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Discrete stochastic model of HIV infection spread
within a heterogeneous population

N. V. PERTSEV∗ and V. N. LEONENKO∗

Abstract — A discrete stochastic model of HIV infection spread withina heterogeneous population
is presented. A system of high-dimensional stochastic difference equations is used in the model. A
system of upper estimates for mathematical expectations ofthe sizes of groups of individuals in the
population is constructed. Sufficient conditions for the extinction of the infection process are obtained
in terms of M-matrices. Based on the Monte Carlo method, a numerical algorithm and a simulation
code are developed, which allows one to study probabilisticcharacteristics of the observed variables
of the model. Results of numerical experiments are presented.

A pandemia of HIV infection has been progressing since the beginning of 1980th
and is one of the most baneful epidemics in the human history.In 2008–2010, about
2.7 millions of new HIV infection cases were diagnosed in theworld. In 2010,
the total number of registered HIV infection cases was 34 million; 1.8 million of
people died from causes related to HIV infection [6]. In order to decrease losses
caused by HIV infection, it is necessary to control the prevalence of this infection
and to take measures aimed at the detection and treatment of this disease. One of
the modern approaches to solution of these problems is connected with application
of the method of simulation modelling. For example, a model of HIV infection
dynamics in Zambia was developed in [8] with the use of detailed consideration of
the structure of sexual contacts of individuals; a model of HIV infection dynamics
was constructed in [16] on the base of dynamic networks of individual contacts; a
model of HIV infection spread within the homosexual population of San Francisco
was described in [17].

Systems of stochastic difference equations with integer-valued variables and
their individual-oriented modifications can be used for thedevelopment of mod-
els simulating the dynamics of HIV infection and other diseases. Such models are
a powerful tool for the study of disease spread, they correctly take into account the
randomness factor, and peculiarities of particular individuals; these models can be
easily adjusted to real data, do not require much time for numerical experiments,
and can be studied analytically (see, e.g., [1, 7, 11, 13, 14]). Note also that the ap-
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plication of simulation models based on stochastic difference equations allows us to
overcome some restrictions existing in the technique of ordinary differential equa-
tions. Such restrictions include interpretation complexity of solutions related to the
continuity of variables, especially in the case of simultaneous simulation of small
and large groups of individuals; impossibility to take intoaccount the discreteness
of time caused by the daily (periodical) living rhythm of individuals; neglection of
stochastic nature of contacts causing infection of susceptible individuals; the use of
only one (exponential) family of distributions describingthe total duration of the
disease and the duration of its particular stages for a particular individual.

In this paper we consider a system of high-dimensional stochastic difference
equations describing the dynamics of HIV infection spread within a heterogeneous
population. The stochastic model is based on the results of [12, 15], where the popu-
lation heterogeneity of Russian regions was considered from the viewpoint of social
dysadaptation of individuals. The aim of the development and study of the stochas-
tic model are: (1) description of the population heterogeneity using integer-valued
random vectors of arbitrary dimension; (2) formulation of sufficient conditions for
the extinction of the infection process; (3) application ofnumerical experiments to
the study of mathematical expectations of the sizes of considered population groups
depending on variations of the parameters of the model.

1. Equations of the model

Let us represent the population of a certain region as the groups of individuals
A1,A2, . . . , An, B1,B2, . . . ,Bn. We assume that the groupsA1,A2, . . . ,An are formed
from HIV-susceptible individuals differing in their levelof social dysadaptation, for
example, socially adapted individuals, individuals with ahigh risk of development
of various pathologies, individuals with a fixed alcoholismor drug dependence.
The groupsB1,B2, . . . ,Bn describe HIV-infected individuals subject to the levels of
social dysadaptation indicated above. We assume that individuals are indistinguish-
able within each group listed above. Byxi(t),yi(t) we denote the numbers of the
individuals in the groupsAi,Bi at time momentst = 0,1,2, . . . , i = 1,2, . . . ,n.

We also assume that the sizes of the groups described above vary in time as the
result of the following processes:

• transition of individuals from one group to another becauseof a change in
their level of social adaptation, an infection, development of disease, detection
and treatment of cases;

• supplement of groups because of immigration and inflow of individuals reach-
ing a particular age;

• decrease caused by natural mortality of individuals, deathby the disease, or
emigration to other regions.

As an example, Figure 1 presents a scheme of the HIV infectionspread model
proposed in [12, 15] (n = 4).
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Figure 1. An example of HIV infection spread forn = 4 [12, 15].

In order to construct the model, we use a system of stochasticdifference equa-
tions with integer-valued variables and discrete time. Theunit of time is chosen
relative to the duration of typical processes occurring to an individual within the
model (from one day to one year). We suppose that in each time interval(t − 1;t]
all individuals behave independently of each other and their behaviour does not de-
pend on events preceding the time momentt−1. We fix a time momentt−1 and the
quantitiesxi(t −1),yi(t −1) of the groupsAi,Bi. The numbers of individuals living
at the time momentt are denoted bŷxi(t), ŷi(t), respectively. We assume that for
fixed i = 1,2, . . . ,n the random variableŝxi(t), ŷi(t) have the binomial distribution

x̂i(t) ∼ B(xi(t −1),ρi), ŷi(t) ∼ B(yi(t −1),γi) (1.1)

whereρi,γi ∈ (0;1) are the probabilities of survival from the time momentt −1 till
the momentt for the individuals from the groupsAi andBi.

