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Pareto frontier visualization in multi-criteria search
for efficient therapy strategies: HIV infection example

A. V. LOTOV∗, A. S. BRATUS†, and N. S. GORBUN∗

Abstract — Visualization of the Pareto frontier is a new approach in multi-criteria decision making,
i.e. searching for efficient decisions taking multiple decision criteria into account. In this paper, visu-
alization of the Pareto frontier is used in the process of multi-criteria search for efficient strategies of
HIV therapy. By using a non-linear mathematical model of virus dynamics, which takes into account
the phenomenon of virus variability under the influence of a drug, we show that in the framework
of the model it is possible to construct a therapy strategy that balances the conflicting requirements
imposed on the therapy process.

The main goal of the paper is to show that the multi-criteria method based on Pareto
frontier visualization can effectively support a search for efficient strategies of ther-
apy of virus diseases. For this reason, the method is appliedto an abstract model of
cell infection by viruses, while virus mutations are taken into account.

Generally speaking, the aim of any decision process is to determine the best
decision among a number of available decision options (called feasible decisions)
according to the preferences of the decision makers, analysts, researchers, or other
people. The concept of the best decision can be easily formalized for a single-
criterion optimization problem: the best decision must maximize (or minimize) the
single optimization criterion over the set of feasible decisions, i.e. the feasible set.

In the process of searching for a preferable efficient solution of a complicated
decision problem one often has to take several conflicting performance indicators
into account. For many years, researchers have tried to avoid the multi-criteria for-
malization of such problems by specifying the most important performance indica-
tor as the single optimization criterion and using other indicators as a source ofa
priori constraints. However, such approach usually fails to solvethe problem, since
it constructs a decision whose criterion value is not balanced with the values of
the constraints. The reason consists in the fact that the constraints are set without
knowing the dependence of the criterion value on the constraints.

To avoid such a deadlock, multi-criteria decision support techniques are used
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that take all important performance indicators into account by considering them
as criteria. They provide an effective tool for constructing decisions that consider
different requirements and provide a balance of conflictinggoals (e.g., [1, 12]). In
this paper we apply a method that can be used in the important class of multi-
criteria decision problems, i.e., multi-criteria optimization (MCO) problems. In the
framework of MCO problems, the direction of the improvementof any particular
criterion is given in advance: one has to maximize or minimize it (while the values
of the other criteria are constant). For example, it is preferable to have a lower cost
of the therapy if the results of the therapy are the same.

From the very beginning, it is important to stress the following difference be-
tween single-criterion optimization and MCO. Normally there is a single optimal
decision that solves a single-criterion optimization problem. In contrast, in a MCO
problem, because of the presence of several criteria, a set of mathematically equiv-
alent optimal decisions does exist. Such a decision set is called the Pareto optimal
set. The Pareto optimal set consists of the decisions which cannot be improved,
i.e. improving the value of one criterion requires deteriorating the value of at least
one other criterion (formal definitions are given later). The Pareto optimal set may
contain a large number of decisions, often it is infinite.

Any decision from the Pareto optimal set corresponds to a Pareto optimal crite-
rion vector that can be considered as a point of the criterionspace. The Pareto opti-
mal criterion points form the Pareto optimal criterion set.It has a property which is
extremely important from the point of view of real-life applications. Let us consider
the feasible criterion set, i.e., the set of all criterion points that can be obtained if
the feasible decisions are used. Then the Pareto optimal criterion set is a part of the
frontier of the feasible criterion set. For this reason, thePareto optimal criterion set
is usually called the Pareto frontier. A decision, which is the best one according to
the preferences of the decision maker, must belong to the Pareto optimal decision
set and its criterion vector must belong to the Pareto frontier. Due to it, the Pareto
frontier plays an important role in analysis of MCO problems.

Multiple methods have been proposed for supporting decision makers, analysts,
researchers, and other interested persons (for the sake of simplicity, they will be de-
noted as users) in the process of searching for the most preferable decision from the
set of mathematically equivalent Pareto optimal decisions. A wide variety of such
methods is described, for example, in the book [19]. The MCO methods are usually
classified asa priori (or decision rule-based) methods, interactive (or progressive)
methods, anda posteriori (or Pareto frontier) methods. The classification is done in
accordance to the stage at which the users are involved in thedecision process.

In this paper, we apply a method that belongs toa posteriori (or Pareto fron-
tier) methods. These methods start with constructing or approximating the Pareto
frontier. Then the user is informed about the Pareto frontier. He/she is not asked
questions concerning his/her preferences before or duringthe informing procedure
(except for relatively simple questions about the improvement directions for particu-
lar criteria). Only after the informing process is completed, the user is asked to spec-
ify a preferable point that belongs to the Pareto frontier. It is important that he/she
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does not need to do it immediately, since in the Pareto frontier methods expressing
preferences in the form of a single-shot specification of thepreferred Pareto optimal
criterion point may be separated in time from the exploration of the frontier. Human
beings need time to find a balance between the criteria, thus,this opportunity is a
very important feature of the Pareto frontier methods (see [18]).

