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Numerical simulation of blood flows with non-uniform
distribution of erythrocytes and platelets

N. BESSONOV∗, E. BABUSHKINA∗, S. GOLOVASHCHENKO†,
A. TOSENBERGER‡§, F. ATAULLAKHANOV¶‖∗∗††,
M. PANTELEEV¶‖∗∗††, A. TOKAREV¶‖, and V. VOLPERT‡§‡‡

Abstract — Blood cell interactions present an important mechanism in many processes occurring in
blood. Due to different blood cell properties, cells of different types behave differently in the flow.
Among the observed phenomena is segregation of erythrocytes, which group near the flow axis, from
platelets, which migrate towards the blood vessel wall. In this work, a three dimensional model based
on the Dissipative Particle Dynamics method is used to study the interaction of erythrocytes and
platelets in a flow inside a cylindrical channel. Erythrocytes are modelled as elastic highly deformable
membranes, while platelets are modelled as elastic spherical membranes which tend to preserve their
spherical shape. As the result of the modelling, the separation of erythrocytes and platelets in a cylin-
drical vessel flow is shown for vessels of different diameters. Erythrocyte and platelet distribution
profiles in the vessel cross-section are in good agreement with the existing experimental results. The
described 3-D model can be used for further modelling of blood flow-related problems.
Physical interactions between red blood cells and platelets play an important role in
the blood flow, and particularly in hemostasis and thrombosis [35,36]. In blood ves-
sels with a diameter significantly larger than the diameter of an erythrocyte (around
8 µm), it is experimentally observed that erythrocytes, which occupy around 40% of

∗Institute of Problems of Mechanical Engineering, Russian Academy of Sciences, Saint Petersburg 199178,
Russia. Corresponding author. E-mail: nickbessonov@yahoo.com

†Manufacturing Systems Department, Ford Research Laboratory, 481214 Dearborn, USA
‡Institut Camille Jordan, UMR 5208 CNRS, University Lyon 1, 69622 Villeurbanne, France
§INRIA Team Dracula, INRIA Antenne Lyon la Doua 69603 Villeurbanne, France
¶National Research Center for Haematology Ministry of Healthcare of Russian Federation, Moscow 125167,

Russia
‖Federal Research and Clinical Centre of Paediatric Haematology, Oncology and Immunology, Ministry of

Healthcare of Russian Federation, Moscow 117198, Russia
∗∗Faculty of Physics, M. V. Lomonosov Moscow State University, Moscow 119991, Russia
††Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, Moscow

119991, Russia
‡‡European Institute of Systems Biology and Medicine, 69007 Lyon, France

The study was supported by the Russian Foundation for Basic Research (Grants 10-01-91055, 11-04-00303,
11-04-12080, 12-04-00652, 12-04-00438, 12-04-32095, 12-04-33055, 14-01-91055), Russian Federation Presi-
dential Scholarship for Young Scientists and Graduate Students and by the Russian Academy of Sciences Pre-
sidium Basic Research Programs for Molecular and Cellular Biology, Basic Science for Medicine, Integrative
Physiology, and Molecular Mechanisms of Physiologic Functions, grants ANR Bimod, French–Russian project
PICS, Mathematical Modelling of Blood Diseases, grant No. 14.740.11.0877 of the Ministry of Education and
Research of the Russian Federation, Investigation of Spatial and Temporal Structures in Fluids with Applications
to Mathematical Biology.



2 N. Bessonov, et al.

the blood volume, concentrate in the bulk of the flow (around the flow axis), while
platelets are being pushed (migrate) towards the vessel wall. In the case of a vessel
wall injury, this mechanism makes the process more efficient, as the platelets, which
are crucial for hemostasis, are placed closer to the vessel wall and the injury site.
In order to model and investigate more accurately the complex processes in blood,
namely blood coagulation, it is important for the underlying model of the blood flow
to capture the described behaviour and interactions of the blood cells.

