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Pareto frontier visualization in multi-criteria search
for efficient therapy strategies: HIV infection example

A.V.LOTOV* A.S. BRATUST and N.S. GORBUN

Abstract — Visualization of the Pareto frontier is a new approach iftirasiteria decision making,
i.e. searching for efficient decisions taking multiple dem criteria into account. In this paper, visu-
alization of the Pareto frontier is used in the process oftinetiteria search for efficient strategies of
HIV therapy. By using a non-linear mathematical model ofigidynamics, which takes into account
the phenomenon of virus variability under the influence ofagdwe show that in the framework
of the model it is possible to construct a therapy strategy Iialances the conflicting requirements
imposed on the therapy process.

The main goal of the paper is to show that the multi-criterethod based on Pareto
frontier visualization can effectively support a searchdfficient strategies of ther-
apy of virus diseases. For this reason, the method is apialiad abstract model of
cell infection by viruses, while virus mutations are taketoiaccount.

Generally speaking, the aim of any decision process is terahiie the best
decision among a number of available decision optionsgddtasible decisions)
according to the preferences of the decision makers, asalgsearchers, or other
people. The concept of the best decision can be easily faedafor a single-
criterion optimization problem: the best decision must mméze (or minimize) the
single optimization criterion over the set of feasible damis, i.e. the feasible set.

In the process of searching for a preferable efficient smhutif a complicated
decision problem one often has to take several conflictirfppaance indicators
into account. For many years, researchers have tried td géiveimulti-criteria for-
malization of such problems by specifying the most impdrferformance indica-
tor as the single optimization criterion and using otheidatbrs as a source af
priori constraints. However, such approach usually fails to sthlegoroblem, since
it constructs a decision whose criterion value is not badnwith the values of
the constraints. The reason consists in the fact that thetreamts are set without
knowing the dependence of the criterion value on the cansita

To avoid such a deadlock, multi-criteria decision suppechhiques are used
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that take all important performance indicators into ac¢dunconsidering them
as criteria. They provide an effective tool for construgtihecisions that consider
different requirements and provide a balance of conflictingls (e.g., [1, 12]). In
this paper we apply a method that can be used in the importass of multi-
criteria decision problems, i.e., multi-criteria optimiion (MCO) problems. In the
framework of MCO problems, the direction of the improvemehtny particular
criterion is given in advance: one has to maximize or minaiigwhile the values
of the other criteria are constant). For example, it is pedfie to have a lower cost
of the therapy if the results of the therapy are the same.

From the very beginning, it is important to stress the follmyvdifference be-
tween single-criterion optimization and MCO. Normally thés a single optimal
decision that solves a single-criterion optimization peof In contrast, in a MCO
problem, because of the presence of several criteria, d sethematically equiv-
alent optimal decisions does exist. Such a decision selleddhe Pareto optimal
set. The Pareto optimal set consists of the decisions whadmat be improved,
i.e. improving the value of one criterion requires detexing the value of at least
one other criterion (formal definitions are given later) eTPareto optimal set may
contain a large number of decisions, often it is infinite.

Any decision from the Pareto optimal set corresponds to et®aptimal crite-
rion vector that can be considered as a point of the critesp@ate. The Pareto opti-
mal criterion points form the Pareto optimal criterion $ehas a property which is
extremely important from the point of view of real-life ajaltions. Let us consider
the feasible criterion set, i.e., the set of all criterionng® that can be obtained if
the feasible decisions are used. Then the Pareto optintatiori set is a part of the
frontier of the feasible criterion set. For this reason, Rlageto optimal criterion set
is usually called the Pareto frontier. A decision, whichhis best one according to
the preferences of the decision maker, must belong to thetd®aptimal decision
set and its criterion vector must belong to the Pareto feonBue to it, the Pareto
frontier plays an important role in analysis of MCO problems

Multiple methods have been proposed for supporting detisiakers, analysts,
researchers, and other interested persons (for the sakepiicity, they will be de-
noted as users) in the process of searching for the mosrabédedecision from the
set of mathematically equivalent Pareto optimal decisiédngide variety of such
methods is described, for example, in the book [19]. The MG&Ehmds are usually
classified as priori (or decision rule-based) methods, interactive (or praive$
methods, and posteriori (or Pareto frontier) methods. The classification is done in
accordance to the stage at which the users are involved theitision process.

