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Discrete stochastic model of HIV infection spread
within a heterogeneous population

N. V. PERTSEV and V. N. LEONENKO

Abstract — A discrete stochastic model of HIV infection spread withiheterogeneous population
is presented. A system of high-dimensional stochastiedifice equations is used in the model. A
system of upper estimates for mathematical expectatiottseafizes of groups of individuals in the
population is constructed. Sufficient conditions for théretion of the infection process are obtained
in terms of M-matrices. Based on the Monte Carlo method, aaniga algorithm and a simulation
code are developed, which allows one to study probabiltdtaracteristics of the observed variables
of the model. Results of numerical experiments are predente

A pandemia of HIV infection has been progressing since thggninéing of 1980th
and is one of the most baneful epidemics in the human hidto8008-2010, about
2.7 millions of new HIV infection cases were diagnosed in warld. In 2010,
the total number of registered HIV infection cases was 34ionil 1.8 million of
people died from causes related to HIV infection [6]. In orte decrease losses
caused by HIV infection, it is necessary to control the pleavee of this infection
and to take measures aimed at the detection and treatmehit afisease. One of
the modern approaches to solution of these problems is ctathaith application
of the method of simulation modelling. For example, a modeHb/ infection
dynamics in Zambia was developed in [8] with the use of detadlonsideration of
the structure of sexual contacts of individuals; a model bf kfection dynamics
was constructed in [16] on the base of dynamic networks afiegial contacts; a
model of HIV infection spread within the homosexual popolatf San Francisco
was described in [17].

Systems of stochastic difference equations with integhred variables and
their individual-oriented modifications can be used for tewelopment of mod-
els simulating the dynamics of HIV infection and other d&=sa Such models are
a powerful tool for the study of disease spread, they cdyréake into account the
randomness factor, and peculiarities of particular irdliais; these models can be
easily adjusted to real data, do not require much time forarigal experiments,
and can be studied analytically (see, e.g., [1, 7, 11, 13, Néte also that the ap-
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plication of simulation models based on stochastic diffeeeequations allows us to
overcome some restrictions existing in the technique oharg differential equa-
tions. Such restrictions include interpretation complerf solutions related to the
continuity of variables, especially in the case of simuaus simulation of small
and large groups of individuals; impossibility to take irtocount the discreteness
of time caused by the daily (periodical) living rhythm of imidiuals; neglection of
stochastic nature of contacts causing infection of sugi@ephdividuals; the use of
only one (exponential) family of distributions describitite total duration of the
disease and the duration of its particular stages for acpdati individual.

In this paper we consider a system of high-dimensional ststiah difference
equations describing the dynamics of HIV infection spredtthiw a heterogeneous
population. The stochastic model is based on the resultofl5], where the popu-
lation heterogeneity of Russian regions was considered fhe viewpoint of social
dysadaptation of individuals. The aim of the developmentstody of the stochas-
tic model are: (1) description of the population hetero@gnesing integer-valued
random vectors of arbitrary dimension; (2) formulation offigient conditions for
the extinction of the infection process; (3) applicatiomammerical experiments to
the study of mathematical expectations of the sizes of densdl population groups
depending on variations of the parameters of the model.

1. Equations of the model

Let us represent the population of a certain region as thapgrof individuals
A1, Ay, ..., Ay, B1,By,. .., B We assume that the groups, Ao, ..., A, are formed
from HIV-susceptible individuals differing in their levef social dysadaptation, for
example, socially adapted individuals, individuals withigh risk of development
of various pathologies, individuals with a fixed alcoholi@ndrug dependence.
The groupsB,,B,,...,By, describe HIV-infected individuals subject to the levels of
social dysadaptation indicated above. We assume thaidi@ils are indistinguish-
able within each group listed above. Byt),yi(t) we denote the numbers of the
individuals in the groupgy, B; at time moments=0,1,2,...,i=1,2,....n.

We also assume that the sizes of the groups described abgvia tiene as the
result of the following processes:

¢ transition of individuals from one group to another becaofka change in
their level of social adaptation, an infection, develophwmisease, detection
and treatment of cases;

¢ supplement of groups because of immigration and inflow a¥iddals reach-
ing a particular age;

e decrease caused by natural mortality of individuals, dbgtthe disease, or
emigration to other regions.

As an example, Figure 1 presents a scheme of the HIV infestioead model
proposed in [12, 15]H(= 4).
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Figure 1. An example of HIV infection spread for= 4 [12, 15].