Various methods have been used to model blood flows. We can split them into
two main groups — continuous and discrete. Continuous models are based on math-
ematical knowledge of differential equations, where a flow is very accurately de-
scribed by partial differential equations, generally the Navier–Stokes equations. In
continuous models blood cells are considered in terms of their concentrations and
are, therefore, also modelled by partial differential equations, which describe their
motion via diffusion and convection [37, 41]. The disadvantage of this approach is
that it does not describe the interaction between individual blood cells in the flow.
Discrete models provide for the description of individual cells and their interactions.
Such models are either based on the continuous description of a fluid flow, or their
hydrodynamic properties have to be verified by comparison with continuous mod-
els. Erythrocytes are the most interesting and complex blood cells to model because
of their deformability, and also because they constitute 95% of all cells in blood
and occupy 40% of the blood volume. Therefore, most of the models of the blood
flow, which are able to describe individual blood cells and their interactions, have
been aimed to describe the motion of erythrocytes. They include erythrocyte mem-
brane models and the results are compared to the known erythrocyte behaviour in
different conditions. A particular form of behaviour is observed in a Poiseuille flow
in a micro-channel where erythrocytes take the characteristic parachute shape. This
aspect has been captured by both 2-D and 3-D Red Blood Cell (RBC) membrane
models [9, 10, 16, 25, 28, 31, 40]. Other types of experimentally observed behaviour
are RBC tumbling and tank-threading motion, as well as the erythrocyte response
to stretching. Those properties have been successfully captured by 3-D erythrocyte
membrane models [5,7,9,10,12,17,31]. All those types of behaviour are mainly re-
lated to a single erythrocyte in the flow. There are much fewer results on numerical
simulation of several erythrocytes in a flow and their distribution.

Computational studies have been done in order to obtain such feature of the
blood flow observed experimentally as the concentrated RBC core at the flow axis.
Tsubota et al. [40] presented a two-dimensional particle model for the blood flow
between two parallel rigid plates. The moving particle semi-explicit (MPS) method
was used to analyze the blood plasma flow. An RBC was modelled as a deformable
elastic membrane consisting of particles with elastic energy depending on the dis-
tance between the particles, the angle between the neighbouring elements, and con-
serving the area of the membrane. The simulation results demonstrated that RBCs
are concentrating near the flow axis and form the cell-free layer near the bound-
aries. In the more recent work of Zhang et al. [43] another approach is used. A two-
dimensional blood flow is simulated using the immersed-boundary lattice Boltz-
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mann algorithm. Following Bagchi [3], RBCs are modelled as two-dimensional de-
formable biconcave membranes, while the inter-cellular interactions are modelled
using the Morse potential. In addition to the presence of the cell-free layer it is
shown that this layer’s thickness increases with cell deformability. The known ef-
fect of erythrocytes migration toward the flow axis is observed, but platelets and
their behaviour are not considered in these papers. AlMomani et al. [2] used the
computational fluid dynamics (CFD) model to perform micro-scale simulations of
platelet-RBC interactions in a shear flow. RBCs are assumed to be incompressible
elliptical particles that retain their elliptical shape under deformation by imposed
shear stresses, and platelets are assumed to be rigid particles of a circular shape. The
interaction between neighbouring particles is due to repulsive forces from a ‘soft’
potential. It is shown in this paper that the concentration of platelets increases near
the boundary, while erythrocytes are located near the flow axis. It was also found
that platelets behaviour is affected by the relative differences in the size of platelets
and RBCs, but not by the differences in shapes. The values of hematocrit were set to
be 5%, 10%, and 15%, which are lower than the normal hematocrit level in blood.
Furthermore, it was observed that the migratory effect is absent at low hematocrit
values (e.g., Ht = 5%), but occurs at higher values (e.g., Ht = 10%) and becomes
more evident as the hematocrit value increases. Another study [6] was devoted to
a two-dimensional numerical investigation of the lateral platelet motion induced by
RBCs. They used a combination of the lattice Boltzmann method for fluid motion
and the Immersed Boundary method for the implementation of interaction between
the fluid and the elastic objects suspended in or in contact with the fluid. A de-
formable elastic RBCs membrane was modelled following Skalak [34] approach,
while platelets were modelled as approximately rigid circular objects. Simulations
were carried out for the following values of hematocrit: 0%, 20%, and 40%. In the
case of RBCs absence there was a negligible amount of lateral motion, however,
it was clearly shown that a near-wall increase in the platelet concentration occurs
rapidly (within the first 400 msec) for both 20% and 40% levels.