In this paper, we apply a method that belongstoosteriori (or Pareto fron-
tier) methods. These methods start with constructing orcqimating the Pareto
frontier. Then the user is informed about the Pareto fronke/she is not asked
guestions concerning his/her preferences before or dtlimgnforming procedure
(except for relatively simple questions about the improgehdirections for particu-
lar criteria). Only after the informing process is comptktine user is asked to spec-
ify a preferable point that belongs to the Pareto frontieis Important that he/she
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does not need to do it immediately, since in the Pareto fomtiethods expressing
preferences in the form of a single-shot specification optleéerred Pareto optimal
criterion point may be separated in time from the exploratibthe frontier. Human
beings need time to find a balance between the criteria, thissppportunity is a
very important feature of the Pareto frontier methods (48[

If there are only two criteria, the Pareto frontier is disf@d in the criterion
plane. In this case it is usually named the tradeoff curve ffldeoff curve gives
information on the frontiers of feasible criterion valueslaon criterion tradeoffs,
i.e. on the cost of improving one criterion by deterioratamgther one. This knowl-
edge helps the user to specify the preferred criterion pétiberately. Then the
preferred decision is computed automatically.

In multi-criteria problems with more than two criteria (saled many-criteria
or high-order MCO problems), the user needs to study thengptiriterion points
located at the multidimensional Pareto frontier and theteel criterion tradeoffs.
There are two main approaches to informing the users abeu®dlneto frontier in
the high-order MCO problems. First, a large number of paifithe Pareto frontier
can be provided in the form of a list (for details see, for eghan[19,23]). However,
the tradeoff information is lost in this case. Moreover,sitknown that selecting
from the large lists of multi-criteria alternatives is taaneplicated for the user [14].
Alternative idea consists in visualizing the Pareto frenti

Generally speaking, visualization, that is, transfororaif symbolic data into
geometric information, can support human beings in fornaingental picture of the
data. Visualization on the basis of computer graphics hagegrto be a convenient
technique that can help people to assess information imsdiyeroblems. It can be
successfully applied in the Pareto frontier methods toe[+8].

The idea to approximate and visualize the Pareto fronties waoduced by
S. Gass and T. Saaty in 1955 [7] for linear decision probleritls two criteria. In
our paper, the high-order Pareto frontier is visualized $ipgithe Interactive Deci-
sion Maps (IDM) technigue, which has proved to be a convenil for solving
this task. It has been successfully used for constructifigieait strategies in eco-
nomic, environmental and other problems (see [16]). In taméwork of the IDM
technique, the Edgeworth-Pareto Hull (EPH) of the feasihterion set is consid-
ered, i.e. the largest set that has the same Pareto frostigreafeasible set. The
EPH is approximated instead of the Pareto frontier in the I2bhnique. To visu-
alize the Pareto frontier, the IDM technique displays the sétwo-criterion slices
of the EPH in a dialogue with the user. The frontiers of suaeslinclude tradeoff
curves for the pairs of criteria (for fixed values of othetamin). By this the user is
informed of the criterion values and the criterion tradsoff

To find the preferred decision, the IDM technique is combingith methods
that use preference information in the form of the prefewegtrion point (goal).
The goal approach introduced by Charnes and Cooper [4]egppkingle-shot iden-
tification of a goal and subsequent computing of a feasibdésam, whose output is
the closest one (in some sense) to the identified goal. Meiltgal-life applications
of the goal methods prove that the goal approach is convefiensers. However,
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the classic goal methods have a disadvantage: if the fégsibformation is un-
known, a goal may happen to be distant from the feasibiliytier — it may be
too ambitious or too pessimistic. This may result in a deaisvhich is not the best
one for the user. The IDM technique refines the goal approgcimfbrming the
user of the feasibility of the goals. With a help of the IDMhe@ue, the user iden-
tifies the Pareto-optimal goal directly at one of the trafleofves. As the result, the
risk of too ambitious or too pessimistic goals vanishes:r@t®zoptimal decision is
found, which results in the goal identified by the user. Suphoaedure has got the
name of the Feasible Goals Method (FGM), see [16]. In thigpahe IDM/FGM
technique is applied in the process of the multi-criteriarele for efficient strategies
of therapy of a virus infection. For definiteness, we consilde HIV viruses.