Consider the case when the HIV infection is absent in the population. The sys-
tem of model equations has the following form:

x1(t) = x̂1(t)−
n

∑
k=2

u1,k(t)+
n

∑
l=2

ul,1(t)+ f1(t)

. . . . . . . . .

xi(t) = x̂i(t)−
n

∑
k=1,k 6=i

ui,k(t)+
n

∑
l=1,l 6=i

ul,i(t)+ fi(t) (1.2)

. . . . . . . . .

xn(t) = x̂n(t)−
n−1

∑
k=1

un,k(t)+
n−1

∑
l=1

ul,n(t)+ fn(t)

xi(0) = x(0)
i , i = 1,2, . . . ,n, t = 1,2, . . . .
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System (1.2) uses the following notations(i, j = 1,2, . . . ,n):

• ui, j(t) is a nonnegative integer-valued random variable representing for a fixed
t the number of individuals of the groupAi passing to the groupA j, j 6= i, in
the time period(t −1;t];

• fi(t) is a nonnegative integer-valued random variable representing for a fixed
t the inflow of individuals into the groupAi in the time period(t −1;t];

• x(0)
i is a nonnegative integer-valued random variable representing the initial

size of the groupAi.

Let us describe the distribution laws of these variables. Bypi, j ∈ [0;1) we denote
the probability of the transition of a single individual from the groupAi to the group
A j in the time interval(t − 1;t], i, j = 1,2, . . . ,n, j 6= i. We assume that for each
i = 1,2, . . . ,n the inequality∑n

j=1, j 6=i pi, j < 1, holds. For fixed̂xi(t), the random
vector

u(i)(t) = (ui,1(t), . . . ,ui,i−1(t),ui,i(t),ui,i+1(t), . . . ,ui,n(t)) (1.3)

has the multinomial distribution

u(i)(t) ∼ M(x̂i(t), pi,1, . . . , pi,i−1, pi,i, pi,i+1, . . . , pi,n)

where

ui,i(t) = x̂i(t)−
n

∑
k=1,k 6=i

ui,k(t), pi,i = 1−
n

∑
j=1, j 6=i

pi, j. (1.4)

Note that the random variableui,i(t) represents the number of individuals of the
groupsAi not passing into any groupA j, j 6= i, in the period(t−1;t], i.e., remaining
in the groupAi.

For fixed i = 1,2, . . . ,n, the inflow fi(t) is a random process with given prob-

abilistic characteristics. The variablesx(0)
1 ,x(0)

2 , . . . ,x(0)
n form the components of a

nonnegative integer-valued random vector with a particular distribution law.
Proceed to the system of model equations taking into accountthe presence of

HIV-infected individuals. Fix the time momentt − 1 and the sizeŝyi(t) of living
individuals of the groupsBi assuming that̂y1(t)+ ŷ2(t)+ · · ·+ ŷn(t) 6= 0. Assume
also that any individual remaining in the groupAi can be HIV-infected in the pe-
riod (t −1;t] as the result of a contact with at least one individual from the groups
B1,B2, . . . ,Bn. Each HIV-infected individual from the groupAi supplements the
groupBi increasing its size by one,i = 1,2, . . . ,n. The probability of infection for
a particular individual from the groupAi is described by a generalized variant of
the formula from the Reed–Frost chain-binomial model [5]. Let ri, j ∈ [0;1) be the
probability of a contact of an individual from the groupAi with an individual from
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the groupB j, i, j = 1,2, . . . ,n, in the time interval(t − 1;t] causing a subsequent
infection. Then the probability of infectionµi(t) of the individual from the groupAi
in the period(t −1;t] is given by the formula

µi(t) = 1−
n

∏
j=1

(1− ri, j)
ŷ j(t), i = 1,2, . . . ,n

which can be rewritten in the form

µi(t) = 1−exp
(
−

n

∑
j=1

ŷ j(t) ln
1

1− ri, j

)
, i = 1,2, . . . ,n. (1.5)

By wi(t) we denote the number of individuals from the groupAi, i = 1,2, . . . ,n,
infected in the time period(t − 1;t]. For fixedt, ui,i(t), µi(t), the random variable
wi(t) is described by the binomial distribution

wi(t) ∼ B(ui,i(t),µi(t)), i = 1,2, . . . ,n. (1.6)

The number of individuals passing from a fixed groupBi into groupsB j in the
time period(t − 1;t] is described by the nonnegative integer-valued random vari-
ablesvi, j(t), j 6= i. The probability of an individual from the groupBi passing into
the groupB j in the time period(t −1;t] is denoted byqi, j ∈ [0;1), i, j = 1,2, . . . ,n,
j 6= i. We assume that for eachi = 1,2, . . . ,n we have∑n

j=1, j 6=i qi, j < 1. Denote

vi,i(t) = ŷi(t)−
n

∑
k=1,k 6=i

vi,k(t), qi,i = 1−
n

∑
j=1, j 6=i

qi, j.

For fixedŷi(t) the random vector

v(i)(t) = (vi,1(t), . . . ,vi,i−1(t),vi,i(t),vi,i+1(t), . . . ,vi,n(t))

has the multinomial distribution

v(i)(t) ∼ M(ŷi(t),qi,1, . . . ,qi,i−1,qi,i,qi,i+1, . . . ,qi,n).

We assume that the groupsBi, i = 1,2, . . . ,n, have no external inflows. By
y(0)

1 ,y(0)
2 , . . . ,y(0)

n we denote the components of a nonnegative integer-valued ran-
dom vector with a given distribution law describing the initial sizes of the groups
B1,B2, . . . ,Bn.

