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Interaction of simulation and analytic methods
in modelling of ecological and biological objects

D. A. SARANCHA* O.P.LYULYAKIN* and R. V. TRASHCHEEY

Abstract — A complex method of study is proposed, which includes a detegset of operations
combining formal and informal methods, simulation and gt@lapproaches. This method has been
used in construction and analysis of a set of models of tundmmsis, i.e., ‘vegetation-lemmings-
polar foxes’ (VLPF) model, an individual-oriented modeDW) of a lemming population, and a
simplified model in the form of a difference equation. Cadtidn formulas relating the parameters
of the VLPF model and the difference equation are obtaingdptheses concerning the principal
mechanisms determining fluctuations in animal populataesormulated. Analysis of the properties
of the difference equation and their manifestations in th®~ and IOM models is performed.

1. Introduction

The foundations of quantitative ecology were laid in thegoenputer (analytic) pe-
riod [2,6—8,13,18]. However, the restricted capabilityanélytic methods could not
satisfy the needs of ecologists. The development of ‘systgmamics’ by Forrester
[4] consisting in creation of simulation models in a dialegwith experts, which
removed the restrictions on the model type, increased galerihe potential of
interdisciplinary interactions. Such approach allows tngse expert estimates and
change them in the course of modelling. Therefore, a kinchdéeological design
(ED) game is implemented. The relative simplicity of modify such models gives
us the ability to perform comparative analysis of various séinitial assumptions,
data, or hypotheses. The algorithmic structure lying abtee of ED has the form

d~
dt
whereR is the increaséyly is the natural mortalityDy is the disposition. The dy-

namics of the biomass of each trophic level is determinedhbyfollowing three
additive components: the rates of reproduction, dispmsitand natural mortality;

— RX_DX_MX (1.1)
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Figure 1. Expert-evaluated functions: (a) the function formalizithg@ decrease in the food value
under its deficiencydp), (b) the function formalizing the mortality of lemmingsrihg a year §3),
(c) the function of eating saturation of lemming by polardex,), (d) the self-limitation function of
polar foxes §s).

each component, in its turn, is formed as a product of a cohatal the correspond-
ing function (including those of expert estimates). An egpéarof functions with
expert estimates in one of the latest versions of the mogeksented in Fig. 1, the
values of the constants are given below.

However, it is difficult to obtain a satisfactory descriptiof the mechanisms
of this phenomenon and to determine its principal mechanisist by simulation
tools, even under ideal conditions for interdisciplinapoperation. A combination
of the simulation and analytic approaches seems rathexctit. The search for
implementation of such combinations has led to formatioconfiplex studies (CS),
including a complete set of operations, from sampling lgalal data to construc-
tion of interrelated models, including simplified ones attimj analytic (paramet-
ric) studies, which allows one to overcome the deficiencyw€ly simulation ap-
proaches (limitation by numerical calculations, ‘imméngf models’, etc.). An
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Figure 2. Results of a simulation experiment with the VLPF model [18{ @&he size variation dy-
namics of the ungulate lemming population registered onvitamgel island [3] (marked by circles).
HereV is the vegetation biomask,is the mass of lemmings; is the mass of polar foxes.

original detailed simulation model is used in justificatimfrsimplified models. The
original model serves as a kind of a filter filtering the totaéstrum of available
biological information. The iterative modification prosesf the model leads to
examination of possible variants. The modification andifjaation of simplified
models proceeds under an expert control over utilized ggsons. Thus, possible
doubts in justification of analytical models are replacedhgyissues of confidence
in the experts and initial biological data, and the abilifynmathematical tools to
represent the data, which has been significantly expandixdivé use of computer
technologies.

Based on expert-evaluated dependences, the ‘vegetatiomihgs-polar foxes’
(VLPF) simulation model was created taking into accounseral variations of
parameters. Interdisciplinary abilities of computer tealbgies and also the idea of
ED were used in the initial formation of the model and itstiertmodifications.

