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Interaction of simulation and analytic methods
in modelling of ecological and biological objects

D. A. SARANCHA∗, O. P. LYULYAKIN∗, and R. V. TRASHCHEEV†

Abstract — A complex method of study is proposed, which includes a complete set of operations
combining formal and informal methods, simulation and analytic approaches. This method has been
used in construction and analysis of a set of models of tundracenosis, i.e., ‘vegetation-lemmings-
polar foxes’ (VLPF) model, an individual-oriented model (IOM) of a lemming population, and a
simplified model in the form of a difference equation. Calculation formulas relating the parameters
of the VLPF model and the difference equation are obtained, hypotheses concerning the principal
mechanisms determining fluctuations in animal populationsare formulated. Analysis of the properties
of the difference equation and their manifestations in the VLPF and IOM models is performed.

1. Introduction

The foundations of quantitative ecology were laid in the pre-computer (analytic) pe-
riod [2,6–8,13,18]. However, the restricted capability ofanalytic methods could not
satisfy the needs of ecologists. The development of ‘systemdynamics’ by Forrester
[4] consisting in creation of simulation models in a dialogue with experts, which
removed the restrictions on the model type, increased essentially the potential of
interdisciplinary interactions. Such approach allows oneto use expert estimates and
change them in the course of modelling. Therefore, a kind of an ‘ecological design
(ED) game is implemented. The relative simplicity of modifying such models gives
us the ability to perform comparative analysis of various sets of initial assumptions,
data, or hypotheses. The algorithmic structure lying at thebase of ED has the form

dFx

dt
= Rx −Dx −Mx (1.1)

whereRx is the increase,Mx is the natural mortality,Dx is the disposition. The dy-
namics of the biomass of each trophic level is determined by the following three
additive components: the rates of reproduction, disposition, and natural mortality;
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Figure 1. Expert-evaluated functions: (a) the function formalizingthe decrease in the food value
under its deficiency (g2), (b) the function formalizing the mortality of lemmings during a year (g3),
(c) the function of eating saturation of lemming by polar foxes (g4), (d) the self-limitation function of
polar foxes (g5).

each component, in its turn, is formed as a product of a constant and the correspond-
ing function (including those of expert estimates). An example of functions with
expert estimates in one of the latest versions of the model ispresented in Fig. 1, the
values of the constants are given below.

However, it is difficult to obtain a satisfactory description of the mechanisms
of this phenomenon and to determine its principal mechanisms just by simulation
tools, even under ideal conditions for interdisciplinary cooperation. A combination
of the simulation and analytic approaches seems rather attractive. The search for
implementation of such combinations has led to formation ofcomplex studies (CS),
including a complete set of operations, from sampling biological data to construc-
tion of interrelated models, including simplified ones admitting analytic (paramet-
ric) studies, which allows one to overcome the deficiency of purely simulation ap-
proaches (limitation by numerical calculations, ‘immensity of models’, etc.). An
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Figure 2. Results of a simulation experiment with the VLPF model [13] and the size variation dy-
namics of the ungulate lemming population registered on theVrangel island [3] (marked by circles).
HereV is the vegetation biomass,L is the mass of lemmings,F is the mass of polar foxes.

original detailed simulation model is used in justificationof simplified models. The
original model serves as a kind of a filter filtering the total spectrum of available
biological information. The iterative modification process of the model leads to
examination of possible variants. The modification and justification of simplified
models proceeds under an expert control over utilized assumptions. Thus, possible
doubts in justification of analytical models are replaced bythe issues of confidence
in the experts and initial biological data, and the ability of mathematical tools to
represent the data, which has been significantly expanded with the use of computer
technologies.

Based on expert-evaluated dependences, the ‘vegetation-lemmings-polar foxes’
(VLPF) simulation model was created taking into account seasonal variations of
parameters. Interdisciplinary abilities of computer technologies and also the idea of
ED were used in the initial formation of the model and its further modifications.

Figure 1 presents the expert estimates for the functions of alater version of
the model. Various dynamic regimes and fluctuations in lemming and polar fox
populations typical for the tundra were obtained as the result of numerical experi-
ments [1,5,13]. The results of a particular experiment are presented in Fig. 2.

