with
and without autoregulation.

vascular network to be at rest for the first 80 seconds. After thatwitgtional
impact is activated by the right part of (1.2). We assume it corresporttie toody
position changing from horizontal to vertical. The calculated anterior tilsieha
cross-sections with the time are shown in Fig. 7. Qualitatively the model behravio
corresponds to the loaded rat arteries behavior [1] presented in.Fig. 1

Figure 7 shows that the model with autoregulation is capable of providing a co
rect response to some external disturbances, such as the body pcsiige. After
standing up, the leg arteries contract to neutralize the blood pressugasedn the
lower extremities. An excessive blood pressure in the lower body couldtéean
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increased load on the venous valves resulting in their malfunctioning. Thignn
is the reason for such vascular decease as varicose veins etc. €héngtbrtant
physiological reason for maintaining blood pressure in the lower bodyeatame
level as before standing is to neutralize the sudden pressure drop iratheThe
sudden pressure drop in the upper body could be the reason fostatibdypoten-
sion [2], such as dizziness, blurred or dimmed vision, or even faint. kpe@ally
important for adults generally experiencing regulatory mechanism malfusction

2.2. Skeletal-muscle pump

The developed model allows us to simulate the blood flow in legs during an intense
exercise, taking into account the specific vessel elasticity of trained attdett
their height. In each simulation we consider the vascular network to betdbres
the first 90 seconds to assure the pseudo steady pulsate state maintaowedt all
the network. After that an external pressure (1.20) is applied to the leg fer

the following 70 seconds. Mainly the anterior tibial vein (see Fig. 3) wasmviesl.
The blood flow was averaged over 4 cardiac cycles. The results ofrtediries
include the simulations of the mean blood flow in the tibial vein for different stride
frequencies (see Fig. 8). From Figure 8 one can observe an iadreéise blood
flow, along with the stride frequency increase until some optimal value is\azhie

A further increase in the stride frequency results in the blood flow dsere&le
regard this value as the optimal stride frequency, since it provides the maximu
blood supply, consequently, resulting in the maximum muscles oxygen suply d
to convective transport by blood.

The next computational series showed that the optimal stride frequepepdie
on the total length of the vessel network and the elastic properties of thel vealls
and does not depend on the boundary conditions for the heart. In théagsons
presented in this work the elastic properties were set according to the Rt Vod
trained athletes [12,13]. Figure 8 demonstrates the stride frequenepdisgce on
the body height. In this simulations the vessel lengths were fitted to the height by
linear scaling

Lo = 12l (22)
1
whereHy > is the height of the body in two simulationis, » is the length of the
k-th vessel in two simulations.

More detailed computational analysis is presented in Fig. 9. The optimal stride
frequency is simulated for several selected body heights. It is compasseral
well-known results in the recent world-level competitions. We selected tlig(4d
and bronze (B) medal winners in 100 meters sprint in Beijing 2008 Olympiad, th
bronze medal winner in 100 meters sprint in London 2012 Olympiad (C) ad th
gold medal winner in 100 meters sprint in World Dwarf Games 2008 (D). thea&a
sportsmen’s stride frequency and height was measured from therfliee @ideo
available in the World Wide Web. These parameters are summarized in Table 1.

From Fig. 9 one can observe quite good agreement between the simuldted an
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Table 1.
Actual parameters of the athletes. A, B, C, and D notations are predaritegitext.
A B C D
Height, cm 195 175 183 124

Stride frequency, strisec .27+0.05 47+0.1 454+0.02 640+0.05

the actual optimal stride frequencies within a wide range of heights. Wedshou
mention that the model used for these simulations provides rather a qualitative th
a quantitative description. It includes some physiological effects, ssichuscu-

lar pumping with venous valves and the myogenic autoregulation mechanism. But
many other important effects, such as metabolic and tissue pressuregalgbom
mechanisms, other regulatory systems, the heart rate variability, oxygespara,
respiratory system, energy production and release by the organismttaard are
not included. Nevertheless, the computed values are very close to tlz data
(see Fig. 9). It provides evidence of the valid blood flow simulation undeina
tense physical load using the proposed approach. Further simulateonseded to
validate this model, which should include more of different athletes specializing
long-distance running as well.

Conclusion

It should be pointed out that the above numerical experiments in computing the
optimal stride frequency consider the blood flow optimization for sprinteusitize
period of 70 seconds selected for calculating the optimal stride frequsrfey
beyond the actual time needed to finish 100 meters distance, which is les©than 1
seconds. The model application is also limited by the fact that a 4 second perio
is selected for averaging the mean blood pressure for the next staellegnby

the autoregulation response of again 4 seconds. It should also be neentiat
blood supply plays a minor role for short-distance runners, since the @agogy

is anaerobically produced by tissues. So if sprint is considered, thee dérect
analogy with a real competition, even if actual parameters are set for sinmgatio

In addition, the computational domain structure used in this work is quite far fro
the real vascular network, as only the major arteries and veins are idcndeonly
systemic circulation is considered.

Inlet and outlet boundary conditions (1.7)—(1.8) on the vascular nktear
responding to the heart junctions cannot guarantee the mass conseimatine
system in general. Nevertheless, a wide range of previously perfaimadiations
revealed good quantitative coincidence in the quiet state of the systeni§}, &
the case of the intense physical load such approach produces nusré\gng with
the other assumptions, such as a constant heart rate and the abstwcbarbre-
flex regulation, it will be one of the central questions of future studiesh@ve just
used this simplified approach for a very limited time range (less than 70 s@conds
Thus the model sensibility to these effects is negligible. We also conclude ¢hat th
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flow maximum at the optimal stride frequency is mostly related to the local elastic
properties of the lower extremities region.

We can assume that professional sprinters have stride frequendiesehary
close to the optimal ones. It might be due to a natural inbred talent or yElaasd
work. It is possible to adjust the vessel elastic properties via combiningrance-
and strength-based exercises. It looks like the elite sprinters train thauitatiory
system (involuntarily) in a way that their optimal frequency and the stridpigacy
are very close.

Nevertheless, it seems that the optimal stride frequency computed by ourdneth
strongly correlates with the observations. It seems to be a possible mehsure
sportsman’s efficiency, as far as ordinary organism simulations provetger de-
viations from this value. Such simulations cannot be presented in systematic wa
due to substantial variability in untrained persons. Moreover, it may peavitiore
realistic criterion if other sport events with periodical physical loads angdotime
periods would be considered. This is a starting point for the evolution qirésent
study.
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