In order to construct the model, we use a system of stochdiffiicence equa-
tions with integer-valued variables and discrete time. Tih# of time is chosen
relative to the duration of typical processes occurringridralividual within the
model (from one day to one year). We suppose that in each titeeval (t — 1;t]
all individuals behave independently of each other and thetaviour does not de-
pend on events preceding the time montent. We fix a time momertt— 1 and the
quantitiesx; (t — 1), y; (t — 1) of the groupsA;, B;. The numbers of individuals living
at the time moment are denoted by (t), Vi(t), respectively. We assume that for
fixedi =1,2,...,nthe random variableg(t), Vi (t) have the binomial distribution

5(\I(t)NB(XI(t_l)apl)? y\l(t)NB(yl(t_l)ayl) (11)

wherep;, y € (0;1) are the probabilities of survival from the time moment1 till
the moment for the individuals from the group4; andB;.

Consider the case when the HIV infection is absent in the jatipn. The sys-
tem of model equations has the following form:

n

Xl(t) = 5(\1(11) — Z U17k(t) + i U|71(t) + fl(t)
= 1=2

k=2

Xi(t) =%(t) — kz%@éi Ui7k(t) + |:§7§i U j (t)+ fi(t) 1.2
n—-1 n—-1

Xn(t) = Xn(t) — z Unk(t) + z Ui n(t) + fn(t)
=1 =1
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System (1.2) uses the following notatiofisj = 1,2,...,n):

e U j(t) is a nonnegative integer-valued random variable reprigggfur a fixed
t the number of individuals of the grouly passing to the groud,;, j #i, in
the time periodt — 1;t];

e fi(t) is a nonnegative integer-valued random variable repreggefdr a fixed
t the inflow of individuals into the group; in the time periodt — 1;t];

o xi(°> is a nonnegative integer-valued random variable repriggttte initial
size of the groupy.

Let us describe the distribution laws of these variablespBye [0; 1) we denote
the probability of the transition of a single individual fnathe groupA; to the group
A; in the time interval(t — 1;t],i,j = 1,2,...,n, j #i. We assume that for each
i=12,...,nthe inequalityz?:lﬁi pi,j < 1, holds. For fixed(t), the random
vector

ul (t) = (Uia(t),. .., U 1 (), Ui (), Uisa(t),. .., Uin(t)) (1.3)
has the multinomial distribution

U (t) ~ M(R (L), Pity- -, Piie1, Piis Piist1s-- - Pin)

where
n n
i k_;(#i i, i j:lzJ7gi N

Note that the random variablg;(t) represents the number of individuals of the
groupsA; not passing into any groudy;, j # i, in the periodt — 1;t], i.e., remaining
in the groupA;.

For fixedi = 1,2,...,n, the inflow f;(t) is a random process with given prob-
abilistic characteristics. The variablx%)),x(zo),...,x.(qo) form the components of a
nonnegative integer-valued random vector with a partragistribution law.

Proceed to the system of model equations taking into acabenpresence of
HIV-infected individuals. Fix the time momemt- 1 and the size§;i(t) of living
individuals of the group®; assuming thay (t) + ¥2(t) + - - - + ¥n(t) # 0. Assume
also that any individual remaining in the groédp can be HIV-infected in the pe-
riod (t — 1;t] as the result of a contact with at least one individual fromdhoups
B1,B>,...,Bn. Each HIV-infected individual from the group; supplements the
groupB; increasing its size by oné~=1,2,...,n. The probability of infection for
a particular individual from the grouf is described by a generalized variant of
the formula from the Reed—Frost chain-binomial model [Ht 1. ; € [0;1) be the
probability of a contact of an individual from the gro#pwith an individual from
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the groupBj, i,j = 1,2,...,n, in the time interval(t — 1;t] causing a subsequent
infection. Then the probability of infectiog; (t) of the individual from the group
in the period(t — 1;t] is given by the formula

|_| —rIJ ) i=12...,n

which can be rewritten in the form

pi(t) =1- exn( ZyJ

) i—12...n (1.5)

By wi(t) we denote the number of individuals from the graupi = 1,2,...,n,
infected in the time periodt — 1;t]. For fixedt, u;;(t), wi(t), the random variable
w;(t) is described by the binomial distribution

Wi(t) ~ B(uij(t), i(t), i=12,...,n (1.6)

The number of individuals passing from a fixed grdgjgnto groupsB; in the
time period(t — 1;t] is described by the nonnegative integer-valued random vari
ablesv; j(t), j # i. The probability of an individual from the grou) passing into
the groupB; in the time periodt — 1;t] is denoted by j € [0;1),i,j=1,2,...,n,

j #1. We assume that for ea¢k- 1,2,...,nwe havey|_; ;;q j < 1. Denote

n n

Vii(t) = %i(t) — Z#'Vi,k(t% Gi=1— ]Z#'Qi,j-
=Tk i=T#i

For fixedy;(t) the random vector

V() = (Via (), Vi1 (), Vi (O, Vi1 (t), ..., Vin(t))
has the multinomial distribution

V() ~ M(Si (), Gty -+ i1, Giis Gt s - - > Gin)-

We assume that the grou, i = 1,2,....n, have no external inflows. By
y(lo),y(zo),...,yﬁo) we denote the components of a nonnegative integer-valued ra

dom vector with a given distribution law describing theialitsizes of the groups
B1,B5,...,Bn.