Under the assumptions and notations introduced above, the system of model
equations has the form

xi(t) = x̂i(t)−
n

∑
k=1,k 6=i

ui,k(t)−wi(t)+
n

∑
l=1,l 6=i

ul,i(t)+ fi(t)

yi(t) = ŷi(t)−
n

∑
k=1,k 6=i

vi,k(t)+ wi(t)+
n

∑
l=1,l 6=i

vl,i(t) (1.7)

xi(0) = x(0)
i , yi(0) = y(0)

i , i = 1,2, . . . ,n, t = 1,2, . . . .
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System of equations (1.7) determines a Markov random process

Z(t) = (x1(t),x2(t), . . . ,xn(t),y1(t),y2(t), . . . ,yn(t)), t = 1,2, . . .

with integer-valued nonnegative components. The non-negativity of xi(t),yi(t) for
all t = 1,2, . . . , i = 1,2, . . . ,n follows from the structure of model equations (1.7)
and the distribution laws of random variables appearing in this system. A detailed
study of the probabilistic characteristics of the processZ(t) is practically impossi-
ble. An exception is the processZ(t) = Z0(t) = (x1(t),x2(t), . . . ,xn(t),0,0, . . . ,0),
t = 1,2, . . . , corresponding to the absence of HIV infection in the population. The
processZ0(t) is determined by the initial conditionsy(0)

i = 0, i = 1,2, . . . ,n (with
probability 1). The dynamics ofxi(t), i = 1,2, . . . ,n may be sufficiently complex
in this case, but it admits a study with the use of the standardmethods for a
Markov chain represented in the form of model (1.2). Anotherimportant case is
related to the determination of the conditions (restrictions on the model parame-
ters and initial data) providing a complete eradication of HIV infection in the pop-
ulation in the case when the sizes of the groupsB1,B2, . . . ,Bn are nonzero, i.e.,
y(0)

1 + y(0)
2 + · · ·+ y(0)

n > 0 with probability 1. In other words, here we have to get
the conditions providingP{yi(t) = 0} → 1 for t → ∞ for all i = 1,2, . . . ,n. The
following two sections are focused on the solution of this problem.

2. Equations and upper estimates for mathematical expectations
of the sizes of groups of individuals

Let the following assumptions hold true:

(H1) The initial sizes of the groupsAi,Bi have finite mathematical expectations
m(0)

i = Ex(0)
i , n(0)

i = Ey(0)
i , i = 1,2, . . . ,n;

(H2) For eacht = 1,2, . . . the inflows fi(t) have finite mathematical expectations
E fi(t) = f ∗i (t), i = 1,2, . . . ,n.

By mi(t) = Exi(t), ni(t) = Eyi(t) we denote the mathematical expectations of
the sizes of the groupsAi,Bi at the time momentst = 1,2, . . . , i = 1,2, . . . ,n. First
we consider a particular case of the model system of equations (1.2). Fixt, i and cal-
culateExi(t) assuming that there exist finiteEx1(t −1),Ex2(t −1), . . . ,Exn(t −1).
Using distribution law (1.1) and the formula for a conditional mathematical expec-
tation, we get

Ex̂i(t) = EE{x̂i(t)|xi(t −1)} = E{ρi xi(t −1)} = ρi mi(t −1).
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Considering (1.2)–(1.4), we obtain

E{
n

∑
k=1,k 6=i

ui,k(t)} =
n

∑
k=1,k 6=i

Eui,k(t) =
n

∑
k=1,k 6=i

E(pi,k ρi xi(t −1))

=
n

∑
k=1,k 6=i

pi,k ρi mi(t −1) = (1− pi,i)ρi mi(t −1)

E{
n

∑
l=1,l 6=i

ul,i(t)} =
n

∑
l=1,l 6=i

Eul,i(t))

=
n

∑
l=1,l 6=i

E(pl,i ρl xl(t −1)) =
n

∑
l=1,l 6=i

pl,i ρl ml(t −1).

These relations imply

mi(t) = ρi mi(t −1)− (1− pi,i)ρi mi(t −1)+
n

∑
l=1,l 6=i

pl,i ρl ml(t −1)+ f ∗i (t)

=
n

∑
k=1

pk,i ρk mk(t −1)+ f ∗i (t).

Taking the initial data into account, we get thatmi(t) = Exi(t) exist and are finite
within model (1.2) and also satisfy the system of linear difference equations

mi(t) =
n

∑
k=1

pk,i ρk mk(t −1)+ f ∗i (t)

mi(0) = m(0)
i , i = 1,2, . . . ,n, t = 1,2, . . . .

Now proceed to model (1.7). Fixt, i and calculateExi(t), Eyi(t) assuming that

Ex1(t −1),Ex2(t −1), . . . ,Exn(t −1),Ey1(t −1),Ey2(t −1), . . . ,Eyn(t −1)

exist and are finite. Based on distribution law (1.6) and on the formula for a condi-
tional mathematical expectation, we get

Ewi(t) = EE{wi(t)|µi(t))} = E{pi,i ρi mi(t −1)µi(t)} = pi,i ρi mi(t −1)Eµi(t).

It is impossible to write down the expression forEµi(t) explicitly. Using formula
(1.5) and applying Jensen’s inequality for mathematical expectations of convex
functions of random variables [4], we get the estimates

0 6 Eµi(t) 6 1−exp
(
−

n

∑
j=1

γ j n j(t −1) ln
1

1− ri, j

)
6 1
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which implies the existence and finiteness ofEµi(t). Repeating the calculations
presented above, we can easily write

mi(t) =
n

∑
k=1

pk,i ρk mk(t −1)−Ewi(t)+ f ∗i (t)

ni(t) =
n

∑
j=1

q j,i γ j n j(t −1)+Ewi(t).