Figure 1 presents the expert estimates for the functions lafea version of
the model. Various dynamic regimes and fluctuations in lemgndnd polar fox
populations typical for the tundra were obtained as thelre$unumerical experi-
ments [1,5, 13]. The results of a particular experiment aesgnted in Fig. 2.

The dissatisfaction with the traditional result of simidatmodelling consist-
ing in a forecast of dynamic characteristics of the modekuniifferent scenarios of
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external impacts [5, 13] and the desire to improve the umaeding of the mecha-
nisms forming the population dynamics of tundra animalsited in the creation of
the lemming population model [10] determining fluctuatiamanimal populations
of the tundra community. This has given us the ability toifust one-dimensional
difference equation relating the size of the lemming padpata(the principal block
in the VLPF model) for two adjacent years as a simplified m¢sled, 13].

This difference equation allows us to determine the domeirtee parameters
in the original simulation problem, so that dynamic regirofgopulation variations
are close to those observed in the nature, and to formulgetigses for principal
mechanisms determining variations in the sizes of tundmmalnpopulations. A
special role of the simplified model in the study of tundranaati population vari-
ations has motivated a search for a closer relation betwezdifference equation
and the original (simulation) VLPF model. Based on the jaimalysis of ecological
and biological information and the results of numericaleskpents, we succeeded
in the formulation and solution of the ‘inverse simulatiorolplem’. It consists in
the introduction of additional assumptions allowing us btain formulas relating
the parameters of the original model of the community to taeameters of the
difference equation.

The previous simulation experience has enabled us to reexthexr description
level, i.e., the use of individual-oriented models [5, 4, 1

2. ‘Vegetation-lemmings-polar foxes’ simulation model

Analysis of the structure of the pasture (surface) part afita biocoenosis has
shown the possibility of autonomous consideration of thé?¥lcommunity [13].
The model describes the population size dynamics of pobesfB, lemmingsL,
and vegetatioV:

av

Y _R-Dy-M

a Ry — Dy v

dL

— =R -D_—M 2.1
i R.—Dp L (2.1)
dF

& =R —Dr —Me

whereRis the growthM is the natural mortalityD is the disposition of biomass.
The effect of the time of year on the dynamics is describedheyfollowing
variables:§ =S =0 inwinter,$; =1,$ = 0 in spring,S = $ = 1 in summer.
The winter lasts from September to January, the spring flests February to May,
the summer lasts from June to August.
The dynamics of vegetatiov is determined in summer by Verhulst's formula,
exponential mortality appears in winter, the growth andtality are compensated

in spring. Lemmings seize the vegetation if its available@ant\y forms the pard

of its total biomass: _
_JdVv, a>0
Vo= { 0. a <0 (2.2)
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R~#u@—@“>aw (2.3)
My =a3(M1+V2) (1-5) (2.4)

DV:{ L(a(1-s1)+as1), Va>0 2.5)

0, Vg =0.

Herea; anda, are the vegetation seize coefficients: the first one is fotexviand

spring, the second one is for summas;anda, are the coefficients of growth and

mortality of vegetation biomass, respectivaliya« is the capacity of the econiche.
The change of the lemming biomass is calculated accorditigetéormula

V,
R = Dvge (1) (uso+ busy) 26)
0, L<B
b593(t)|—7 \% P q
Vy Vy
M, = _Vd vd 2.7
L ba (1 L*q> gL, I <d (2.7)
bags(t)L, Vyg=0,5=0
boL, Vy=0,5=1
L
DL — Fg4 <E> (b6+ b751)a L> B (2.8)
0, L<pB

wheregy(Vy/L) is the trophic function (see Fig. 1a). The coefficielngshy, bg, big
characterize the seasonal changes. The fungtitin describes the changes of mor-
tality depending on the time of the year (see Fig. 1b); thetiong,(L/F) describes
the trophic function of polar foxes (see Fig. 1q)is the critical specific weight of
the vegetation below which there is a food deficiency; thetalioy coefficients are
the following: bs for sufficient food b, for insufficient food,b, for absence of food
in spring,bg for absence of food in summe; is the optimal biotope level of lem-
mings when lemmings always persist. The increase in thedserof the polar foxes
is generally provided by lemmings, however, in additiomentnonspecific kinds of
food are present in the ration of polar foxes. The naturaltatity, the loss due to
hunting, and the increase of the biomass due to nonspediiis kif food are taken
proportional to the biomass of the polar foxes (with the ficiehtsc,, cs, Cp, C3).
The change in the biomass of polar foxes is calculated byatmaulas