A major limitation of the works described above is consideration of the two-
dimensional model of blood flow instead of the three-dimensional one. In contrast
to these studies, our work represents the three-dimensional discrete model that in-
cludes simulation of blood as a suspension of erythrocytes and platelets in blood
plasma. We have used the Dissipative Particle Dynamics (DPD) method to simulate
the blood flow in a cylindrical vessel. DPD is a well developed and widely used ap-
proach to mesoscopic description of the fluid. RBCs are modelled as elastic highly
deformable membranes. In contrast to [10,12], where a platelet is modelled as a
rigid or almost rigid body, we consider a platelet as an elastic membrane. However,
in our simulations the form of the platelets varies near the spherical shape. The ad-
vantage of such approach is the future possibility of developing a more complex
platelet model and accounting for the platelet structure features. The main aim of
this work is the investigation of RBCs and platelet interaction and the distribution
of cells in the cross-section of the vessel. The blood flow was simulated for the ves-
sels of three different radii (13.5 µm, 22 µm, and 31 µm). The value of hematocrit
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(a) (b)
Figure 1. The control area of a particle (a). Two neighbouring triangular elements of the erythrocyte
membrane (b).

in simulations was around 45%, which corresponds to the real hematocrit value of
blood.

1. Erythrocyte model

The RBC model described here is based on the description of its membrane. An
RBCs’ membrane includes a lipid bilayer and the spectrin network connected by
transmembrane proteins [26]. Such membrane exhibits incompressible properties,
resistance to areal changes and planar shear deformation. The membrane is repre-
sented as a two-dimensional network of particles. Due to the elasticity of the RBCs’
membrane, the membrane particles are connected by springs (modelled by Hooke’s
law) to form an irregular polyhedron with triangular sides. Forces acting upon the
membrane particles are chosen similarly to [17]. The first force acts between any
two neighbouring vertices and describes the ability of the corresponding joint to
elongate:

Fs = ks

(
1− l

l0

)
lcτ (1.1)

where l is the length of the joint between two vertices, l0 is the equilibrium length,
ks is the stiffness coefficient, and τ is the unit vector, which is codirectional with the
vector connecting two neighbouring particles.

To express the areal incompressibility, the force resisting any change in the tri-
angular element area is introduced:

Fa = ka

(
1− s

s0

)
lcn (1.2)

where s is the area of the triangular element, s0 is the equilibrium area, ka is the area
expansion modulus, lc is the length of the side of the control area for the particle,
which is shown in Fig. 1a, and n is the unit vector normal to this side. Such force
appears in a particle from all triangle elements sharing this particle.
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Since the out-of-plane bending deformation is present in the RBC behavior,
bending springs are introduced between each two neighbouring triangular elements:

Fbi = kb tan
(

θ

2

)
ni jk (1.3)

Fbl = kb tan
(

θ

2

)
n jkl (1.4)

Fb j = Fbk =−Fbi +Fbl

2
(1.5)

where θ is the angle between the neighbouring triangular elements, kb is the stiffness
coefficient, ni jk and n jkl are the unit vectors normal to the corresponding triangles
(see Fig. 1b, Fbi , Fb j , Fbk , and Fbl are the forces that act on the particles with the
numbers i, j, k, and l respectively, as a result of the change in the angle between two
neighbouring triangles that contain these particles. Similar forces act on the particles
from each pair of the neighbouring triangles. A tangential function is chosen to
avoid the folding of the spring under a large bending deformation [39].