As the result, we get that the mathematical expectationsmi(t) = Exi(t), ni(t) =
Eyi(t) exist, are finite, and satisfy the following system of recurrence relations:

mi(t) =
n

∑
k=1

pk,i ρk mk(t −1)− pi,i ρi mi(t −1)Eµi(t)+ f ∗i (t)

ni(t) =
n

∑
j=1

q j,i γ j n j(t −1)+ pi,i ρi mi(t −1)Eµi(t) (2.1)

mi(0) = m(0)
i , ni(0) = n(0)

i , i = 1,2, . . . ,n, t = 1,2, . . . .

Note additionally that allmi(t) > 0, ni(t) > 0, t = 1,2, . . . . This property follows
from the nonnegativity (with probability 1) of the model variablesxi(t), yi(t), or

this can be directly obtained from system (2.1) subject to the conditionsm(0)
i > 0,

n(0)
i > 0, f ∗i (t) > 0 and the restrictions on the constants that are the parameters of

the model.
System (2.1) does not allow us to study the behaviour ofmi(t),ni(t) directly, be-

cause it contains the summandsEµi(t) dependent onn1(t −1),n2(t −1), . . . ,nn(t −
1) implicitly. Construct estimates formi(t),ni(t) using the system of inequalities

mi(t) 6

n

∑
k=1

pk,i ρk mk(t −1)+ f ∗i (t)

ni(t) 6

n

∑
j=1

q j,i γ j n j(t −1)+ pi,i ρi mi(t −1)

(
1−exp

(
−

n

∑
j=1

γ j n j(t −1) ln
1

1− ri, j

))

(2.2)

6

n

∑
j=1

q j,i γ j n j(t −1)+ pi,i ρi mi(t −1)
n

∑
j=1

γ j n j(t −1) ln
1

1− ri, j

and the additional system of difference equations obtainedfrom (2.2) by replace-
ment of all inequalities by equalities. In what follows, assume

gi(z1,z2, . . . ,zn) =
n

∑
j=1

γ j z j ln
1

1− ri, j
, z j > 0, i, j = 1,2, . . . ,n. (2.3)
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Proposition 2.1.Let assumptions H1 and H2 hold for model (1.7). Then the
mathematical expectationsmi(t),ni(t) satisfy the estimates

0 6 mi(t) 6 m̃i(t), 0 6 ni(t) 6 ñi(t), i = 1,2, . . . ,n, t = 1,2, . . . (2.4)

where the variables̃mi(t), ñi(t) are the solutions to the system of difference equa-
tions

m̃i(t) =
n

∑
k=1

pk,i ρk m̃k(t −1)+ f ∗i (t)

ñi(t) =
n

∑
j=1

q j,i γ j ñ j(t −1)+ pi,i ρi m̃i(t −1)gi(ñ1(t −1), ñ2(t −1), . . . , ñn(t −1))

(2.5)

m̃i(0) = m(0)
i , ñi(0) = n(0)

i , i = 1,2, . . . ,n, t = 1,2, . . . .

Proof. Fix i = 1,2, . . . ,n. The nonnegativity ofmi(t),ni(t) has been proved
above for allt = 1,2, . . . . Proceed to the proof of upper estimates for these vari-
ables. By the hypothesis, we havemk(0) = m̃k(0),nk(0) = ñk(0), k = 1,2, . . . ,n.
This gives

0 6 Eµi(1) 6gi(n1(0),n2(0), . . . ,nn(0)) = gi(ñ1(0), ñ2(0), . . . , ñn(0))

m̃i(1)−mi(1) =
n

∑
k=1

pk,i ρk (m̃k(0)−mk(0))

+ pi,i ρi mi(0)Eµi(1) = pi,i ρi mi(0)Eµi(1) > 0

ñi(1)−ni(1) =
n

∑
j=1

q j,i γ j (ñ j(0)−n j(0))

+ pi,i ρi m̃i(0)gi(ñ1(0), ñ2(0), . . . , ñn(0))− pi,i ρi mi(0)Eµi(1)

=pi,i ρi mi(0)(gi(n1(0),n2(0), . . . ,nn(0))−Eµi(1)) > 0.

Therefore, inequalities (2.4) are valid fort = 1. Suppose these inequalities are valid
for t = τ and verify them fort = τ +1. Fix i = 1,2, . . . ,n. We have

0 6 Eµi(τ +1) 6 gi(n1(τ),n2(τ), . . . ,nn(τ)) 6 gi(ñ1(τ), ñ2(τ), . . . , ñn(τ))

m̃i(τ +1)−mi(τ +1) =
n

∑
k=1

pk,i ρk (m̃k(τ)−mk(τ))+ pi,i ρi mi(τ)Eµi(τ +1)

> pi,i ρi mi(τ)Eµi(τ +1) > 0

ñi(τ +1)−ni(τ +1) =
n

∑
j=1

q j,i γ j (ñ j(τ)−n j(τ))

+ pi,i ρi m̃i(τ)gi(ñ1(τ), ñ2(τ), . . . , ñn(τ))− pi,i ρi mi(τ)Eµi(τ +1)

> pi,i ρi mi(τ)(gi(ñ1(τ), ñ2(τ), . . . , ñn(τ))−Eµi(τ +1)) > 0

which completes the proof.
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3. Sufficient conditions for extinction of infection process

In order to determine conditions providing a complete eradication of HIV infec-
tion in a population, we use the Chebyshev inequality [4]: ifη is a nonnega-
tive random variable with the mathematical expectation 0< Eη < ∞ and ε > 0
is a given number, thenP{η > ε} 6 Eη/ε . Apply this inequality to the com-
ponentsy1(t),y2(t), . . . ,yn(t) of the processZ(t) using the upper estimates̃ni(t),
i =1,2, . . . ,n instead ofni(t) = Eyi(t).