Rr = ¢105(F )DL + (c2+ c3:1)F (2.9)
Mg = c4F (210)
D = csF. (211)
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The functiongs(F) reflects the limiting effect of high density (see Fig. 1 d).
The numerical study was performed with the following valeéghe coeffi-
cients:
(0.05;016;005;12)
(500;057;0;037;005;005;01;0.1;5.6;1.5)
(1,0.025;006;0055;0005)
w=0.15,d=0.6,a =2,Vnax=30,g=0.2, 3 = 25.
The initial conditions in numerical experiments wefe= 10,Lo =8, Fo = 1.

a
b
c

3. Inverse simulation problem (construction of simplified nodel)

In the process of solving the inverse simulation problem veaaged to obtain for-
mulas correlating the original VLPF simulation model and thfference equation
on the base of the results of numerical experiments (anddiocpto ecological and
biological data).

In order to solve the inverse simulation problem, we acdeptfdllowing sim-
plifications:

1. the subsystem of polar foxes is removed from consideratbecause their
influence on the dynamics of lemmings is small;

2. we assume that in all periods except for winter and spriteg the peak of
the population size the food base (vegetation) does natatetbte dynamics
of the lemming population;

3. we use the following assumption: at the end of the sumnrasgthe biomass
of vegetation reaches its maximal vaMie= Viax;

4. the trophic functiorgz(Vq/L) is equal to the constawg for insufficient food
and tog’% for sufficient food; the dependence of mortality of lemmirars
the food supply was described in two ways: either we havecsesffi food
(minimal mortality), or food is not available at all (maxiimaortality). The
function gs(t) representing the dependence of mortality of lemmings on the
season was taken constant and equaftm Wwinter, g“g in spring, anog§ in
summer.

The simplifying assumptions presented above have allowdd abtain the re-
quired difference equation. It consists of three parts. flilse part corresponds to
the case when there is sufficient food all the year, the bisr@aspulation size) of
lemmings grows linearly; the third part is for the case whenfood is insufficient
even in winter, and then only the individuals from the opfitniatope survive, the
biomass (population size) is constant within this rangeof&bntal zone, a ‘step’);
and the second part is in between, this is the transition ndvem the food is insuf-
ficient in spring.
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Let us describe the first part. In accordance with the assangppresented
above, the change of the lemming population biomass in arédble year’ (the food
is sufficient throughout the year) is described in each sebg@an autonomous first-
order differential equation. As the result, we get the folltg difference equation
connecting the lemming population sizes in two consecy®as:

En_l’_l — Pi:n.

HereL = L/Lmax , P = vy is the biomass increment in a favorable year:=
exp(psts) is the change in the biomass of lemmings during summes exp( Pp1tp)

is the same change during spring= exp(pwtw) is for winter under the existence
of food for the whole seasoky, ty, andtp are the durations of summer, winter, and
spring, respectively;

ps = a2(bg +b10)G5 — D533, Pp1 = a2b10Gs — bsG3, Ppw = —bsG

the parameterg; andb; are defined above.

Another portion of the difference equation describes thee aghen the food
is insufficient even in the winter period. In this case onlg thdividuals from the
optimal biotope survive, the biomass (population sizepisstant within this range
(the horizontal part known as a ‘step’). The conditions afdshortage at the end
of winter are determined by the parameter

_ Vmaxz_ a
agtw(1+v) /2

Herez = exp(—agty) is the ratio of the vegetation biomass at the end and at the
beginning of the winter without the influence of lemmingé1l— v)/2 is the mean
biomass of lemmings in the winter period.