So far, only membrane characteristics have been described, which alone does
not ensure the RBC shape. In order to obtain its shape, an additional type of force
is needed to describe the volume surrounded by the shell, i.e. the volume of the ery-
throcyte. Hence, a fourth force which acts upon the triangular element is introduced:

Fv = kv

(
1− v

v0

)
sn (1.6)

where v is the polyhedron volume, v0 is the relaxation volume, and kv is the coeffi-
cient which is equivalent to the bulk modulus, s is the area of the triangular element
and n is the unit normal vector to this triangle.

An erythrocyte is known to be deformable and easily changing in shape under
the influence of external forces. However, in a healthy erythrocyte the area of its
membrane, as well as its volume remains almost constant. Therefore, the stiffness
coefficients in the model are chosen correspondingly. The values kv and ka are larger
making the membrane more resistant to changes in its area, while ks is lower to
allow for the shape changes. The typical values of the parameters which we use
in simulations are as follows: ks = 0.4 · 10−11 N, ka = 5 · 10−4 N/m, kv = 2 N/m2,
kb = 2.4 · 10−11 N. They are similar to the values used in the literature [18, 39].
The equilibrium length of the intervals between the particles, the triangle element
area, and the relaxation volume of erythrocytes are: l0 = 5.53 · 10−7 m, s0 = 1.45 ·
10−13 m2, v0 = 2.66 ·10−16 m3, respectively. The mesh for each erythrocyte consists
of 1280 triangles.

In order to prevent cell penetration between cells, we use the soft contact algo-
rithm [4].
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2. Platelet model
The model of a platelet is similar to the erythrocyte model. Platelets are small cells,
2–3 µm in diameter, that do not have a nucleus. We consider a platelet as an elas-
tic membrane that consists of particles connected by springs. The forces acting on
each particle are described by equations (1.1)–(1.6). We chose the same parameters
values for forces acting in a platelet as for erythrocytes. The equilibrium length of
the intervals between the particles, the triangle element area, and the relaxation vol-
ume of platelets were: l0 = 6.18 · 10−7 m, s0 = 1.65 · 10−13 m2, v0 = 3.65 · 10−18

m3, respectively. The mesh for each platelet consisted of 80 triangles. The differ-
ence in the relaxation volume between the platelets and the erythrocytes crucially
affects the behaviour of cells. The value of v0 for erythrocytes was about 0.6 of the
volume of a sphere that is composed by elements with the given equilibrium joint
length and triangle area, whereas the value of v0 for platelets was just the volume
of a sphere corresponding to the equilibrium parameters. As a result, the platelets
remain almost spherical or ellipsoidal in their shape, while the erythrocytes acquire
their specific biconcave shape.

3. Modelling flow
We use the Dissipative Particle Dynamics (DPD) method in the form described in
the literature [11, 15, 19]. It is a mesoscale method, meaning that each DPD parti-
cle describes some small volume of a simulated medium rather than an individual
molecule. The method is governed by three equations describing the conservative,
dissipative and random forces acting between each two particles:

FC
i j = FC

i j (ri j)r̂i j (3.1)

FD
i j =−γω

D(ri j)(vi j · r̂i j)r̂i j (3.2)

FR
i j = σω

R(ri j)
ξi j√
∆t

r̂i j (3.3)

where ri is the vector of the position of the particle i, ri j = ri− r j, ri j =
∣∣ri j
∣∣, r̂i j =

ri j/ri j, and vi j = vi− v j is the difference between the velocities of two particles,
∆t is the time step in simulations, γ and σ are the coefficients which determine the
strength of the dissipative and the random force, respectively, while ωD and ωR are
weight functions; ξi j is a normally distributed random variable with zero mean, unit
variance, and ξi j = ξ ji. The conservative force is given by the equality

FC
i j (ri j) =

{
ai j (1− ri j/rc) , ri j 6 rc

0, ri j > rc
(3.4)

where ai j is the conservative force coefficient between the particles i and j, and rc
is the cut-off radius.