In spite of a considerable success in the therapy of the Hfgttion, the ther-
apy does not result in a complete recovery of the patient.cohéeemporary therapy
methods slow down the process of lymphocytes infection By ¥tuses and sup-
port a sufficient number of normal (healthy) lymphocytes, the condition that
permits the infected persons to live a full life during a tietely long period. How-
ever, the medicaments that support such condition are vggnsive. The last cir-
cumstance is an essential barrier for spreading the coaiemptherapy methods
in under-developed countries.

Another obstacle is the ability of HIV viruses to mutate g$ults in the situation
when, along with the basic type of viruses, numerous mugaatiss (clones) exist.
Normally, the death rate of the mutant species is suffigidrigh and their quantity
is small as compared with the quantity of the Wild Type (WTuskEs. The situation
changes if WT viruses are the subject of a medical treatrdefmal result of using
a drug is the appearance of resistant mutants, which caassathe harm to the
health as WT viruses. On the other hand, stopping the theregmess leads to an
unavoidable growth of the fraction of the WT viruses. It igoontant to stress that
the presence of drugs in the body can have a direct negafeet eh the health as
well. Therefore, in the process of developing a HIV-infenttherapy, one needs to
consider several requirements:

e the number of lymphocytes infected by the WT and mutant esushould be
on an acceptable level during the therapy and should be isuffic small at
the end of the therapy;

¢ the quantity of the drug in the body should be not too high dmikl be safe
for the patient’s health;

¢ the number of healthy lymphocytes should be on an acceplai@é during
the therapy and should be sufficiently high at the end of theatby;

e the cost of the therapy course should not be too high.

To solve this problem by using a multi-criteria optimizatimethod, we apply
the mathematical modelling of the HIV infection treatmdviithematical models
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of virus dynamics have been studied in multiple publicatjsee, for example, the
monographs [20, 21], as well as the papers [10, 11, 22]. Tetoart a treatment
strategy on the basis of a HIV model, optimization methodsevepplied, for ex-
ample, in [2,6, 8,13, 24]. In these studies, the only optatidn criterion was used:
it was either the integral functional of a weighted sum ofrthenber of normal and
infected lymphocytes, as well as the square of the contraltfan, or the functional
that represents such a sum at the end of the process. It rstisbgaby using one
criterion, one cannot guarantee the values of other pedoce indicators to be sat-
isfactory. Say, the number of infected lymphocytes or thegdroncentration may
happen to be dangerously high and the number of normal lyoypé® may happen
to be dangerously low for the life of the patient.

Using the multi-criteria approach permits studying vasiaeal-life medical
problems, in which the development of the therapy stratepedds on many fac-
tors. In particular, using such approach one can find a daitabrapy strategy de-
pending on the health and the financial capacity of the patien

The article consists of four sections. In Section 2 the nmattiezal model of the
therapy process of the HIV infection is described; it tak#s iaccount the ability
of the WT viruses to mutate. The multi-criteria optimizatiproblem is formulated
in the same section. The multi-criteria optimization tdghe based on visualiza-
tion of the high-order Pareto frontier is described in Set8. Finally, application
of the Pareto frontier visualization technique in the pescef searching for HIV
therapy that satisfies the conflicting requirements is dssdrin Section 4. The de-
veloped therapy strategy is analyzed in the same sectiamp@per ends up with
the Summary.

1. Mathematical model

In our model we consider an organism as a whole, withoutrdjatshing blood,
lymphonoduses etc. The influence of the medical drug on theviflises dynamics
is described by the mathematical model that includes foffieréntial equations.
There are four state variables in the model:

e the number of uninfected (normal) lymphocytas,

¢ the number of lymphocytes infected by the WT virlis,

e the number of lymphocytes infected by the mutant vitys,
e the quantity of the medical drug in the body of the patiént,

Note that only one mutant virus is considered in the modek differential
equations look as follows:
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n=A—Bi(h)lin— Bz(h)lon—dn
1= Br(h)(1— p(h)lin—aly

Iz = Bu(N)p(h)lin+ Ba(h)In— aal,
h=—yh—(yil1 + yel2)h+u(t)

HereA,d,o1,02,Y, v, y» are the given parameters, afigh), B2(h), u(h) are three
functions given later.