Under the assumptions and notations introduced above ygiens of model
equations has the form

n n
() =% (t) — Z{ Ui k() t)+ uy i (t
k=Tk#i |=TT#i
n n
yi(t) =¥i(t) - Ek Vik(t) +wi(t) + wii(t (1.7)
A |=TTAi
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System of equations (1.7) determines a Markov random psoces

Z(t) = (Xl(t)aXZ(t)v' . ,xn(t),yl(t),yz(t),. . ayn(t))7 t=12,...

with integer-valued nonnegative components. The nontivtyaof x;(t),yi(t) for
alt=212...,i=12,...,nfollows from the structure of model equations (1.7)
and the distribution laws of random variables appearingdnii; $ystem. A detailed
study of the probabilistic characteristics of the proc2§y is practically impossi-
ble. An exception is the proce&gt) = Zo(t) = (Xa(t),x2(1),...,%(t),0,0,...,0),
t=12,..., corresponding to the absence of HIV infection in the popatatThe
procesZy(t) is determined by the initial conditiory?(o) =0,i=12,...,n (with
probability 1). The dynamics ofi(t), i = 1,2,...,n may be sufficiently complex
in this case, but it admits a study with the use of the standaethods for a
Markov chain represented in the form of model (1.2). Anotingportant case is
related to the determination of the conditions (restricdi@mn the model parame-
ters and initial data) providing a complete eradication ¥ lihfection in the pop-
ulation in the case when the sizes of the groBesBy,...,B, are nonzero, i.e.,
y(10) +y(20) +---+y§10) > 0 with probability 1. In other words, here we have to get
the conditions providind?{yi(t) =0} — 1 fort — o for all i =1,2,...,n. The
following two sections are focused on the solution of thistyem.

2. Equations and upper estimates for mathematical expectains
of the sizes of groups of individuals

Let the following assumptions hold true:

(H1) The initial sizes of the group4;, B; have finite mathematical expectations
m(o) = Exi(o), ni(o) = Ey-(o), i=212....n;

(H2) For eacht =1,2,... the inflows fi(t) have finite mathematical expectations
Efit)=f*(),i=12,...,n.

By mi(t) = Ex(t), nj(t) = Eyi(t) we denote the mathematical expectations of
the sizes of the group4;, B; at the time moments=1,2,...,i =1,2,...,n. First
we consider a particular case of the model system of equsafioB). Fixt,i and cal-
culateEx; (t) assuming that there exist finiEe; (t — 1),Exa(t — 1),...,Exq(t — 1).
Using distribution law (1.1) and the formula for a conditdmathematical expec-
tation, we get

EX(t) =EE{X(t)x(t—1)} =E{px({t—-1)} =pm(t—1).
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Considering (1.2)—(1.4), we obtain

n n

E{k:gk#iui,k(t)}: 2 Eui,k(t)zk:gk#iE(kapm(t_l))

n

= pikpm(t—1)=(1-p)pim(t—1)

=k
E{Izg;éi ui(t)} = |:§¢i Eui(t))
= i E(pipx(t—1) = 3 pLipm(t—1).
1—£T4 1—£T4

These relations imply

m(t)=pmt—-1)—1-pi)pmt—1)+ S pripm(t—1)+ f(t)
|=TTi

= > Pipm(t—1)+ fr(t).
k=1
Taking the initial data into account, we get ta{(t) = Ex;(t) exist and are finite
within model (1.2) and also satisfy the system of linearedtdhce equations
n
= > Peipm(t—1)+ f(t)
K=1
_m0 _
m@0)=m~, i=12...n t=12....
Now proceed to model (1.7). Fixi and calculatdEx;(t), Ey;(t) assuming that
EXl(t - 1)7 EXZ(t - 1)7 [ERE) EXn(t - 1)7 Eyl(t - 1)7 Eyz(t - 1)7 [ERE) EYn(t - 1)

exist and are finite. Based on distribution law (1.6) and enftnmula for a condi-
tional mathematical expectation, we get

Ewi(t) = EE{wi(t)|ui(t))} = E{pij oimi(t — 1) pi(t)} = pii oi mi(t — 1) Epsi(t).