The dissatisfaction with the traditional result of simulation modelling consist-
ing in a forecast of dynamic characteristics of the model under different scenarios of
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external impacts [5, 13] and the desire to improve the understanding of the mecha-
nisms forming the population dynamics of tundra animals resulted in the creation of
the lemming population model [10] determining fluctuationsin animal populations
of the tundra community. This has given us the ability to justify a one-dimensional
difference equation relating the size of the lemming population (the principal block
in the VLPF model) for two adjacent years as a simplified model[5,9,13].

This difference equation allows us to determine the domainsof the parameters
in the original simulation problem, so that dynamic regimesof population variations
are close to those observed in the nature, and to formulate hypotheses for principal
mechanisms determining variations in the sizes of tundra animal populations. A
special role of the simplified model in the study of tundra animal population vari-
ations has motivated a search for a closer relation between the difference equation
and the original (simulation) VLPF model. Based on the jointanalysis of ecological
and biological information and the results of numerical experiments, we succeeded
in the formulation and solution of the ‘inverse simulation problem’. It consists in
the introduction of additional assumptions allowing us to obtain formulas relating
the parameters of the original model of the community to the parameters of the
difference equation.

The previous simulation experience has enabled us to reach another description
level, i.e., the use of individual-oriented models [5,11,14].

2. ‘Vegetation-lemmings-polar foxes’ simulation model

Analysis of the structure of the pasture (surface) part of tundra biocoenosis has
shown the possibility of autonomous consideration of the VLPF community [13].
The model describes the population size dynamics of polar foxesF, lemmingsL,
and vegetationV : 




dV
dt

= RV −DV −MV

dL
dt

= RL −DL −ML

dF
dt

= RF −DF −MF

(2.1)

whereR is the growth,M is the natural mortality,D is the disposition of biomass.
The effect of the time of year on the dynamics is described by the following

variables:S1 = S2 = 0 in winter,S1 = 1,S2 = 0 in spring,S1 = S2 = 1 in summer.
The winter lasts from September to January, the spring lastsfrom February to May,
the summer lasts from June to August.

The dynamics of vegetationV is determined in summer by Verhulst’s formula,
exponential mortality appears in winter, the growth and mortality are compensated
in spring. Lemmings seize the vegetation if its available amountVd forms the part̃d
of its total biomass:

Vd =

{
d̃ ·V, α > 0
0, α 6 0

(2.2)
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RV = a4

(
1−

V1

Vmax

)
s1V1 (2.3)

MV = a3 (V1 +V2)(1− s2) (2.4)

DV =

{
L(a1(1− s1)+ a2s1) , Vd > 0
0, Vd = 0.

(2.5)

Herea1 anda2 are the vegetation seize coefficients: the first one is for winter and
spring, the second one is for summer;a3 anda4 are the coefficients of growth and
mortality of vegetation biomass, respectively,Vmax is the capacity of the econiche.

The change of the lemming biomass is calculated according tothe formula

RL = DV g2

(
Vd

L

)
(b9s2 + b10s1) (2.6)

ML =





0, L 6 β
b5g3(t)L, Vd

L > q

b4

(
1−

Vd

L∗q

)
g3(t)L,

Vd

L
< q

b2g3(t)L, Vd = 0,s2 = 0
b2L, Vd = 0,s2 = 1

(2.7)

DL =





Fg4

(
L
F

)
(b6 + b7s1) , L > β

0, L < β
(2.8)

whereg2(Vd/L) is the trophic function (see Fig. 1a). The coefficientsb6,b7,b9,b10
characterize the seasonal changes. The functiong3(t) describes the changes of mor-
tality depending on the time of the year (see Fig. 1b); the functiong4(L/F) describes
the trophic function of polar foxes (see Fig. 1c),q is the critical specific weight of
the vegetation below which there is a food deficiency; the mortality coefficients are
the following:b5 for sufficient food,b4 for insufficient food,b2 for absence of food
in spring,bβ for absence of food in summer;β is the optimal biotope level of lem-
mings when lemmings always persist. The increase in the biomass of the polar foxes
is generally provided by lemmings, however, in addition, other nonspecific kinds of
food are present in the ration of polar foxes. The natural mortality, the loss due to
hunting, and the increase of the biomass due to nonspecific kinds of food are taken
proportional to the biomass of the polar foxes (with the coefficientsc4,c5,c2,c3).