Note that in the framework of the model, uninfected lymphesyare repro-
duced at a constant rafe In general, the rate of uninfected lymphocytes repro-
duction in an organism with a healthy immune system is noston. We use the
maximal possible value of the rate, since the case is carsidehen the organism
uses its maximum ability for struggling against the virugation.

The therapy functiong; (h) andB,(h) describe the influence of the drug on the
infection process. Namely, the influence of the drug cos$isthe blockage of the
infection process. The following functions are used in trezlet:

i

wherei = 1,2 andd;, ri, ki are given positive parameters. As one can see, the value
of Bi(h), i = 1,2, equals tod, i = 1,2, if the drug is absent. Increasing the drug
quantity h results in the decrement of the valyggh) and 3,(h). Such properties
of the functions correspond to the increasing ability tacklthe infection process.

The functionu(h) describes the influence of the drug on the process of the
growth of the fraction of the lymphocytes infected by the amitvirus. As we have
already mentioned, the increment of the drug influence t®gukhe growth of the
fraction of the mutant viruses; thus, the fraction of the yracytes infected by the
mutant virus is increasing, too. To represent this prop#ngy following monotonic

function is used
mh

Mm=m+ﬁﬁ (1.2)

wherepp, m, A are some given positive parameters.

Parameterg, and y» characterize the consumption of the drug in the therapy
process. They do not depend on the drug concentration.

The functionu(t) is the control function to be found. It determines the qugnti
of drug injected in a unit of time. The following constrainspresent the limits
of drug injection that must be satisfied at any time-montdram the time period
under study denoted H9, T]:

O<u(t)<R tel0T] (1.3)

The valueR must be given in advance.
For the time period under consideration, i{@.T], one year (360 days) was
taken. It was divided in twelve time intervals, 30 days ed@h.assume that the day
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dose of the drug injection that satisfies the constraint) (.80t changed during

each of the twelve time intervals. It means that the contnotfionu(t), i.e. the dose

of the drug, is described by twelve parameters. These twev@meters constitute

the decision variables, which have to be found during théstetmaking process.
The initial values of the state variables are assumed to benkn

n(0)=ny, 11(0)=12, 1,(0)=19, h(0)=0. (1.4)

The following six criterions were used in the multicritedptimization:

yi= [uet

yo = maxh(t)

yz = 12(T) +12(T)
ya=max(l1(t) +I2(t))
ys =n(T)

Y6 = minn(t).

The first criterion describes the total quantity of the drpgpleed during the
period of the therapy0, T]. This criterion characterizes the cost of the drug. The
second criterion describes the maximal quantity of the dnuye body during the
time of the therapy. It is clear that it is desirable to desectne values of the first
and of the second criteria.

The third and the fourth criteria are related to the sum oflyngphocytes in-
fected by the WT and the mutant viruses. The third criteriesctibes this value at
the end of the therapy. The fourth criterion describes theimma number of the in-
fected lymphocytes during the therapy process. Theseaiargbould be decreased,
as well.

The two last criteria describe the number of healthy lymptex at the end
of the therapy process and the minimal number of healthy houoptes during the
therapy process. It is necessary to maximize the valueseétbriteria.

As the result, we have got the nonlinear multicriteria otation problem with
6 criteria and 12-dimensional decision vector. To solvepttoblem we use the tech-
nique for visualization of the Pareto frontier.

2. Visualization technique

Let us start with several definitions used in multi-critesfatimization (MCO). It is
assumed here that the decisions are the points of the liee&ich space R Below
we denote the set of feasible decisionsbyThe space of the criteria is assumed to
be them-dimensional linear spad®™. Any pointx € X results in the criterion point

y € R™, which can be computed by using the given vector-function

f(x) = (f1(X),..., fm(X)).
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Thus, the set of criterion points that can be obtained byguia feasible decisions,
the feasible criterion sétt, is given byY = f(X). Note that in contrast to the s¥t
the setY is not given in advance.