It is impossible to write down the expression g (t) explicitly. Using formula
(1.5) and applying Jensen’s inequality for mathematicadeetations of convex
functions of random variables [4], we get the estimates

n
O<Eut) <1- exp( z l—lrij><1
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which implies the existence and finitenesskijfi(t). Repeating the calculations
presented above, we can easily write

Z Pi Pk Mk (t — 1) — Ewi(t) + (1)
k=1

n
qu,yjnJ (t—1)+Ew(t).

As the result, we get that the mathematical expectatmiis = Ex;(t), ni(t) =
Eyi(t) exist, are finite, and satisfy the following system of reeane relations:

= i Pri Pk Mk (t — 1) — pij o my(t — 1) Epi(t) + 7 (t)

qulylnlt_ + Pii /i m m(t— 1) Epi(t) (2.1)

m;(0) :mi(o), n;(0) :n-(o), i=12....,n, t=12....
Note additionally that alm(t) > 0, ni(t) > 0,t = 1,2,.... This property follows
from the nonnegativity (with probability 1) of the model iablesx;(t), yi(t), or

this can be directly obtained from system (2.1) subject u)dﬂ)nditionsn}m) >0

ni(o) > 0, f*(t) > 0 and the restrictions on the constants that are the paresyadte
the model.

System (2.1) does not allow us to study the behaviown &), n; (t) directly, be-
cause it contains the summartdg; (t) dependent ong(t — 1), np(t — 1),..., Ny (t —
1) implicitly. Construct estimates fam(t), ni(t) using the system of inequalities

m(t) < ipk.pkmk(t— D+ (1)
k=1

ni(t)<gq,,y, i(t—1)+pijpimi(t— )(l exp( - glwni(t‘l)'”l—lrhj))
2.2)

n n 1
qu.y, 1)+ piipim Z Ny
j=1 =1 i

and the additional system of difference equations obtafrmd (2.2) by replace-
ment of all inequalities by equalities. In what follows, @ase

n
- 7)) =S yzn >0 i,j=12....n 23
gl(21722> azn) JZlyjzj l—ri,j’ ZJ ] ( )
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Proposition 2.1.Let assumptions H1 and H2 hold for model (1.7). Then the
mathematical expectatioms (t), n;(t) satisfy the estimates

o< m(t) <Mt), O<nm(t)<m), i=12...n t=12.. (2.4)

where the variablesy(t), i (t) are the solutions to the system of difference equa-
tions

= i Pri Pk M (t — 1) + 7 (1)
&

n
mt)=> duiynjt—1)+pipMt—1)g(Me(t—1),Mt-1),...,M(-1)
=1
(2.5)
mO) =m?, ®mO)=n? i=12..n t=12....
Proof. Fix i = 1,2,...,n. The nonnegativity ofmni(t),n;(t) has been proved
above for allt = 1,2,... . Proceed to the proof of upper estimates for these vari-

ables. By the hypothesis, we hawg(0) = M(0),nk(0) = Nk(0), k=1,2,...,n
This gives

0< Epi(1) <gi(M(0),n2(0),...,m(0)) = 6i(M1(0),M2(0), ..., Mn(0))
M (1) - m(1) =k§1 P e (M(0) — My(0))
;pi ipm(0)Epi(1) = piipimi(0)Epi(1) >0
1)-m(1 ZqJIVJ n;(0) —n;(0))

+ pii pi M (0) gi (M1 (0),M2(0), ..., Mn(0)) — pii piMi(0) Epi (1)
=pii M (0) (6 (n(0),n2(0),...,mn(0)) — Epi(1)) > 0.
Therefore, inequalities (2.4) are valid foe= 1. Suppose these inequalities are valid
fort =t and verify them fot = 7+ 1. Fixi = 1,2,...,n. We have

0 < Epi(T+1) <gi(m(1),n2(7),-..,m(7)) < Gi(Me(T),M2(T),...,M(T))
R(T+1)-M(T+1) = 3 P pe(M(T) — M(T)) + By (1) Ep (T4 1)
P MDA (T+1) >0
A(T+1)—n(T+1) = ij.v, (1) — (1)

)
+piipim ()g.(nl( )sM2(T), ..., n(T)) — pii o Mi(T) Epi (T + 1)
P Pi.i pim(T) (gl(ﬁl( )7n2(T)7"'7ﬁn(T)) - E[Ji(T+1)) >0
which completes the proof.
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3. Sufficient conditions for extinction of infection proces

In order to determine conditions providing a complete exaithn of HIV infec-
tion in a population, we use the Chebyshev inequality [4]nifis a honnega-
tive random variable with the mathematical expectation Bn < « ande > 0
is a given number, theR{n > €} < En/e. Apply this inequality to the com-
ponentsyi (t),y2(t),...,yn(t) of the proces(t) using the upper estimatew(t),
i=12...,n instead ofn;(t) = Ey;(t).