Each of the forces is applied to the fluid particles, as well as to the particles
constituting RBC and platelet membranes.
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The random and dissipative forces form a thermostat. If the following two rela-
tions are satisfied, the system will preserve its energy and maintain the equilibrium
temperature:

ω
D(ri j) =

[
ω

R(ri j)
]2

, σ
2 = 2γkBT (3.5)

where kB is the Boltzmann constant and T is the temperature. The weight functions
are determined by:

ω
R(ri j) =

{
(1− ri j/rc)

k , ri j 6 rc

0, ri j > rc
(3.6)

where k = 1 for the original DPD method, but it can be also varied in order to
change the dynamic viscosity of the simulated fluid [11]. The motion of particles is
determined by Newton’s second law of motion:

∆ri = vi∆t

∆vi =
∆t
mi

∑
j 6=i

(
FC

i j +FD
i j +FR

i j
)
,

(3.7)

where mi is the mass of the particle i.
The Euler method or a modified version of the velocity-Verlet method [1, 15],

which is more accurate, can be used to integrate equations (3.7). In the former,

vn+1
i = vn

i +
1
mi

Fi (rn
i ,v

n
i )∆t (3.8)

rn+1
i = rn

i +vn+1
i ∆t (3.9)

where indices n and n+1 denote the time steps, and

Fi = ∑
j 6=i

(
FC

i j +FD
i j +FR

i j
)
. (3.10)

The discretization in the second method is as follows:

rn+1
i = rn

i +vn
i dt +

1
2

an
i ∆t2 (3.11)

vn+1/2
i = vn

i +
1
2

an
i ∆t (3.12)

an+1
i =

1
mi

Fi

(
rn+1

i ,vn+1/2
i

)
(3.13)

vn+1
i = vn+1/2

i +
1
2

an+1
i ∆t (3.14)

where an
i denotes the acceleration of the particle i at the nth time step. Both methods

give close results.
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The following values of the parameters were used: rc = 1 · 10−6 m, ai, j = 1 ·
10−12 N, γ = 1 ·10−8 kg·sec/m4, σ = 1· 10−11 kg/(m3·

√
sec).

The behaviour of the DPD method, as well as its suitability for the problem
of fluid simulation is extensively described in the literature [11, 13, 15, 19, 33].
In [11, 13] DPD simulation results are compared to the results obtained by using
continuous methods (Navier–Stokes and Stokes equations) for Couette, Poiseuille,
square-cavity and triangular-cavity flow.

Let us note that in order to have a nonzero velocity field, we should apply ei-
ther nonzero flow velocity at the entrance of the domain or a volume force in the
whole domain. These two approaches are basically equivalent, though some differ-
ence may appear in non-cylindrical domains. Numerical simulations show that this
difference is not essential for the results presented here. We have used the approach
with the volume force in our simulations.

The simulations were carried out in a cylindrical channel. The no-slip boundary
condition at the cylinder wall and the periodical boundary condition in the direction
of the cylinder axis were used.

4. Results

Numerical simulations were carried out for the following parameters. The radius
R of the cylindrical channel was set to 13.5, 22 or 31 µm, its length was chosen
in such a way that it did not influence the results. Usually, it is sufficient to take
L = 2R. The erythrocytes fill 43–45% of the total volume. This corresponds to the
normal hematocrit level in blood. The number of erythrocytes was from 80 to 300
depending on the radius of the cylinder.

The initial erythrocyte location is shown in Fig. 2. The proportion of platelets is
greater than in the normal blood. This accelerates their redistribution in the flow and
reduces the computational time. However, this does not practically influence their
steady distribution.

The volume force applied to the fluid is 10000 N/kg. In this case we obtain
the average flow velocity equal to 0.1 mm/s for R = 13.5 µm and 0.5 mm/s for
R = 31 µm. The effective viscosity is 4−5 ·10−3 Pa·s. The corresponding viscosity
of the homogeneous fluid (without blood cells) is 1.8−2 ·10−3 Pa·s. These values
correspond to the experimental values of blood viscosity. The wall shear rate is equal
to 60 sec−1 for R = 13.5µm, 80 sec−1 for R = 22µm and 230 sec−1 for R = 31µm.