As usually in MCO, we have to define the improvement directiofthe criteria.
For the sake of simplicity, in this section we consider theeoahere all criteria must
be maximized. We assume that a criterion poirdominates the criterion point
y, i.e.y is better thary, if y >y andy # y. In other words, we use the Pareto
domination. Then, the Pareto (non-dominated) frontierhef setY is of interest,
which is defined as

PY)={yeY:{yeY:y2yy #y} =0}
Let R™ be the non-positive orthant in"RThe set
Yo=Y +RM

is called the Edgeworth—Pareto Hull (EPH) of the ¥efAlong with the points of
the sety, the EPH includes all criterion points dominated by the t®of the set .
It is important for the EPH to be the maximal set that satigfigg) = P(Y).

The main feature of the Interactive Decision Maps (IDM) t@ge that we use
in this paper consists in approximating the EPH and in subs#gnteractive study
of the Pareto frontier by displaying two-criteria slicestbé EPH approximation.
To define a two-criteria slice of the EPH, one has to relatedriteria to the axes
and to set fixed values for the rest of criteria. Mathemdicaltwo-criteria slice is
defined as follows. Let us bfy1,y2) denote two ‘axis’ criteria, and bydenote the
remaining criteria, whose values are givereas z*. A two-criteria slice of the set
Yp, parallel to the plangy;,y») and related ta = z* is defined as

G(YP7Z*) - {(YLYZ) : (y17y27z) €Yp, z= Z*}

Note that in the case of the maximization problem, a slicé-afontains such com-
binations of valuesy, y»), for which there exists a vectarz > z*, so that the values
(y1,y2) are feasible . An example of a two-criteria slice of an EPHrapimation
for a non-linear five-criterion model is provided in Fig. 1.

In Fig. 1, the values of criteridl andf 2 are related to the horizontal and vertical
axis, respectively, and the ranges of three other critedalefined by the sliders of
the scroll-bars. Note that the equalitiE3= 4.5, f4=29.5, 5= 10.0, which are set
fixed by the left sliders of the scroll-bars, define the slidee Pareto frontier of the
slice (f1, f2) is approximately given by the part of the frontier betwees ploints
A andB and by a small part of its frontier near the pathtRoughly speaking, it is
the tradeoff curve among criterifl and f2 if the values of the rest of criteria are
not lower than the values given by the left sliders. One cawentbe left sliders to
study the influence of criteri&3, f4, f5 on the tradeoff curve. The right sliders of
the scroll-bars are not used while studying the EPH in theimiaation case: they
are needed in the case of minimization.
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Figure 1. A two-criteria slice of an EPH approximation.

In the IDM technique, two-criteria slices are usually dégmd in the form ofle-
cision maps. To define a particular decision map, in addition to relating criteria
to the axes, one has to specify a color-associated critariwng the rest of criteria.
A decision map is a set of superimposed differently coloderts, for which the
value of the color-associated criterion changes, whileviiaes of the remaining
criteria are set fixed. It is important that the frontiers lof slices of the EPH dis-
played at a decision map do not intersect — the upper sliaengslto the lower
one. An example of a gray copy of a color decision map is pexid Fig. 2.

Here, in contrast to Fig. 1, the values of criteritibiare associated with different
colors (shades of gray in the figure). The relation among dhar ¢shading) and the
value range of the criteriorf3 is given in the palette located to the right of the
decision map. One can see, for example, that the maximadsaltf 3 (more than
16.5) can be achieved only for small valuesfdf and f2 (not greater than 10.0).
However, the values of 3 greater than 15.0 can be achieved for relatively high
values off 2. Once again, the user can apply the sliders for studyingfthet of the
criteria associated with the scroll-bars.

As we have already said, to select a preferable decisioriDiketechnique is
combined with a method that uses preference informatioharidrm of the prefer-
able criterion point (goal) identified by the user directiyae of the tradeoff curves.
One of the goal methods developed on the basis of the IDM tgabns the Feasi-
ble Goals Method (FGM), in which a decision is found that hssin the identified
goal. Implementation of the FGM method depends on the mdthr@pproximating
the EPH, which, in turn, depends on the properties of thesaetiproblem.