If there are only two criteria, the Pareto frontier is displayed in the criterion
plane. In this case it is usually named the tradeoff curve. The tradeoff curve gives
information on the frontiers of feasible criterion values and on criterion tradeoffs,
i.e. on the cost of improving one criterion by deterioratinganother one. This knowl-
edge helps the user to specify the preferred criterion pointdeliberately. Then the
preferred decision is computed automatically.

In multi-criteria problems with more than two criteria (so-called many-criteria
or high-order MCO problems), the user needs to study the optimal criterion points
located at the multidimensional Pareto frontier and the related criterion tradeoffs.
There are two main approaches to informing the users about the Pareto frontier in
the high-order MCO problems. First, a large number of pointsof the Pareto frontier
can be provided in the form of a list (for details see, for example, [19,23]). However,
the tradeoff information is lost in this case. Moreover, it is known that selecting
from the large lists of multi-criteria alternatives is too complicated for the user [14].
Alternative idea consists in visualizing the Pareto frontier.

Generally speaking, visualization, that is, transformation of symbolic data into
geometric information, can support human beings in forminga mental picture of the
data. Visualization on the basis of computer graphics has proved to be a convenient
technique that can help people to assess information in diverse problems. It can be
successfully applied in the Pareto frontier methods too, see [18].

The idea to approximate and visualize the Pareto frontier was introduced by
S. Gass and T. Saaty in 1955 [7] for linear decision problems with two criteria. In
our paper, the high-order Pareto frontier is visualized by using the Interactive Deci-
sion Maps (IDM) technique, which has proved to be a convenient tool for solving
this task. It has been successfully used for constructing efficient strategies in eco-
nomic, environmental and other problems (see [16]). In the framework of the IDM
technique, the Edgeworth-Pareto Hull (EPH) of the feasiblecriterion set is consid-
ered, i.e. the largest set that has the same Pareto frontier as the feasible set. The
EPH is approximated instead of the Pareto frontier in the IDMtechnique. To visu-
alize the Pareto frontier, the IDM technique displays the sets of two-criterion slices
of the EPH in a dialogue with the user. The frontiers of such slices include tradeoff
curves for the pairs of criteria (for fixed values of other criteria). By this the user is
informed of the criterion values and the criterion tradeoffs.

To find the preferred decision, the IDM technique is combinedwith methods
that use preference information in the form of the preferredcriterion point (goal).
The goal approach introduced by Charnes and Cooper [4] applies a single-shot iden-
tification of a goal and subsequent computing of a feasible decision, whose output is
the closest one (in some sense) to the identified goal. Multiple real-life applications
of the goal methods prove that the goal approach is convenient for users. However,
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the classic goal methods have a disadvantage: if the feasibility information is un-
known, a goal may happen to be distant from the feasibility frontier — it may be
too ambitious or too pessimistic. This may result in a decision which is not the best
one for the user. The IDM technique refines the goal approach by informing the
user of the feasibility of the goals. With a help of the IDM technique, the user iden-
tifies the Pareto-optimal goal directly at one of the tradeoff curves. As the result, the
risk of too ambitious or too pessimistic goals vanishes: a Pareto-optimal decision is
found, which results in the goal identified by the user. Such aprocedure has got the
name of the Feasible Goals Method (FGM), see [16]. In this paper, the IDM/FGM
technique is applied in the process of the multi-criteria search for efficient strategies
of therapy of a virus infection. For definiteness, we consider the HIV viruses.

In spite of a considerable success in the therapy of the HIV infection, the ther-
apy does not result in a complete recovery of the patient. Thecontemporary therapy
methods slow down the process of lymphocytes infection by HIV viruses and sup-
port a sufficient number of normal (healthy) lymphocytes, i.e. the condition that
permits the infected persons to live a full life during a relatively long period. How-
ever, the medicaments that support such condition are very expensive. The last cir-
cumstance is an essential barrier for spreading the contemporary therapy methods
in under-developed countries.

Another obstacle is the ability of HIV viruses to mutate. It results in the situation
when, along with the basic type of viruses, numerous mutant species (clones) exist.
Normally, the death rate of the mutant species is sufficiently high and their quantity
is small as compared with the quantity of the Wild Type (WT) viruses. The situation
changes if WT viruses are the subject of a medical treatment.A final result of using
a drug is the appearance of resistant mutants, which cause the same harm to the
health as WT viruses. On the other hand, stopping the therapyprocess leads to an
unavoidable growth of the fraction of the WT viruses. It is important to stress that
the presence of drugs in the body can have a direct negative effect on the health as
well. Therefore, in the process of developing a HIV-infection therapy, one needs to
consider several requirements:

• the number of lymphocytes infected by the WT and mutant viruses should be
on an acceptable level during the therapy and should be sufficiently small at
the end of the therapy;

• the quantity of the drug in the body should be not too high and should be safe
for the patient’s health;

• the number of healthy lymphocytes should be on an acceptablelevel during
the therapy and should be sufficiently high at the end of the therapy;

• the cost of the therapy course should not be too high.