The change in the biomass of polar foxes is calculated by the formulas

RF = c1g5(F)DL +(c2+ c3s1)F (2.9)

MF = c4F (2.10)
DF = c5F. (2.11)
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The functiong5(F) reflects the limiting effect of high density (see Fig. 1 d).
The numerical study was performed with the following valuesof the coeffi-

cients:
a = (0.05;0.16;0.05;1.2)
b = (500;0.57;0;0.37;0.05;0.05;0.1;0.1;5.6;1.5)
c = (1;0.025;0.06;0.055;0.005)
ω = 0.15,d = 0.6, α = 2,Vmax = 30,q = 0.2, β = 2.5.

The initial conditions in numerical experiments wereV0 = 10,L0 = β , F0 = 1.

3. Inverse simulation problem (construction of simplified model)

In the process of solving the inverse simulation problem we managed to obtain for-
mulas correlating the original VLPF simulation model and the difference equation
on the base of the results of numerical experiments (and according to ecological and
biological data).

In order to solve the inverse simulation problem, we accept the following sim-
plifications:

1. the subsystem of polar foxes is removed from consideration, because their
influence on the dynamics of lemmings is small;

2. we assume that in all periods except for winter and spring after the peak of
the population size the food base (vegetation) does not restrict the dynamics
of the lemming population;

3. we use the following assumption: at the end of the summer period the biomass
of vegetation reaches its maximal valueV = Vmax;

4. the trophic functiong2(Vd/L) is equal to the constant ˆg1
2 for insufficient food

and to ˆg2
2 for sufficient food; the dependence of mortality of lemmingson

the food supply was described in two ways: either we have sufficient food
(minimal mortality), or food is not available at all (maximal mortality). The
function g3(t) representing the dependence of mortality of lemmings on the
season was taken constant and equal to ˆg1

3 in winter, ĝ2
3 in spring, and ˆg3

3 in
summer.

The simplifying assumptions presented above have allowed us to obtain the re-
quired difference equation. It consists of three parts. Thefirst part corresponds to
the case when there is sufficient food all the year, the biomass (population size) of
lemmings grows linearly; the third part is for the case when the food is insufficient
even in winter, and then only the individuals from the optimal biotope survive, the
biomass (population size) is constant within this range (a horizontal zone, a ‘step’);
and the second part is in between, this is the transition zonewhen the food is insuf-
ficient in spring.
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Let us describe the first part. In accordance with the assumptions presented
above, the change of the lemming population biomass in a ‘favorable year’ (the food
is sufficient throughout the year) is described in each season by an autonomous first-
order differential equation. As the result, we get the following difference equation
connecting the lemming population sizes in two consecutiveyears:

L̃n+1 = PL̃n.

Here L̃ = L/Lmax , P = ηνµ1 is the biomass increment in a favorable year;η =
exp(psts) is the change in the biomass of lemmings during summer,µ1 = exp(pp1tp)
is the same change during spring,ν = exp(pwtw) is for winter under the existence
of food for the whole season;tS, tW , andtP are the durations of summer, winter, and
spring, respectively;

ps = a2(b9 + b10)ĝ
2
2−b5ĝ3

3, pp1 = a2b10ĝ2
2−b5ĝ2

3, pw = −b5ĝ2
3

the parametersai andbi are defined above.
Another portion of the difference equation describes the case when the food

is insufficient even in the winter period. In this case only the individuals from the
optimal biotope survive, the biomass (population size) is constant within this range
(the horizontal part known as a ‘step’). The conditions of food shortage at the end
of winter are determined by the parameter

B =
Vmaxz−α

a1tw(1+ ν)/2
.