Introduce the following notations (the symbiblmeans the transposition opera-
tion):

_ 1
lij=Piipi, Cj=0iiV, dj(Mt—1)=yIn—- Pipm m(t—1)
ij=12,....,n, t=12...
and write system (2.5) in the vector form

m(t) = Lt — 1) + f*(t)
n(t) = (C+D(m(t —1)))n(t—1) (3.1)
mo)=m%, o) =n?, t=12....

In all subsequent calculations we assume that the inempsalietween the vec-
tors fromR" are considered componentwise, i.eaif R", thena> 0« g > 0,
a>0&4g>0i=12...,n

System (3.1) contains the matricesC, D with nonnegative elements. This al-
lows us to apply well-known criteria to the study of the babav of m(t),n(t) for
t — o0. Describe briefly these criteria. Let the real matdx= (h; j) have elements
hij >0,i,j=12,...,n. All eigenvaluesAy of this matrix lie in the unit circle if
and only if all principal minors of the matrik— H are positive [2], wherg is the
identity matrix. Recall also that the matricelsandH " have the same eigenvalues.
Consider a real matri$= (sj), whose elements are such tisat< O for all i # j,
i,j=1,2,...,n. The matrixSis called a nondegenerate M-matrix if one of 50 equiv-
alent conditions holds [3]; here we use the following on&}tlfe matrixS—! exists
and has nonnegative elements; (2) all principal minorS afe positive; (3) there
exists€ € R", & > 0, such thats¢ > 0. In particular, this implies thgy| < 1 if
and only ifl —H is a nondegenerate M-matrix.

Consider the matricdsandC. The structure of the elements of these matrices is
such that the following inequalities are valid:—L")& > 0, (I —CT)& > 0, where
&=(1,1,...,1)7. Therefore, allA_| < 1,|Ac| < 1. Thus, if we consider the matrix
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D(m(t — 1)) as negligible in system (3.1), then it occurs thét) — 0 fort — co.
The conditions of the ‘smallness’ of the matiXm(t — 1)) are presented in the
following assertion.

Proposition 3.1.Let assumptions (H1), (H2) hold for model (1.7) and we ad-
ditionally assume that there exisi$ € R' such thatl —C — D(m") is a nonde-
generate M-matrix and there exigise (0;+) such that 0< m(t) < m* for all
t=0,0+1,.... Then there exists lim,  ,N(t) = 0 and for each = 1,2,... ,nwe
haveP{y;(t) =0} — 1 fort — co.

Proof. Consider system (3.1) far> 6. We can write

Alt) = (C+D(Mt—D))At—-1), t=0+10+2,...
(3.2)
f(6) = (® > 0,

Using (3.2), we get
0<At) < (C+DAE)) RO t=06,0+1,60+2,...

which implies that there exists lim . n(t) = 0. Fixi =1,2,...,n and a number
€ > 0. Applying Chebyshev’s inequality and the estimaterf¢r) = Ey;(t), we get
O<P{yi(t) > e} < Eyie(t) = n‘it) < niit), t=1,2,...
P{yi(t) > e} —0, t— co.

These relations complete the proof.

Consider further two cases giving us a chance to get an éxgkpression for
m* in terms of the parameters of the studied problem.

Case 1. Assumef*(t) = f* = const> 0, i.e., f*(t) = f;* =const> 0, i =
1,2,...,n. System of equations (3.1) with the initial condition€0) = M has
the solutionm(t) = L' (M© —mg) + mé, t=1,2,..., wheremi, = (1 —L)2f* >0
is the stationary solution to this system. Since|All| < 1, thenm(t) — m{ for
t — oo for any initial data. We require that— C — D(m{) is a nondegenerate M-
matrix. Then all principal minors of —C — D(m) are positive. Using the con-
tinuity of principal minors of the matribD(m(t — 1)) with respect tom(t — 1),
one can taked = (&1,0,...,6,)", & >0,i =1,2,...,nand @ < (0;+), so that
mi—o<mt)<mi{+oforallt=6,0+1,..., and the principal minors of the
matrix| —C —D(m§ + 0) are positive. Therefore, we can assume thiat= mg.