Introduce the following notations (the symbolT means the transposition opera-
tion):

m̃(t) = (m̃1(t),m̃2(t), . . . ,m̃n(t))
T , ñ(t) = (ñ1(t), ñ2(t), . . . , ñn(t))

T

f ∗(t) = ( f ∗1 (t), f ∗2 (t), . . . , f ∗n (t))T

m̃(0) = (m(0)
1 ,m(0)

2 , . . . ,m(0)
n )T , ñ(0) = (n(0)

1 ,n(0)
2 , . . . ,n(0)

n )T

L = (li, j), C = (ci, j), D(m̃(t −1)) = (di, j(m̃(t −1))

li, j = p j,i ρ j, ci, j = q j,i γ j, di, j(m̃(t −1)) = γ j ln
1

1− ri, j
pi,i ρi m̃i(t −1)

i, j = 1,2, . . . ,n, t = 1,2, . . .

and write system (2.5) in the vector form

m̃(t) = Lm̃(t −1)+ f ∗(t)

ñ(t) = (C + D(m̃(t −1))) ñ(t −1) (3.1)

m̃(0) = m̃(0), ñ(0) = ñ(0), t = 1,2, . . . .

In all subsequent calculations we assume that the inequalities between the vec-
tors fromRn are considered componentwise, i.e., ifa ∈ Rn, thena > 0 ⇔ ai > 0,
a > 0⇔ ai > 0, i = 1,2, . . . ,n.

System (3.1) contains the matricesL,C,D with nonnegative elements. This al-
lows us to apply well-known criteria to the study of the behaviour of m̃(t), ñ(t) for
t → ∞. Describe briefly these criteria. Let the real matrixH = (hi, j) have elements
hi, j > 0, i, j = 1,2, . . . ,n. All eigenvaluesλH of this matrix lie in the unit circle if
and only if all principal minors of the matrixI −H are positive [2], whereI is the
identity matrix. Recall also that the matricesH andHT have the same eigenvalues.
Consider a real matrixS = (si j), whose elements are such thatsi j 6 0 for all i 6= j,
i, j = 1,2, . . . ,n. The matrixS is called a nondegenerate M-matrix if one of 50 equiv-
alent conditions holds [3]; here we use the following ones: (1) the matrixS−1 exists
and has nonnegative elements; (2) all principal minors ofS are positive; (3) there
existsξ ∈ Rn, ξ > 0, such thatSξ > 0. In particular, this implies that|λH | < 1 if
and only ifI−H is a nondegenerate M-matrix.

Consider the matricesL andC. The structure of the elements of these matrices is
such that the following inequalities are valid:(I −LT )ξ > 0, (I −CT )ξ > 0, where
ξ = (1,1, . . . ,1)T . Therefore, all|λL| < 1, |λC| < 1. Thus, if we consider the matrix



Discrete stochastic model 11

D(m̃(t − 1)) as negligible in system (3.1), then it occurs thatñ(t) → 0 for t → ∞.
The conditions of the ‘smallness’ of the matrixD(m̃(t − 1)) are presented in the
following assertion.

Proposition 3.1.Let assumptions (H1), (H2) hold for model (1.7) and we ad-
ditionally assume that there exists̃m∗ ∈ Rn

+ such thatI −C −D(m̃∗) is a nonde-
generate M-matrix and there existsθ ∈ (0;+∞) such that 06 m̃(t) 6 m̃∗ for all
t = θ ,θ +1, . . . . Then there exists limt→+∞ ñ(t) = 0 and for eachi = 1,2, . . . ,n we
haveP{yi(t) = 0} → 1 for t → ∞.

Proof. Consider system (3.1) fort > θ . We can write

ñ(t) = (C + D(m̃(t −1))) ñ(t −1), t = θ +1,θ +2, . . .

ñ(θ) = ñ(θ ) > 0.
(3.2)

Using (3.2), we get

0 6 ñ(t) 6 (C + D(m̃∗))t−θ ñ(θ ), t = θ ,θ +1,θ +2, . . .

which implies that there exists limt→+∞ ñ(t) = 0. Fix i = 1,2, . . . ,n and a number
ε > 0. Applying Chebyshev’s inequality and the estimate forni(t) = Eyi(t), we get

0 6 P{yi(t) > ε} 6
Eyi(t)

ε
=

ni(t)
ε

6
ñi(t)

ε
, t = 1,2, . . .

P{yi(t) > ε}→ 0, t → ∞.

These relations complete the proof.
Consider further two cases giving us a chance to get an explicit expression for

m̃∗ in terms of the parameters of the studied problem.

Case 1. Assume f ∗(t) = f ∗ = const> 0, i.e., f ∗i (t) = f ∗i = const> 0, i =

1,2, . . . ,n. System of equations (3.1) with the initial conditions̃m(0) = m̃(0) has
the solutionm̃(t) = Lt (m̃(0) −m∗

s)+ m∗
s , t = 1,2, . . . , wherem∗

s = (I −L)−1 f ∗ > 0
is the stationary solution to this system. Since all|λL| < 1, thenm̃(t) → m∗

s for
t → ∞ for any initial data. We require thatI −C −D(m∗

s ) is a nondegenerate M-
matrix. Then all principal minors ofI −C − D(m∗

s ) are positive. Using the con-
tinuity of principal minors of the matrixD(m̃(t − 1)) with respect tom̃(t − 1),
one can takeδ = (δ1,δ2, . . . ,δn)

T , δi > 0, i = 1,2, . . . ,n andθ ∈ (0;+∞), so that
m∗

s − δ 6 m̃(t) 6 m∗
s + δ for all t = θ ,θ + 1, . . . , and the principal minors of the

matrix I −C−D(m∗
s + δ ) are positive. Therefore, we can assume thatm̃∗ = m∗

s .