If the EPH is convex (for example, the s¢tis convex and the vector function
f(x) is linear), its approximation can be constructed in the foftie solution set of
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Edgeworth-Pareto Hull
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Figure 2. A decision map (gray copy).

a linear inequalities system using the methods for polyddesfrproximation of con-
vex multi-dimensional sets [16]. Such an approximationpsufs instant displaying
the decision maps. After the exploration of the Pareto feoreind identification of
a goal, the associated decision is found by using a speniglkscriterion optimiza-
tion problem (see [16] for details).

If the EPH is not convex, it can be approximated by a finiteesysof cones
with vertices that are close to the Pareto frontier. Demgptite set of such vertices
by T, we can describe an approximation of the EPH as

T =T+R™ (2.1)

The finite sefT is called the approximation base. Approximating the nomves
EPH in form (2.1) provides an opportunity of fast computihg two-criteria slices
of the EPH in the non-linear case.

There are a lot of studies (see, for example, [19]) that dgvehrious meth-
ods for approximating the Pareto frontier by a finite humbfecr@erion points.
In principle, these points can be used as the approximatise.bFairly often, it
is proposed to solve a large number of single objective apéition problems for
determining such points. However, one has to take into atcthat solving just
one non-linear non-convex global optimization problem rbaynot a simple task
in a general case [9]. Thus, the approach based on a staightfl application of
classic optimization methods can be effectively used amlsiinple cases. Another
approach to constructing a finite number of objective poingt approximate the
Pareto frontier can be based on application of multi-déterolutionary methods
that can be applied in a general case [5]. However, the prolsstill far from being
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solved, since the evolutionary methods concentrate maimjyroblems with two or
three criteria.

In the IDM technique, hybrid methods are used for constngcthe approxi-
mation base. They combine global random search, gradasgeomethods of local
optimization, and evolutionary methods (see for detaild T}. There are examples
of successful approximation of such approach in complicatan-linear problems
with several hundreds of decision variables and more thase tbriteria [15]. Con-
structing the EPH approximation in this complicated prahla weak notebook was
used. It took several dozen hours to complete this job.

Integrating random search with local optimization is a de&ad approach in
global nonlinear single-criterion optimization [9]. Suoptimization methods are
called two-phase optimization methods. In the frameworkaflinear IDM tech-
nigue, two-phase optimization methods are applied in rouiteéria problems for
approximating the EPH as a part of hybrid methods. Randonmtlses generally
used: points of the feasible decision ¥etire generated randomly and the related
criterion points are computed. To apply the local optim@atechnique in multi-
criteria optimization, one has to use scalar functions ef ¢hteria. In the IDM
technique, the scalar functions depend on the parametsosiated with random
criterion points, from which the scalar local optimizatietarts. To apply the ap-
proximation technique for the optimization of complicat@@thematical models,
simulation-based optimization is applied: using a codé ¢banputes the criterion
vectory = f(x) for any feasible decision vectore X, the gradient of the scalar
function is approximated and used in a gradient-based lséara local maximum
(or minimum) of the scalar function. It is important that af@es not need to know
any special feature of the model: the ability of the code tmpgote the value of
f(x) is sufficient. Due to the random search, the nonlinear IDNiégue can find
the Pareto optimal points even in the case of a fairly largalyar of local minima
of the criteria. The process of EPH approximation ends withdpplication of a
multi-criteria evolutionary method [3].

If the EPH is approximated in form (2.1), the Pareto-optierékrion points of
the approximating bast are found along with the Pareto-optimal decisions in the
process the gradient-based search. By identifying the gualuser simultaneously
identifies the cong™ + R™ that contains the goal. Thus, the criterion pgihtthat
belongs to the approximation ba$eand the decisiox are found, for which it
holdsy™ = f(x7). The decisiorx™ is considered to be the best one for the user
among the points of the approximating base.

We end this section with the main steps of the IDM/FGM techaiq
Sep 1. Approximating the EPH.
Sep 2. Application of the IDM technique for exploration of the Parérontier.
Sep 3. Identification of the preferred Pareto-optimal criterianim (feasible goal).