Case 2. Suppose there exigt € (0;+), f* = (f}, f5,... f}) = const, f;* =
const,i = 1,2,...,n, such that the inequalitiet*(t) < f* are valid for allt = 6 +
1,60+2,... andm(0) <m; = (I —L)~"1f*, where

-1
m(8) = Lo Mm@ + Z} L' f5(0—i).
i=
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Fort=0+16+2,..., the solution to system of equations (3.1) with the initial
conditionsm(0) = MY satisfies the relations

t -1 t—6-1

m(t) = L'~ m( Z) L5t —i) < L9 m(0) + Z} L f*
t—6-1
=L"m(0) + Zx L+ Z L' f*— Z L' (3.3)

:Lt‘er'ﬁ(e)—i—Z)Lif* ZL'f* L8 (M(6) — mg) +m§ < .
i= i=t—6

We have used the formufg® 4L’ = (I — L)~ in relations (3.3), which was stipu-
lated by the fact that aJ | < 1 (the spectral radius of the mattiXs less than one).

As the result, we assunmg” = nx.

Now consider certain practical aspects of Proposition Birkt of all we note
that the inequality Ifil/(1—r)) <r holds for allr € [0;+). For 0< r < 1 one usu-
ally assumes Ifl/(1—r)) ~r. Therefore, constructing a system of upper estimates
for the mathematical expectationgt), n(t), one can use the functions

n
0i(z1,2,...,20) = Z ¥irijzj, 220, i,j=212....,n
=1

instead of (2.3) and the elements of the mabi{xn*) would be the following:

diJ(rTf‘) =Yl PP rﬁ*, i,j=12,....,n, t=12,... (3.4)

Based on (3.4), we calculate the sum of elements of gdtltolumn of the
matrix C 4+ D(m*) and introduce the set of coefficients

n
Rj (M) =y (1"‘_21“,] pLipy), j=12...,n
1=

For fixedj = 1,2,...,n the coefficienRR;(m*) can be interpreted as the mathemat-
ical expectation of the number of ‘descendants’ of an irtligd from the grouy;

in the time period(t — 1;t] under the condition that the mean size of the gréup
equalsm’, i = 1,2,...,n. The coefficienR;(mM") takes into account the probability
of survival from the time momerit— 1 till the moment for an individual from the
groupB; and also the mathematical expectation of the number of ichals from
A1, Az, ..., Ay infected by him in the perio@ — 1;t]. Suppose

Ri(M) <1, Ry(*)<1,... R(A¥) <1 (3.5)

Considering the matriXC + D(M*))T, from (3.5) we get that the vectof =
(1,1,...,1)T satisfies the inequalityC + D(M*))T& < &, i.e.,| —C— D(f") is a
nondegenerate M-matrix.
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Now consider sufficient conditions fdr— C — D(m*) to be a nondegenerate
M-matrix expressed in terms of the sums of weighted elemafitise rows of the
matrix C 4+ D(m*). Sincel —C is a nondegenerate M-matrix, there exiéts R",

& >0,(1-C)¢& > 0. We require that the elements of the mabin*) are such that
(C+D(m")) & < &. For eactith row,i = 1,2, ..., n, of the matrixC + D(fM*) we can
write the inequality

ZCIJ+dIJ )EJ<EI‘:>ZCIJ+dIJ( ) &ji <1
=1

4l
&’
Using the notations for the elemermg and relations (3.4), we introduce the coef-
ficients

f”: j:1,2,...,n.

Ei(M") = Qi(M") +R(M"),  Qi(M") =% vaj,i &
=1
R(M) =piipM Y yrijéi, 1=12....n
=1

For fixedi = 1,2,...,n the coefficientE;(M*) can be interpreted as the mathe-
matical expectation of the number of ‘descendants’ of thdividuals from the
groupsBi, By, ...,Bn, A supplementing the group; in the time period(t — 1;t]

with the mean sizes of those groups equajtn &2j, . .., éni, M, respectively. The
coefficientQ;(M*) < 1 corresponds to the inflow of individuals from the groups
B1,By,...,Bninto the groud; under the mean values;, &2, . . ., &n; of their sizes;

the coefficient? (m*) denotes the mathematical expectation of the number of indi-
viduals of the group infected in the periodt — 1;t] under its mean size¥* and

the weighed meaiy'_, y;ri &, of the total number of individuals of the groups

B1,By,...,Bnr. Assuming
E;(M) <1, Exym)<1, .. E(m)<1 (3.6)

we get that —C — D(M") is a nondegenerate M-matrix.