Case 2. Suppose there existθ ∈ (0;+∞), f ∗ = ( f ∗1 , f ∗2 , . . . , f ∗n ) = const, f ∗i =
const,i = 1,2, . . . ,n, such that the inequalitiesf ∗(t) 6 f ∗ are valid for allt = θ +
1,θ +2, . . . andm̃(θ) 6 m∗

s = (I −L)−1 f ∗, where

m̃(θ) = Lθ m̃(0) +
θ−1

∑
i=0

Li f ∗(θ − i).
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For t = θ + 1,θ + 2, . . . , the solution to system of equations (3.1) with the initial
conditionsm̃(0) = m̃(0) satisfies the relations

m̃(t) = Lt−θ m̃(θ)+
t−θ−1

∑
i=0

Li f ∗(t − i) 6 Lt−θ m̃(θ)+
t−θ−1

∑
i=0

Li f ∗

= Lt−θ m̃(θ)+
t−θ−1

∑
i=0

Li f ∗ +
∞

∑
i=t−θ

Li f ∗−
∞

∑
i=t−θ

Li f ∗ (3.3)

= Lt−θ m̃(θ)+
∞

∑
i=0

Li f ∗−
∞

∑
i=t−θ

Li f ∗ = Lt−θ (m̃(θ)−m∗
s )+ m∗

s 6 m∗
s .

We have used the formula∑∞
i=0Li = (I −L)−1 in relations (3.3), which was stipu-

lated by the fact that all|λL|< 1 (the spectral radius of the matrixL is less than one).

As the result, we assumẽm∗ = m∗
s .

Now consider certain practical aspects of Proposition 3.1.First of all we note
that the inequality ln(1/(1−r)) 6 r holds for allr ∈ [0;+∞). For 0< r ≪ 1 one usu-
ally assumes ln(1/(1− r)) ≈ r. Therefore, constructing a system of upper estimates
for the mathematical expectationsm(t),n(t), one can use the functions

gi(z1,z2, . . . ,zn) =
n

∑
j=1

γ j ri, j z j, z j > 0, i, j = 1,2, . . . ,n

instead of (2.3) and the elements of the matrixD(m̃∗) would be the following:

di, j(m̃
∗) = γ j ri, j pi,i ρi m̃∗

i , i, j = 1,2, . . . ,n, t = 1,2, . . . (3.4)

Based on (3.4), we calculate the sum of elements of eachjth column of the
matrixC + D(m̃∗) and introduce the set of coefficients

R j(m̃
∗) = γ j (1+

n

∑
i=1

ri, j pi,i ρi m̃
∗
i ), j = 1,2, . . . ,n.

For fixed j = 1,2, . . . ,n the coefficientR j(m̃∗) can be interpreted as the mathemat-
ical expectation of the number of ‘descendants’ of an individual from the groupB j
in the time period(t − 1;t] under the condition that the mean size of the groupAi
equalsm̃∗

i , i = 1,2, . . . ,n. The coefficientR j(m̃∗) takes into account the probability
of survival from the time momentt −1 till the momentt for an individual from the
groupB j and also the mathematical expectation of the number of individuals from
A1,A2, . . . ,An infected by him in the period(t −1;t]. Suppose

R1(m̃
∗) < 1, R2(m̃

∗) < 1, . . . ,Rn(m̃
∗) < 1. (3.5)

Considering the matrix(C + D(m̃∗))T , from (3.5) we get that the vectorξ =
(1,1, . . . ,1)T satisfies the inequality(C + D(m̃∗))T ξ < ξ , i.e., I −C −D(m̃∗) is a
nondegenerate M-matrix.
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Now consider sufficient conditions forI −C −D(m̃∗) to be a nondegenerate
M-matrix expressed in terms of the sums of weighted elementsof the rows of the
matrix C + D(m̃∗). SinceI −C is a nondegenerate M-matrix, there existsξ ∈ Rn,
ξ > 0, (I−C)ξ > 0. We require that the elements of the matrixD(m̃∗) are such that
(C +D(m̃∗))ξ < ξ . For eachith row,i = 1,2, . . . ,n, of the matrixC +D(m̃∗) we can
write the inequality

n

∑
j=1

(ci, j + di, j(m̃
∗))ξ j < ξi ⇐⇒

n

∑
j=1

(ci, j + di, j(m̃
∗))ξ j,i < 1

ξ j,i =
ξ j

ξi
, j = 1,2, . . . ,n.

Using the notations for the elementsci, j and relations (3.4), we introduce the coef-
ficients

Ei(m̃
∗) = Qi(m̃

∗)+ Pi(m̃
∗), Qi(m̃

∗) =
n

∑
j=1

γ j q j,i ξ j,i

Pi(m̃
∗) = pi,i ρi m̃∗

i

n

∑
j=1

γ j ri, j ξ j,i, i = 1,2, . . . ,n.