Sep 4. Construction and display of the decision that results indeatified goal.
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3. Model study

The model has been studied for plausible values of the paeasndherefore, we do
not provide the parameters that were used in the study. Tied otata were selected
by us to consider a patient with a low rate of healthy lymphesya high rate of
lymphocytes infected by the WT virus, and a low rate of lympltes infected by
the mutant virus, namelyy = 1.5 x 1, I, =5x 1P, I, = 15x 10°. Such numbers
of lymphocytes seem plausible for an infected patient leefioe therapy starts.

For testing the model we studied the case of the absenceatfieat ((t) = 0 at
all time moments € [0, T]). After a relatively short time period (about two months),
the number of healthy lymphocytes decreases from 1.5 mitticabout 0.5 million
and the number of lymphocytes infected by the WT virus grosvesal times. The
number of lymphocytes infected by the mutant virus is grgmery slowly in the
absence of drugs, and their influence is not important. Bexatia small number of
healthy lymphocytes and a large number of infected lymptes;ya complete loss
of immunity takes place.

Let us apply the IDM/FGM technique for constructing a therafrategy that
provides a balance of six criteria listed above. Approximgathe EPH required
several hours of computing using a standard notebook. Thetdahnique allowed
exploring the Pareto frontier for all six criteria. Dozerfddferent decision maps
were displayed and animated. The study helped to undergtassible criterion
values, as well as the tradeoffs between the criteria. Akdacl white copy of one
of the color decision maps is given in Fig. 3. At the horizbatds, the values of the
criteriony, (the maximal amount of the drug in the body over the treatmperibd)
are given. At the vertical axis, the values of criterigrare provided, i.e. the number
of the healthy lymphocytes by the end of treatment. The valdlee criteriony, has
to be minimized, and the value of the criterighthas to be maximized. Thus, the
left upper frontiers of the slices are of interest in the gtldhe shade of gray (color
at the computer display) is related to the value of the éoitey,, i.e. the quantity of
the drug used during the treatment procedure.

In Fig. 3, the values of the criterig andy, (the number of infected lymphocytes
at the end of the treatment and their maximum number duriegréfatment), as
well as the criterionys (minimum of the healthy lymphocytes for the entire period
of treatment) are given at the scroll-bars. Note that weramrésted in decreasing
the values of/3 andy, and increasing the value g§. This is why the right sliders
are used to study the influence of the critggandy, and the left slider in the case
of ys. It is important to note that any attempt to lower the valugpéndy, or to
increase the value gf results in a qualitative change of the decision map: a number
of slices of the decision map disappear. This is why the &rbes of the criterigg,
Y4 andyg are considered.

In the decision map, the lightest shade of gray represeatmthimal applica-
tion of drug (0< y1 < 400). As one can see, the number of healthy lymphocytes by
the end of the treatment period (the criterig) does not exceed 0.4 million at this
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Figure 3. Shades of the gray copy of the color decision map.

slice, which means a complete loss of immunity. Thus, it isesearily to consider
alternative values of; that are related to different slices of the EPH.

As can be seen, it is possible to increase the number of gegitiphocytes
by the end of the treatmenys) up to 2 million, if application of the drugyf) is
between 800 and 1200 units (gray area in Fig. 3). Note thatiépendence ofs
ony; has a jump: application of the drug:} ranging from 400 to 800 units does
not increase the value g§. The dependence g on the amount of the drug in the
body ) is not continuous, either: if; is about 10 units, the value g§ increases
abruptly from 0.4 million to about 2 million.

Let us consider the dark gray strip that appears when the ajsplication y1)
increases to the range from 1600 to 2000 units. Though sudhcagase in the
drug application does not produce in a significant changbehtimber of healthy
lymphocytes at the end of the treatment perigg), (it allows to achieve the same
value ofys for a smaller value ofp,, i.e., the maximal amount of drug in the body
(about 9 units).

Consider the criterion poin located in the left upper corner of the dark gray
band that arises as the result of the drug application inahge from 1600 to 2000
units. The poinf is related to the criterion valugs = 1711,y, = 8.80,y; = 1451,
y4 = 743000,y5 = 2 x 10°, yg = 1.5 x 1(P. Note that the number of infected lym-
phocytes at the end of treatment is about 1.5 thousand (itrastrto about half
million in the beginning of the course). The maximal numbenéected lympho-
cytes during the course is not greater than the initial nunitde number of healthy
lymphocytes in the end of course, as has already been swtgahroximately equal
to 2 million, which is quite satisfactory. The number of hbgllymphocytes for the
entire period of treatment does not fall below its initialugof 1.5 million.