Thus, within the hypothesis of Proposition 3.1, inequadit(3.5) or (3.6) are
sufficient for the extinction of HIV infection within the pafation. These inequal-
ities are not necessary, but it may occur that one or sevezglialities of the form
Re(M*) > 1, or (M) > 1 may lead to a violation of the HIV infection extinction
condition in a population. Therefore, the groups of indidts By, or A such that
Re(M*) > 1, B (M*) > 1 may prevent the extinction of HIV infection within a pop-
ulation (under the condition that the sizes of these groupsat identically equal
to zero).
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4. Numerical experiments with the model

Following [12, 15], consider the groups of HIV-susceptilbidividuals: A1, socially
adapted individualsA,, individuals with a high pathology development ridks,
chronic alcoholics A4, individuals with drug dependence; and consider also the
following HIV-infected individuals:B;, socially adapted oneBp, individuals with

a high pathology development ridBg, chronic alcoholicsB4, individuals with drug
dependence (see Fig. 1). Denote the mathematical expecatf the total number

of susceptible and infected individuals by

mg(t) = E(Xa(t) +X2(t) +X3(t) +Xa(t)), ni(t) =E(ya(t) +y2(t) +ya(t) +ya(t)).

The aim of numerical experiments was to study the dynamiess(tf) andn; (t) de-
pending on the parameters of the model, assuming that tlawaepters satisfy the
conditions of Proposition 3.1 (experiment 1) or do not $atisem (experiment 2).
The mathematical expectatiormg(t) andn, (t) were estimated by standard methods
of mathematical statistics based on sample data obtaioed¥00 implementations
of the random procesa(t) = (x1(t),...,xa(t), ya(t),...,ya(t)), t =1,2,..., Tmod,
whereTnoq is the duration of the simulated period in days. The duratiotme time
period(t — 1;t] was equal to one day.

In order to obtain implementations of the random proc2d&s we used the
Monte Carlo method. Within a particular implementatiorg thitial dataxi(o), yi(o),

i =1,2,3,4, are generated far= 0. After that the values;(t — 1), yi(t—1), i =
1,2,3,4, are fixed for each intervat — 1;t] and then the random variables entering
system (1.7) are generated from these values. Then nexsvafi (t), yi(t), i =
1,2,3,4, are calculated far= 1,2, ..., Tmog. Numerical procedures and the random
number generator described in [9, 10] were used for the gdoarof random values
entering the equations of the model.

The dynamics of statistical estimates(t), n(t) of the mathematical expecta-
tionsmg(t) andn; (t) is presented in Figs. 2 and 3. Numerical values of the estisnat
ms(t), n;(t) and the boundaries of the confidence intervalsnfigft) andn, (t) are
shown in Table 1 for the confidence lewek 0.95 and the most typical

In the first experiment we used the following values of theapsters of the
model. The initial sizes of groups were taken as constants

K0 =294640 X =442614 X =59015 X =25292
Y =0, vy) =0, y5)=200000 vy’ = 400000

The inflows into the group#y andA; in the time period(t — 1;t] are given by
random variables satisfying the Poisson distribution la whe mathematical ex-
pectationsf; (t) = f; = 2411, f;(t) = f; = 34.25, respectively. The inflows into
the groupsA\; andA, are absent. The probabilities of survival from 1 till t are the
following:

pr=0.999945 p, =0.999932 ps=0.999863 ps = 0.999849
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i =0.999781 y» =0.999781quad, 3 = 0.999753 y; = 0.9995891
The probabilities of the transition of individuals in theng period(t — 1;t] not
related to infection are

pL2=27394x10% p3=0, p14a=0
P21 =16437x 1074 p3=0548x10"% pp4=0274x 1074
P31 =0, P32=27394x10*% p3gs=0
Pa1=0, ps2=32871x10* ps3=0
Gi2=0, Q@3=0 hsa=0
Go1=16437x10"% 0p3=0, 0Gpsa=0
931 =0, 032=38349x10% (4=0
G11=0, Qu2=41087x10* qu3=0.

The probabilities of contacts with subsequent infectiothaperiod(t — 1;t] are

ri1=54795x 10" r;,=548x10" r;3=0,r14=0
rp1=54795x 10 ry, =548x 101
ro3=274x10 14 =274x 101
rg1=0, r3p=548x10" r33=822x101 r3,=0
r31=0, r32=822x10" r;3=0r44=137x101

For the second experiment we used

v =50000 vy = 100000
ri= 5.4795x 10_10, 2= 5.48 x 10_10, rs= 0, fa= 0
rp1=54795x 100 1, =548x101°
ro3=274x10%0 ry4=274x101°
rg1=0, r3»=548x1010 1r33=822x10% r3,=0
rg1=0, r22=822x101 r,3=0, r44=137x10"°.
The values of the other model parameters remain the same.tNaitthe nonzero
values ofr; j are increased ten times compared to their values in the fjpstignent.
The results of the numerical experiments are presentedhie Taand in Figs. 2
and 3. The parameters of the model in the first experimentuamte that
Ry (M) = 0.999821 Ry(M") =0.999827 Rs(M") = 0.999771 (4.1)
R4(M*) = 0.999605
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Figure 2. Dynamics ofmg(t) (curve I) andn; (t) (curve II) for the first experiment.