For fixed i = 1,2, . . . ,n the coefficientEi(m̃∗) can be interpreted as the mathe-
matical expectation of the number of ‘descendants’ of the individuals from the
groupsB1,B2, . . . ,Bn, Ai supplementing the groupBi in the time period(t − 1;t]
with the mean sizes of those groups equal toξ1,i,ξ2,i, . . . ,ξn,i, m̃∗

i , respectively. The
coefficientQi(m̃∗) < 1 corresponds to the inflow of individuals from the groups
B1,B2, . . . ,Bn into the groupBi under the mean valuesξ1,i,ξ2,i, . . . ,ξn,i of their sizes;
the coefficientPi(m̃∗) denotes the mathematical expectation of the number of indi-
viduals of the groupAi infected in the period(t −1;t] under its mean sizẽm∗

i and
the weighed mean∑n

j=1γ j ri, j ξ j,i of the total number of individuals of the groups
B1,B2, . . . ,Bn. Assuming

E1(m̃
∗) < 1, E2(m̃

∗) < 1, . . . , En(m̃
∗) < 1 (3.6)

we get thatI−C−D(m̃∗) is a nondegenerate M-matrix.
Thus, within the hypothesis of Proposition 3.1, inequalities (3.5) or (3.6) are

sufficient for the extinction of HIV infection within the population. These inequal-
ities are not necessary, but it may occur that one or several inequalities of the form
Rk(m̃∗) > 1, or El(m̃∗) > 1 may lead to a violation of the HIV infection extinction
condition in a population. Therefore, the groups of individualsBk, or Al such that
Rk(m̃∗) > 1, El(m̃∗) > 1 may prevent the extinction of HIV infection within a pop-
ulation (under the condition that the sizes of these groups are not identically equal
to zero).
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4. Numerical experiments with the model

Following [12, 15], consider the groups of HIV-susceptibleindividuals:A1, socially
adapted individuals,A2, individuals with a high pathology development risk,A3,
chronic alcoholics,A4, individuals with drug dependence; and consider also the
following HIV-infected individuals:B1, socially adapted ones,B2, individuals with
a high pathology development risk,B3, chronic alcoholics,B4, individuals with drug
dependence (see Fig. 1). Denote the mathematical expectations of the total number
of susceptible and infected individuals by

mS(t) = E(x1(t)+ x2(t)+ x3(t)+ x4(t)), nI(t) = E(y1(t)+ y2(t)+ y3(t)+ y4(t)).

The aim of numerical experiments was to study the dynamics ofmS(t) andnI(t) de-
pending on the parameters of the model, assuming that those parameters satisfy the
conditions of Proposition 3.1 (experiment 1) or do not satisfy them (experiment 2).
The mathematical expectationsmS(t) andnI(t) were estimated by standard methods
of mathematical statistics based on sample data obtained from 100 implementations
of the random processZ(t) = (x1(t), . . . ,x4(t), y1(t), . . . ,y4(t)), t = 1,2, . . . ,Tmod,
whereTmod is the duration of the simulated period in days. The durationof the time
period(t −1;t] was equal to one day.

In order to obtain implementations of the random processZ(t) we used the

Monte Carlo method. Within a particular implementation, the initial datax(0)
i , y(0)

i ,
i = 1,2,3,4, are generated fort = 0. After that the valuesxi(t − 1), yi(t − 1), i =
1,2,3,4, are fixed for each interval(t −1;t] and then the random variables entering
system (1.7) are generated from these values. Then next values ofxi(t), yi(t), i =
1,2,3,4, are calculated fort = 1,2, . . . ,Tmod. Numerical procedures and the random
number generator described in [9, 10] were used for the generation of random values
entering the equations of the model.

The dynamics of statistical estimates ¯mS(t), n̄I(t) of the mathematical expecta-
tionsmS(t) andnI(t) is presented in Figs. 2 and 3. Numerical values of the estimates
m̄S(t), n̄I(t) and the boundaries of the confidence intervals formS(t) andnI(t) are
shown in Table 1 for the confidence levelP = 0.95 and the most typicalt.

In the first experiment we used the following values of the parameters of the
model. The initial sizes of groups were taken as constants

x(0)
1 = 294640, x(0)

2 = 442614, x(0)
3 = 59015, x(0)

4 = 25292

y(0)
1 = 0, y(0)

2 = 0, y(0)
3 = 200000, y(0)

4 = 400000.

The inflows into the groupsA1 and A2 in the time period(t − 1;t] are given by
random variables satisfying the Poisson distribution law with the mathematical ex-
pectationsf ∗1 (t) ≡ f ∗1 = 24.11, f ∗2 (t) ≡ f ∗2 = 34.25, respectively. The inflows into
the groupsA3 andA4 are absent. The probabilities of survival fromt−1 till t are the
following:

ρ1 = 0.999945, ρ2 = 0.999932, ρ3 = 0.999863, ρ4 = 0.999849



Discrete stochastic model 15

γ1 = 0.999781, γ2 = 0.999781,quad,γ3 = 0.999753, γ4 = 0.9995891.

The probabilities of the transition of individuals in the time period(t − 1;t] not
related to infection are

p1,2 = 2.7394×10−4, p1,3 = 0, p1,4 = 0

p2,1 = 1.6437×10−4, p2,3 = 0.548×10−4, p2,4 = 0.274×10−4

p3,1 = 0, p3,2 = 2.7394×10−4, p3,4 = 0

p4,1 = 0, p4,2 = 3.2871×10−4, p4,3 = 0
q1,2 = 0, q1,3 = 0, q1,4 = 0

q2,1 = 1.6437×10−4, q2,3 = 0, q2,4 = 0

q3,1 = 0, q3,2 = 3.8349×10−4, q3,4 = 0

q4,1 = 0, q4,2 = 4.1087×10−4, q4,3 = 0.

The probabilities of contacts with subsequent infection inthe period(t −1;t] are

r1,1 = 5.4795×10−11, r1,2 = 5.48×10−11, r1,3 = 0, r1,4 = 0

r2,1 = 5.4795×10−11, r2,2 = 5.48×10−11

r2,3 = 2.74×10−11, r2,4 = 2.74×10−11

r3,1 = 0, r3,2 = 5.48×10−11, r3,3 = 8.22×10−11, r3,4 = 0

r4,1 = 0, r4,2 = 8.22×10−11, r4,3 = 0, r4,4 = 1.37×10−10.