A transition zone lies between the cases of excessive fobidsashortage in the
winter period, namely the case where there is no sufficierd fio spring. Numerical
experiments show that this zone is rather narrow. We desdrity a line segment
joining the fragments of the difference equation indicaabdve.

Based on the difference equation presented above, whiatesethe sizes of
the lemming population in two consecutive years, for themadized variabld. =
L/LmaxWe have the form

PLn, L, <1/P
Copi=4 1t (En—l/P) , 1/P<B
d, L, > B.

HereB = B/Lmax d = BU2/P is the portion of lemmings with guaranteed survival,
r=P(1—d)/(BP—1), > = exp(pp2tp) is the change in the biomass of lemmings in
spring in the absence of foof;is the biomass of lemmings by the end of the winter
provided the food shortage occurs in winter (the capacitphefoptimal biotope).
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The valuelLax is determined from the condition that the available food had
been eaten by the end of spring:

M\ G (ta( 1+ V) + v (Lt ) 2)

For comparison, Figure 3 presents the graph of the differeqoation obtained
as the result of numerical experiments with the original ¥uRodel.

Within the framework of integrated studies, we have suceddd combining
models of different classes. The simplification is not gecbecause we applied a
linearization of the original expert functions, howeveégliows us to perform joint
analysis of the models.

4. Use of difference equations

The analysis of the obtained difference equation has shioatritiere exist two prin-
cipal (dimensionless) parameters forming the dynamiawmegiof lemming popu-
lation fluctuations, i.e., the rate of biomass increnteim favorable years and the
survival rate in the most unfavorable conditioths\Whereas the estimation of the
first parameter is comparatively reliable, the second onebeaestimated from in-
direct data only. In order to reveal its impact, the corresiiog numerical experi-
ments were undertaken in [9] with a scenario where the pamarmearies from 1
to 0. It was found that stability zones with stable cyclescessively appear in this
case. The period of the cycles is constant inside a stahiitye and changes as the
natural series 1, 2, 3, 4 when passing from one zone to an@tadility zones are
separated from each other by transition zones with more boatgd regimes.

This result, i.e., the ‘order of the natural series’ witreatiation of stability and
transition zones where dynamic regimes change in finitestiomeler small changes
of the parameters, differs from the commonly accepted ‘doghcascade’ with
subsequent transition to ‘chaotic’ regimes [15, 16]. Thespnce of transition zones
is in certain correspondence with the registered dynanfiestoal populations. In
the absence of a clear three-year cycle (in regions that ammer that Taimyr) there
are two- and five-year intervals between the population ggzks [3, 10,12, 13].

5. Individual-oriented model

The studies of ‘vegetation-lemmings-polar foxes’ tundoanmunity models per-
formed previously, allowed us to apply a new descriptiorlewhich is the method
of individual-oriented modelling (IOM). The object of IOMpglication was the
population of ungulate lemmings (Dirostonyx torquatusoobpyes) in the West
Taimyr. In this model a year is divided into two periods: thexipd of reproduc-
tion (from February 1 to August 31) and the winter period; heimgs are described
by their age, sex, stage of sexual development, and vitaaiigp(VC). Population
changes are related to migration.
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Figure 3. Graphic representation of the difference equation obtbasethe result of numerical exper-
iments with the VLPF model.
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Figure 4. The form of difference equation obtained as the result ofenical experiments with the
10 model.

A zooid goes out of the burrow and moves in an arbitrary divectlf a con-
tact with other individuals occurs, a fight may happen, whlebreases the VC. If
the VC decreases to zero, the individual dies (this also rscatnen the individ-
ual reaches the limit age). If individuals of different sexeeet in the reproduction
period, the female capable of reproduction becomes prégriinsome probability.

The young are brought forth in a certain period of time andaienn the ma-
ternal hole for about two weeks. The stage of sexual matigigchieved if the
individual reaches a particular age and finds its own hole iftlodel is described in
detail in [5, 11, 14]).
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The numerical experiments with the IOM allowed us to repoedthe popula-
tion fluctuations, including those with period 3 (see Fig. 5)

Figure 4 presents a graphical representation of the difterequation obtained
as the result of a particular numerical experiment with @®&i(dots on the graph).
This representation is qualitatively close to the form & tfifference equation ob-
tained for the VLPF model.