Table 1.
Confidence intervals famg(t), n; (t) with the confidence levd? = 0.95.
Experiment  Value t=0 t = 20000 t = 40000
1 mg(t) 821561+0.0 762621165914 779341168157
n(t) 600000£0.0 627288+18111 449+0.462
2 mg(t) 8215614+0.0 351306182967 440861219855

n(t) 150000+0.0 15443H117.362 912957/+132336

Therefore, inequalities (3.5) hold ahd-C — D(m*) is a nondegenerate M-matrix,
which provides the validity of Proposition 3.1. It is seeonfr Fig. 2 that the in-
fection in the population decays in time in spite of rathegéainitial sizes of the
groupsBz andB;.

Proposition 3.1 is not satisfied for the second experimeuabsé —C —D(m")
is not a nondegenerate M-matrix. Table 1 and Figure 3 shottlibamathematical
expectation of the number of infected individual$t) goes to a nonzero stationary

level in the course of time. In the second experiment thefiobafts R (M*) have
the values

Ry (M) = 1.000186 R,(M") = 1.000239 R(fi") =0.999923  (4.2)
Ry (A1) = 0.999745

exceeding (4.1). This excess is caused by the tenfold iserigethe contact proba-
bilities compared to the first experiment. It is seen fron2)(4hatR;(m*) > 1 and
Ry(mM*) > 1. Therefore, within the given set of the model parametés,groups
B, andB; contribute the most to the support of HIV infection. Notetttie initial
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Figure 3. Dynamics ofmg(t) (curve I) andn; (t) (curve II) for the second experiment.

sizes of the groupBs, B, are equal to zero, but these groups are supplemented in
the course of time because of the inflow of individuals from ginoupsB3, B4, and

also of individuals from the group8s, A.. In its turn, the growth of the groups
B,, By increases the flow of infected individuals from the grodpsA,, which in-
creases the total number of infected individuals. The tebigion of the numbers

of individuals determines the values of stationary levetsis(t), n (t).

5. Conclusion

The paper presents a stochastic model of HIV infection spreithin a hetero-
geneous population. The population is considered as a spbaps representing
different status of individuals relative to the diseases¢sptible, infected, sick, in
remission), social stratification, or spatial heterognef the population. Individ-
uals within each group are indistinguishable. The sizeh@fgroups vary in time
as the result of individuals passing from one group to andtiecause of infection,
development of the disease, detection and treatment ofirsittkiduals), because
of the group increase by the inflow of new individuals (reagha particular age
or immigration), the outflow of individuals from groups besa of natural mor-
tality, emigration to other regions, or death by diseasa dynamics of the sizes
of individual groups is described by a system of stochagfferéntial equations
for nonnegative integer-values variables. The dimensfaheosystem of equations
is determined by the number of groups used for the desaniptfdhe population
heterogeneity.

The model presented here admits an analytic study and allews apply a
classification of groups according to the rate of their infee on the decay or



18 N. V. Pertsev and V. N. Leonenko

prevalence of the HIV infection in the population. Such sifisation is related to
the hypothesis of Proposition 3.1 and, particularly, tofthfllment of inequalities
(3.5) or (3.6). Considering inequality (3.5), we can easi that the conditions
of Assertion 2 hold if the mean inflowg*(t) of individuals into the groupgy are
sufficiently smallj = 1,2,...,n. Therefore, the decrease in the inflows of individu-
als into the group#\;,A,, ..., A, can be considered as a way of eradication of HIV
infection in a population.

Note that the inflowd;(t) of individuals into the group8;, i =1,2,...,n, can be
nonstationary random processes whose characteristiendem social-economic
conditions. In addition, some variations of the parametgysare possible because
of the change of the factors influencing social adaptatiodlstinfected individu-
als. In this case Proposition 3.1 has an auxiliary charauidrthe study of proba-
bilistic characteristic of the sizes of groups will be cootdd by numerical experi-
ments. Based on the results of numerical experiments, onfooaulate statistical
hypotheses to be later used for analysis and processinglodaa related to HIV
infection.
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