Here z = exp(−a3tw) is the ratio of the vegetation biomass at the end and at the
beginning of the winter without the influence of lemmings,B(1−ν)/2 is the mean
biomass of lemmings in the winter period.

A transition zone lies between the cases of excessive food and its shortage in the
winter period, namely the case where there is no sufficient food in spring. Numerical
experiments show that this zone is rather narrow. We describe it by a line segment
joining the fragments of the difference equation indicatedabove.

Based on the difference equation presented above, which relates the sizes of
the lemming population in two consecutive years, for the normalized variablẽL =
L/Lmax we have the form

L̃n+1 =





PL̃n, L̃n 6 1/P

1− r
(

L̃n −1/P
)

, 1/P 6 B̃

d, L̃n > B̃.

HereB̃ = B/Lmax, d = β µ2/P is the portion of lemmings with guaranteed survival,
r = P(1−d)/(BP−1), µ2 = exp(pp2tp) is the change in the biomass of lemmings in
spring in the absence of food;β is the biomass of lemmings by the end of the winter
provided the food shortage occurs in winter (the capacity ofthe optimal biotope).
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The valueLmax is determined from the condition that the available food had
been eaten by the end of spring:

Lmax =

(
Vmaxz−α

a1(tw(1+ ν)+ tpν(1+ µ1))/2

)
η .

For comparison, Figure 3 presents the graph of the difference equation obtained
as the result of numerical experiments with the original VLPF model.

Within the framework of integrated studies, we have succeeded in combining
models of different classes. The simplification is not precise, because we applied a
linearization of the original expert functions, however, it allows us to perform joint
analysis of the models.

4. Use of difference equations

The analysis of the obtained difference equation has shown that there exist two prin-
cipal (dimensionless) parameters forming the dynamic regimes of lemming popu-
lation fluctuations, i.e., the rate of biomass incrementP in favorable years and the
survival rate in the most unfavorable conditionsd. Whereas the estimation of the
first parameter is comparatively reliable, the second one can be estimated from in-
direct data only. In order to reveal its impact, the corresponding numerical experi-
ments were undertaken in [9] with a scenario where the parameter d varies from 1
to 0. It was found that stability zones with stable cycles successively appear in this
case. The period of the cycles is constant inside a stabilityzone and changes as the
natural series 1, 2, 3, 4 when passing from one zone to another. Stability zones are
separated from each other by transition zones with more complicated regimes.

This result, i.e., the ‘order of the natural series’ with alternation of stability and
transition zones where dynamic regimes change in finite times under small changes
of the parameters, differs from the commonly accepted ‘doubling cascade’ with
subsequent transition to ‘chaotic’ regimes [15,16]. The presence of transition zones
is in certain correspondence with the registered dynamics of actual populations. In
the absence of a clear three-year cycle (in regions that are warmer that Taimyr) there
are two- and five-year intervals between the population sizepeaks [3,10,12,13].

5. Individual-oriented model

The studies of ‘vegetation-lemmings-polar foxes’ tundra community models per-
formed previously, allowed us to apply a new description level, which is the method
of individual-oriented modelling (IOM). The object of IOM application was the
population of ungulate lemmings (Dirostonyx torquatus chionopyes) in the West
Taimyr. In this model a year is divided into two periods: the period of reproduc-
tion (from February 1 to August 31) and the winter period; lemmings are described
by their age, sex, stage of sexual development, and vital capacity (VC). Population
changes are related to migration.
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Figure 3. Graphic representation of the difference equation obtained as the result of numerical exper-
iments with the VLPF model.

Figure 4. The form of difference equation obtained as the result of numerical experiments with the
IO model.

A zooid goes out of the burrow and moves in an arbitrary direction. If a con-
tact with other individuals occurs, a fight may happen, whichdecreases the VC. If
the VC decreases to zero, the individual dies (this also occurs when the individ-
ual reaches the limit age). If individuals of different sexes meet in the reproduction
period, the female capable of reproduction becomes pregnant with some probability.