Let us now consider the criterion poiBtlocated in the upper left corner of the
area that corresponds to the drug application in the ramaye 800 to 1200 units.
The pointB has the following criterion valueg; = 959,y, =10.0,y3 = 12913y, =
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Figure 4. Graph of the daily dose of the drug that results in the cotegoint A.

628000ys5 = 2x 10°, yg = 1.5x 1(P. As one can see, the drug application decreases
nearly by half to 960 units as compared with pofatThus, a significant reduction

of the treatment cost is achieved. Moreover, the number altihelymphocytes at
the end of the treatment and the minimal number of healthyhaoytes during the
treatment remain the same. Thus, for reducing the drugagtigh, one needs to
offset it by an increase of the maximal amount of drug in théytauring the course

up to 10 units and by an insignificant growth of the number fedfdted lymphocytes

at the end of the treatment.

Let us compare the treatment strategies that result inpaiandB in details.
In Fig. 4 the graph is provided that displays the dependehtieealaily dose of the
drug on time for the criterion poir.

Figure 5 contains the graphs for the criterion pdirithat describe the dynamics
of healthy lymphocytes (the solid curve emanating from thimtpl.5), of lympho-
cytes infected with the virus of the WT type (the solid curveamating from the
point 0.5), and lymphocytes infected with the mutant virile (dashed curve ema-
nating from the point 0).

These graphs show that the drug is extensively used durieditst seven
months. By this time the number of WT-infected lymphocytesubstantially re-
duced. Simultaneously, the number of lymphocytes infeatitd the mutant virus
increases from zero to 0.5 million. Then, the intensity eatment weakens, how-
ever, the low intensity of treatment is sufficient for rechgcthe number of lympho-
cytes infected with the mutant virus to virtually zero.

Now let us consider the graph that displays the dependentte afaily dose of
the drug on time for the criterion poil (see Fig. 6).

As one can see, the schedule of the daily doses of the drughwésults in the
criterion pointB, is substantially different from the schedule related wdhterion
point A. In the case of the criterion poi®, a month-long low intensity treatment
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Figure 6. Graph of the daily dose of the drug that corresponds to therin point B.
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Figure 7. Dynamics of healthy lymphocytes, lymphocytes infectedlie virus of the WT type and
lymphocytes infected with the mutant virus (criterion gda).

follows an intensive treatment during the first two monthkef, a month-long
medium-intensity treatment follows. The subsequent tmeat is almost periodic
with a period of four months. A four-month period consiststwb months with
low to medium intensity, each of which is preceded by a morith no treatment.
The resulting dynamics of healthy lymphocytes, lymphosytéected with the WT
virus, and lymphocytes infected with the mutant virus isvehdn Fig. 7.

As one can see, the dynamics of infected lymphocytes isrdiitefrom the
lymphocyte dynamics that corresponds to the criterion tpAirfsee Fig. 5). The
number of lymphocytes infected by the WT virus is rapidly @esing. Moreover,
the number of lymphocytes infected by the mutant virus ig keghe range of 0.4
million and later reduced to practically zero.

Thus, the analysis of the Pareto frontier has helped to dp\etreatment strat-
egy that differs from the more traditional strategy thatresponds to the criterion
point A. The constructed strategy is characterized by the redueathient cost,
fewer infected lymphocytes, and a more sparing schedule.

4. Summary

The model that is used in this study is an abstract model aig disease. Thus, the
results of the study cannot be used in therapy immediatetyoie precise descrip-
tion of the illness and a calibration of the model are reqglitéowever, the results
provided here prove that Pareto frontier visualizationrise#fective technique for
constructing balanced therapy strategies. It is possidgply the method for anal-
ysis of different criteria or modifications of the model. Fample, more compli-
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cated models of the HIV infection that take into account ssvigpes of the mutant
virus or complicated immunity models can be studied. Thesimtegies for other
kinds of diseases can be developed as well.
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