The snapshots of the numerical simulations are shown in Fig. 3 (some parts of
the computational domains). In order to obtain a steady cell distribution over the
cross-section of the channel, the simulations continued at least 5–10 seconds of
physical time for R = 13.5µm and at least 30–50 seconds for R = 31µm.

In order to determine the cells distribution in the cross-section of the cylinder,
we divided it into n narrow annuli Si for which ri < r < ri+1, r0 = 0, rn = R. We
counted the number Ni of the cells’ vertices belonging to each annulus during some
sufficiently large time T . Next, we divide Ni by the area of the corresponding annu-
lus Si. We call this ratio the cell distribution in the cross-section and denote it by D.
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Figure 2. Cross-sections of cylindrical channels and initial erythrocyte positions for different channel
radii: (a) 13.5 µm, (b) 22 µm, and (c) 31 µm. Below: (a) an image of an intersection along flow axis
shows the length of the simulated channel, as well as the initial placement of RBCs.

Figure 3. Snapshots of numerical simulations showing RBCs and platelets in cylindrical channels for
three different channel radii: (a) 13.5 µm, (b) 22 µm, and (c) 31 µm. RBCc are modelled as elastic
highly deformable membranes, while platelets are modelled as elastic membranes which remain ap-
proximatively spherical in shape. Blood plasma particles, which occupy the remaining volume of the
channel, are not shown on the snapshots.

The distribution curves scaled by their maximum are shown in Fig. 4.
Figure 4a shows the erythrocyte distribution in the cross-section of a cylinder

for different values of its radius. Their concentration gradually increases toward the
axis. However, it is possible that some erythrocytes are pushed to the boundary and
stay trapped there during some time. Examples of such pushed cells are shown in
Fig. 3 and marked by arrows. The local maxima near the wall in Fig. 4 are related
to this effect, the width of the peaks is comparable to the width of an erythrocyte.

Figure 4b shows the distributions of platelets in the same simulations. In all
cases, there is a strong increase in their particle number near the wall. This corre-
sponds to experimental observations [20]. When we increase the radius of the chan-
nel, another maximum of the concentration appears near the axis. It is particularly
visible for R = 31µm (solid curve).
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(a)

(b)

Figure 4. Erythrocyte (a) and platelet (b) distribution as a function of the distance from the flow axis
for three channels with different radii: 13.5 µm (long dashed line), 22 µm (short dashed line), and
31 µm (solid line).

Figure 5 shows the averaged velocity profiles in simulations with erythrocytes
and platelets.

Conclusion

In this paper we have presented a numerical model and numerical simulations of
three-dimensional hemodynamics based on the particle methods for the description
of blood plasma, red blood cells and platelets. Using the combination of the spring
network model for cells and the DPD method for plasma, we obtain a realistic de-
scription of the blood flow. This study illustrates such well-known effects as the
RBCs migration to the vessel axis and near-wall magrination of the platelets in the
blood flow. Platelets are pushed to the vessel walls by erythrocytes. It is an important
mechanism involved in blood coagulation.

The method used in this work has some limitations. In particular, they concern
the simplified description of the blood cells. In reality they have a more complex
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Figure 5. Averaged velocity profiles in simulations with erythrocytes and platelets. Velocity profiles
are shown as functions of the distance from the flow axis for three channels with different radii: 13.5
µm (long dashed line), 22 µm (short dashed line), and 31 µm (solid line).

structure than in the model and they can interact with each other forming aggre-
gates. Furthermore, we do not take into account the elastic properties of the vessel
walls. Another limitation is related to computational time. We can only consider
microvessels, because simulations are quite expensive from the computational point
of view.

In spite of these limitations, the simulations described above can now be used
to investigate various biomedical issues. For example, thrombosis and hemostasis
are very important and challenging issues which need detailed modelling and sim-
ulation. This modelling can also be applied in diagnosing various diseases, such as
leukemia that can change the mechanical properties of blood cells. Another interest-
ing question is the simulation of the blood flow in vessels with a complex geometry.
These aspects will be studied in the forthcoming works.
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