The young are brought forth in a certain period of time and remain in the ma-
ternal hole for about two weeks. The stage of sexual maturityis achieved if the
individual reaches a particular age and finds its own hole (the model is described in
detail in [5,11,14]).
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The numerical experiments with the IOM allowed us to reproduce the popula-
tion fluctuations, including those with period 3 (see Fig. 5).

Figure 4 presents a graphical representation of the difference equation obtained
as the result of a particular numerical experiment with the IOM (dots on the graph).
This representation is qualitatively close to the form of the difference equation ob-
tained for the VLPF model.

6. Simplified description in the form of differential equations

Many ecological systems, including tundra ones are characterized by seasonal fac-
tors. Such factors are taken into account in [1, 2, 13] using ageneralization of the
‘predator-prey’ model. Since the IOM does not take into account the interactions of
lemmings with vegetation and predators, a simplified description subject to seasonal
factors can be done by the following equations. The Verhulstequation is used for
the reproduction period:

dX
dt

= rX

(
1−

X
K

)

whereX is the size of population,t is the time,r is the increment rate,K is the
maximal size of the population.

For the winter period we use the equation

dX
dt

= −aX

wherea is the coefficient of the population decrease.
We succeeded in finding coefficients (K = 500,r = 3, a = 0.1, anda = 0.6 after

the peak, 7/12 in the reproduction period, 5/12 the winter period) to obtain cycles
with the period of 3 years similar to those obtained in numerical experiments with
the IOM (see Fig. 5). (Solution of the differential equations was performed by the
fourth-order Runge–Kutta method).

Figure 5 shows that the coincidence is good for a large population size at the
end of the season and is much worse for a small population.

7. Integrated analysis of the models

As was indicated above, we succeeded in integrating the VLPFmodel and differ-
ence equation within solution of the inverse simulation problem. The analysis of the
difference equation allowed us to select three principal factors forming the dynamic
regimes of the lemming population fluctuations. These factors are the biomass incre-
ment rate in a favorable yearP, the maximal population sizeB, and the survivability
in the least favorable conditionsd (or two dimensionless parameters, which are the
relative increment rate of population and the share of animals with guaranteed sur-
vival). All these three factors were formed as the result of coevolution of the physio-
logical and ecological characteristics of lemmings and theenvironment parameters.
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Figure 5. Comparison of lemming population dynamics (L) obtained by the complete IOM (solid
line) and by the simplified model (dotted line).

Figure 6. Dependence of the mean distance between population peaks (ψ) on the optimal biotope
level (β ).

The first factor characterizes the balance between the birthrate and mortality in all
phases of development without ‘environment pressure’. Thesecond factor charac-
terizes the ecosystem as a whole and is generally an indicator of lemmings and their
food base coevolution. The third one characterizes the adaptive abilities of lem-
mings in extreme conditions and is mainly determined by local characteristics, in
particular, by the terrain profile in the areas of their winter stay.

The conclusions obtained here are in good correspondence with the prevailing
hypothesis that fluctuations in animal populations are formed not by a single fac-
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tor, but by a certain combination of factors [3, 10, 12, 17]. Such combinations have
been specified and it is (quantitatively) shown how these combinations affect the
dynamics of animal populations.

In addition, we have succeeded in obtaining formulas for thetransition between
the VLPF model and the difference equation, which ensures a reverse compatibility
of these models. Thus, the simplified difference equation can be used for adjust-
ing the VLPF model (and other more detailed models) to the required modes of
operation, and detailed models can be used for minute studies of the processes.

The analysis of the properties of the difference equation has shown that an alter-
nation of stability and transition zones is observed under avariation of parameters.
Numerical experiments with the VLPF model have also shown that the same ef-
fect takes place under a variation of such factor as the optimal biotope levelβ (see
Fig. 6).

As is seen from Fig. 6, stability zones are observed for the following values
of β : [0,05;0,17] − (4), [0,2;1,8] − (3), [2;8,2] − (2), [8,9;10] − (1) (the mean
distance between the population peaks is presented in the parentheses). Transi-
tion zones are observed for the following values ofβ : [0;0,05] [0,17;0,2] [1,8;2]
[8,2;8,9]. Other parameters are defined above.