6. Simplified description in the form of differential equations

Many ecological systems, including tundra ones are cheniaet by seasonal fac-
tors. Such factors are taken into account in [1, 2, 13] usiggraeralization of the
‘predator-prey’ model. Since the IOM does not take into actahe interactions of
lemmings with vegetation and predators, a simplified dpon subject to seasonal
factors can be done by the following equations. The Vertedstation is used for

the reproduction period:
dX X
@ - (1‘ R)

where X is the size of populatior, is the time,r is the increment rateK is the
maximal size of the population.

For the winter period we use the equation

dX
e aX
wherea is the coefficient of the population decrease.

We succeeded in finding coefficients £ 500,r = 3,a= 0.1, anda = 0.6 after
the peak, 712 in the reproduction period,/32 the winter period) to obtain cycles
with the period of 3 years similar to those obtained in nunsréxperiments with
the IOM (see Fig. 5). (Solution of the differential equasonas performed by the
fourth-order Runge—Kutta method).

Figure 5 shows that the coincidence is good for a large ptipalaize at the
end of the season and is much worse for a small population.

7. Integrated analysis of the models

As was indicated above, we succeeded in integrating the \fhBéel and differ-
ence equation within solution of the inverse simulatioripem. The analysis of the
difference equation allowed us to select three principatbis forming the dynamic
regimes of the lemming population fluctuations. These facoe the biomass incre-
ment rate in a favorable yeBr the maximal population siZg, and the survivability

in the least favorable conditiorts(or two dimensionless parameters, which are the
relative increment rate of population and the share of alsimvéh guaranteed sur-
vival). All these three factors were formed as the resulioefvolution of the physio-
logical and ecological characteristics of lemmings ancetihéronment parameters.



Interaction of simulation 11

Figure 5. Comparison of lemming population dynamics (L) obtained e tomplete IOM (solid
line) and by the simplified model (dotted line).
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Figure 6. Dependence of the mean distance between population pgalen(the optimal biotope
level (B).

The first factor characterizes the balance between the fairthand mortality in all
phases of development without ‘environment pressure’. Sdw®nd factor charac-
terizes the ecosystem as a whole and is generally an indigdiEanmings and their
food base coevolution. The third one characterizes thetdagbilities of lem-
mings in extreme conditions and is mainly determined byllgbaracteristics, in
particular, by the terrain profile in the areas of their wirgiay.

The conclusions obtained here are in good corresponderbethei prevailing
hypothesis that fluctuations in animal populations are &mmot by a single fac-
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tor, but by a certain combination of factors [3, 10, 12, 14]cl$ combinations have
been specified and it is (quantitatively) shown how thesehioations affect the
dynamics of animal populations.

In addition, we have succeeded in obtaining formulas fotridesition between
the VLPF model and the difference equation, which ensuresexrse compatibility
of these models. Thus, the simplified difference equationtm used for adjust-
ing the VLPF model (and other more detailed models) to theired modes of
operation, and detailed models can be used for minute stodlibie processes.

The analysis of the properties of the difference equati@shawn that an alter-
nation of stability and transition zones is observed undergtion of parameters.
Numerical experiments with the VLPF model have also shovat the same ef-
fect takes place under a variation of such factor as the aptiotope level3 (see
Fig. 6).

As is seen from Fig. 6, stability zones are observed for thieviing values
of B :[0,05;0,17] — (4),[0,2;1,8] — (3),[2;82] — (2),[8,9;10 — (1) (the mean
distance between the population peaks is presented in tleathases). Transi-
tion zones are observed for the following valuegBof[0;0,05][0,17;0 2] [1,8; 2]
[8,2;8,9]. Other parameters are defined above.

A similar pattern is observed for the individual-orienteddel too.