For the second experiment we used

y(0)
3 = 50000, y(0)

4 = 100000

r1,1 = 5.4795×10−10, r1,2 = 5.48×10−10, r1,3 = 0, r1,4 = 0

r2,1 = 5.4795×10−10, r2,2 = 5.48×10−10

r2,3 = 2.74×10−10, r2,4 = 2.74×10−10

r3,1 = 0, r3,2 = 5.48×10−10, r3,3 = 8.22×10−10, r3,4 = 0

r4,1 = 0, r4,2 = 8.22×10−10, r4,3 = 0, r4,4 = 1.37×10−9.

The values of the other model parameters remain the same. Note that the nonzero
values ofri, j are increased ten times compared to their values in the first experiment.

The results of the numerical experiments are presented in Table 1 and in Figs. 2
and 3. The parameters of the model in the first experiment are such that

R1(m̃
∗) = 0.999821, R2(m̃

∗) = 0.999827, R3(m̃
∗) = 0.999771 (4.1)

R4(m̃
∗) = 0.999605.
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Figure 2. Dynamics ofm̄S(t) (curve I) and ¯nI(t) (curve II) for the first experiment.

Table 1.
Confidence intervals formS(t), nI(t) with the confidence levelP = 0.95.

Experiment Value t = 0 t = 20000 t = 40000

1 mS(t) 821561±0.0 762621±165.914 779341±168.157
nI(t) 600000±0.0 6272.88±18.111 4.49±0.462

2 mS(t) 821561±0.0 351306±182.967 440861±219.855
nI(t) 150000±0.0 154431±117.362 91295.7±132.336

Therefore, inequalities (3.5) hold andI −C−D(m̃∗) is a nondegenerate M-matrix,
which provides the validity of Proposition 3.1. It is seen from Fig. 2 that the in-
fection in the population decays in time in spite of rather large initial sizes of the
groupsB3 andB4.

Proposition 3.1 is not satisfied for the second experiment, becauseI−C−D(m̃∗)
is not a nondegenerate M-matrix. Table 1 and Figure 3 show that the mathematical
expectation of the number of infected individualsnI(t) goes to a nonzero stationary
level in the course of time. In the second experiment the coefficientsRi(m̃∗) have
the values

R1(m̃
∗) = 1.000186, R2(m̃

∗) = 1.000239, R3(m̃
∗) = 0.999923 (4.2)

R4(m̃
∗) = 0.999745

exceeding (4.1). This excess is caused by the tenfold increase in the contact proba-
bilities compared to the first experiment. It is seen from (4.2) thatR1(m̃∗) > 1 and
R2(m̃∗) > 1. Therefore, within the given set of the model parameters, the groups
B1 andB2 contribute the most to the support of HIV infection. Note that the initial



Discrete stochastic model 17

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

0 4000 8000 12000 16000 20000 24000 28000 32000 36000 40000

N
u

m
b

e
r 

o
f 

in
d

iv
id

u
a

ls

Time, days

I

II

Figure 3. Dynamics ofm̄S(t) (curve I) and ¯nI(t) (curve II) for the second experiment.

sizes of the groupsB1, B2 are equal to zero, but these groups are supplemented in
the course of time because of the inflow of individuals from the groupsB3, B4, and
also of individuals from the groupsA1, A2. In its turn, the growth of the groups
B1, B2 increases the flow of infected individuals from the groupsA1, A2, which in-
creases the total number of infected individuals. The redistribution of the numbers
of individuals determines the values of stationary levels for mS(t), nI(t).

5. Conclusion

The paper presents a stochastic model of HIV infection spread within a hetero-
geneous population. The population is considered as a set ofgroups representing
different status of individuals relative to the disease (susceptible, infected, sick, in
remission), social stratification, or spatial heterogeneity of the population. Individ-
uals within each group are indistinguishable. The sizes of the groups vary in time
as the result of individuals passing from one group to another (because of infection,
development of the disease, detection and treatment of sickindividuals), because
of the group increase by the inflow of new individuals (reaching a particular age
or immigration), the outflow of individuals from groups because of natural mor-
tality, emigration to other regions, or death by disease. The dynamics of the sizes
of individual groups is described by a system of stochastic differential equations
for nonnegative integer-values variables. The dimension of the system of equations
is determined by the number of groups used for the description of the population
heterogeneity.

The model presented here admits an analytic study and allowsus to apply a
classification of groups according to the rate of their influence on the decay or
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prevalence of the HIV infection in the population. Such classification is related to
the hypothesis of Proposition 3.1 and, particularly, to thefulfillment of inequalities
(3.5) or (3.6). Considering inequality (3.5), we can easilysee that the conditions
of Assertion 2 hold if the mean inflowsf ∗i (t) of individuals into the groupsAi are
sufficiently small,i = 1,2, . . . ,n. Therefore, the decrease in the inflows of individu-
als into the groupsA1,A2, . . . ,An can be considered as a way of eradication of HIV
infection in a population.

Note that the inflowsfi(t) of individuals into the groupsAi, i = 1,2, . . . ,n, can be
nonstationary random processes whose characteristics depend on social-economic
conditions. In addition, some variations of the parametersqi, j are possible because
of the change of the factors influencing social adaptation ofHIV-infected individu-
als. In this case Proposition 3.1 has an auxiliary characterand the study of proba-
bilistic characteristic of the sizes of groups will be conducted by numerical experi-
ments. Based on the results of numerical experiments, one can formulate statistical
hypotheses to be later used for analysis and processing of real data related to HIV
infection.
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