A similar pattern is observed for the individual-oriented model too.

8. Conclusion

Simulation modelling in the environmental and biological fields is an art of applica-
tion of computer technologies in an interdisciplinary process creating mathematical
models for incomplete, diverse, and inevitably distorted data concerning the prop-
erties of the studied objects. This is an art of searching fora compromise between
the ecological and mathematical requirements, i.e., an efficient simulation requires
not only a coordination of the informational base of the model with data and repre-
sentations of the biologists, but also an appropriate choice of mathematical tools to
represent the specificity of the studied object, and such tools are impossible to pre-
dict. Only a computational experiment with a completely (information-assembled)
model can represent a time series related to the population size dynamics with a
combination of the chosen structure of the model and the information base adjusted
to it. The search for such successful combinations is based on the idea of ecological
design (ED), which is an algorithmic structure allowing oneto modify this model
sufficiently easily. An implementation of this idea is basedon the combination of
Forrester’s system dynamics with the Volterra–Kostitsyn hypothesis of the possibil-
ity of using systems of ordinary differential equations fordescription of ecological
objects.

Within this approach, we are able to take into account practically all proposi-
tions of experts in a quantitative or a qualitative form. Moreover, the idea of ED
implements the principle of modification ability, i.e., permanent readiness to revise
the model and check various variants, assumptions, and hypotheses. This technol-
ogy enables us to reconstruct the model in the course of numerical experiments and
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to form several models for quantitative description of a phenomenon, which allows
us to consider an object from different angles. The technology of simulation mod-
elling allows us to start creating a model quickly enough andthis process is based
on expert data and model prototypes from previous stages. The ecological design
allows us to implement different ideas sufficiently easily (on a formal level), to con-
sider alternative variants, to use the knowledge of similarprocesses in other fields.
Having assimilated the relevant field of study, the role of the mathematician in the
model modification process is increased. The ‘modeller-mathematician’ takes cer-
tain expert functions upon himself and selects informationfrom the viewpoint of
simulation efficiency.

However, it is difficult to obtain a satisfactory description of the studied object
and to reveal its principal mechanisms by pure simulation techniques, even under
ideal conditions for interdisciplinary cooperation. A combination of simulation and
analytic approaches looks attractive, the same is true for considering sets of inter-
related models, including simplified ones admitting an analytic (parametric) study.
The search for ways of implementation of such combinations has led to complex
researches (CR). The original detailed simulation model isused to justify simplified
models. This model serves as a kind of a filter for the whole spectrum of avail-
able biological information. The iterative process of modifying the model results in
examination of possible variants.

The particular dependences and the set of functions kept changing in the process
of construction and study of mathematical models of tundra community. Expert es-
timates were used and revised many times in the choice of different modifications
of the model. In this paper we present a final stage of simulation. We describe a pos-
sible version of the model where we have succeeded in representing the fluctuations
of animal populations close to actual ones. The stage of modification of the models
and their coordination with the experts had been completed by the time of releas-
ing this version (which is final at this stage). The figures present the functions used
in the model, and the developers of the model (not the experts) are responsible for
them. The final dependences have been proposed by the developers, but the opinion
of the experts was taken into account in the construction.

The presence of simplified models admitting parametric studies completely
changes the abilities and the potential of simulation. Thisis a tool for adjustment
of the original simulation model to the corresponding dynamic regimes and, above
all, this is a way to generate hypotheses on the principal mechanisms of the studied
phenomenon. Using simplified models, we have succeeded in formulating the com-
patibility criteria for the original (basic) models and thepopulation size dynamics
registered in time series.

The presence of such criteria allowed us to remove the requirement of nonlinear-
ity in the interaction of species and in strict intrapopulation regulation, and showed
the possibility of periodicity due to seasonal peculiarities of the model.

The use of integrated approach in the simulation of tundra populations and com-
munities has allowed us to justify a particular class of models taking into account
the seasonal factors [1, 5] and also a new type of difference equations where for a
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particular scenario of parameter variation, stability zones with stable cycles succes-
sively appear, and their periods vary according to the natural sequence [9].
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