8. Conclusion

Simulation modelling in the environmental and biologicelds is an art of applica-
tion of computer technologies in an interdisciplinary gee creating mathematical
models for incomplete, diverse, and inevitably distortathcconcerning the prop-
erties of the studied objects. This is an art of searchingfoompromise between
the ecological and mathematical requirements, i.e., aciaffi simulation requires
not only a coordination of the informational base of the mMedth data and repre-
sentations of the biologists, but also an appropriate ehoienathematical tools to
represent the specificity of the studied object, and sucls e impossible to pre-
dict. Only a computational experiment with a completelyfdimation-assembled)
model can represent a time series related to the populatiendgnamics with a
combination of the chosen structure of the model and thenmdtion base adjusted
to it. The search for such successful combinations is basédedidea of ecological
design (ED), which is an algorithmic structure allowing doemodify this model
sufficiently easily. An implementation of this idea is basgdthe combination of
Forrester’s system dynamics with the Volterra—Kostitsypdthesis of the possibil-
ity of using systems of ordinary differential equations description of ecological
objects.

Within this approach, we are able to take into account praltyi all proposi-
tions of experts in a quantitative or a qualitative form. Elover, the idea of ED
implements the principle of modification ability, i.e., pgnent readiness to revise
the model and check various variants, assumptions, andhwgges. This technol-
ogy enables us to reconstruct the model in the course of ncahexperiments and
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to form several models for quantitative description of argireenon, which allows
us to consider an object from different angles. The techgolof simulation mod-
elling allows us to start creating a model quickly enough #msl process is based
on expert data and model prototypes from previous stages.etblogical design
allows us to implement different ideas sufficiently easdy & formal level), to con-
sider alternative variants, to use the knowledge of sinitacesses in other fields.
Having assimilated the relevant field of study, the role ef tiathematician in the
model modification process is increased. The ‘modellefrrattician’ takes cer-
tain expert functions upon himself and selects informafiom the viewpoint of
simulation efficiency.

However, it is difficult to obtain a satisfactory descriptiof the studied object
and to reveal its principal mechanisms by pure simulatiehrigues, even under
ideal conditions for interdisciplinary cooperation. A coimation of simulation and
analytic approaches looks attractive, the same is truediosidering sets of inter-
related models, including simplified ones admitting an wi@l(parametric) study.
The search for ways of implementation of such combinaticas lad to complex
researches (CR). The original detailed simulation moda$ési to justify simplified
models. This model serves as a kind of a filter for the wholectspm of avail-
able biological information. The iterative process of nigidig the model results in
examination of possible variants.

The particular dependences and the set of functions kepgatin the process
of construction and study of mathematical models of tundraraunity. Expert es-
timates were used and revised many times in the choice @frdiff modifications
of the model. In this paper we present a final stage of sinmiatiVe describe a pos-
sible version of the model where we have succeeded in rapnegehe fluctuations
of animal populations close to actual ones. The stage offication of the models
and their coordination with the experts had been compleyethé time of releas-
ing this version (which is final at this stage). The figuresspre the functions used
in the model, and the developers of the model (not the exXpartsresponsible for
them. The final dependences have been proposed by the dergelbpt the opinion
of the experts was taken into account in the construction.

The presence of simplified models admitting parametric istudompletely
changes the abilities and the potential of simulation. Téia tool for adjustment
of the original simulation model to the corresponding dyitaragimes and, above
all, this is a way to generate hypotheses on the principahar@sms of the studied
phenomenon. Using simplified models, we have succeededniufating the com-
patibility criteria for the original (basic) models and thepulation size dynamics
registered in time series.

The presence of such criteria allowed us to remove the remeint of nonlinear-
ity in the interaction of species and in strict intrapopiaiatregulation, and showed
the possibility of periodicity due to seasonal peculiagtof the model.

The use of integrated approach in the simulation of tundpufaions and com-
munities has allowed us to justify a particular class of nedaking into account
the seasonal factors [1, 5] and also a new type of differeqoatens where for a
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particular scenario of parameter variation, stabilitye®with stable cycles succes-
sively appear, and their periods vary according to the ahgquence [9].
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