To solve this problem by using a multi-criteria optimization method, we apply
the mathematical modelling of the HIV infection treatment.Mathematical models
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of virus dynamics have been studied in multiple publications, see, for example, the
monographs [20, 21], as well as the papers [10, 11, 22]. To construct a treatment
strategy on the basis of a HIV model, optimization methods were applied, for ex-
ample, in [2,6,8,13,24]. In these studies, the only optimization criterion was used:
it was either the integral functional of a weighted sum of thenumber of normal and
infected lymphocytes, as well as the square of the control function, or the functional
that represents such a sum at the end of the process. It is clear that by using one
criterion, one cannot guarantee the values of other performance indicators to be sat-
isfactory. Say, the number of infected lymphocytes or the drug concentration may
happen to be dangerously high and the number of normal lymphocytes may happen
to be dangerously low for the life of the patient.

Using the multi-criteria approach permits studying various real-life medical
problems, in which the development of the therapy strategy depends on many fac-
tors. In particular, using such approach one can find a suitable therapy strategy de-
pending on the health and the financial capacity of the patient.

The article consists of four sections. In Section 2 the mathematical model of the
therapy process of the HIV infection is described; it takes into account the ability
of the WT viruses to mutate. The multi-criteria optimization problem is formulated
in the same section. The multi-criteria optimization technique based on visualiza-
tion of the high-order Pareto frontier is described in Section 3. Finally, application
of the Pareto frontier visualization technique in the process of searching for HIV
therapy that satisfies the conflicting requirements is described in Section 4. The de-
veloped therapy strategy is analyzed in the same section. The paper ends up with
the Summary.

1. Mathematical model

In our model we consider an organism as a whole, without distinguishing blood,
lymphonoduses etc. The influence of the medical drug on the HIV viruses dynamics
is described by the mathematical model that includes four differential equations.
There are four state variables in the model:

• the number of uninfected (normal) lymphocytes,n;

• the number of lymphocytes infected by the WT virus,I1;

• the number of lymphocytes infected by the mutant virus,I2;

• the quantity of the medical drug in the body of the patient,h.

Note that only one mutant virus is considered in the model. The differential
equations look as follows:
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ṅ = λ −β1(h)I1n−β2(h)I2n−dn

İ1 = β1(h)(1−µ(h))I1n−α1I1
İ2 = β1(h)µ(h)I1n+ β2(h)I2n−α2I2

ḣ = −γh− (γ1I1 + γ2I2)h+ u(t)

Hereλ ,d,α1,α2,γ ,γ1,γ2 are the given parameters, andβ1(h),β2(h),µ(h) are three
functions given later.

Note that in the framework of the model, uninfected lymphocytes are repro-
duced at a constant rateλ . In general, the rate of uninfected lymphocytes repro-
duction in an organism with a healthy immune system is not constant. We use the
maximal possible value of the rate, since the case is considered when the organism
uses its maximum ability for struggling against the virus infection.

The therapy functionsβ1(h) andβ2(h) describe the influence of the drug on the
infection process. Namely, the influence of the drug consists in the blockage of the
infection process. The following functions are used in the model:

βi(h) = δi +
ri

1+ kih
(1.1)

wherei = 1,2 andδi,ri,ki are given positive parameters. As one can see, the value
of βi(h), i = 1,2, equals toδi, i = 1,2, if the drug is absent. Increasing the drug
quantityh results in the decrement of the valuesβ1(h) andβ2(h). Such properties
of the functions correspond to the increasing ability to block the infection process.

The functionµ(h) describes the influence of the drug on the process of the
growth of the fraction of the lymphocytes infected by the mutant virus. As we have
already mentioned, the increment of the drug influence results in the growth of the
fraction of the mutant viruses; thus, the fraction of the lymphocytes infected by the
mutant virus is increasing, too. To represent this property, the following monotonic
function is used

µ(h) = µ0 +
mh

A + h
(1.2)

whereµ0,m,A are some given positive parameters.
Parametersγ1 and γ2 characterize the consumption of the drug in the therapy

process. They do not depend on the drug concentration.
The functionu(t) is the control function to be found. It determines the quantity

of drug injected in a unit of time. The following constraintsrepresent the limits
of drug injection that must be satisfied at any time-momentt from the time period
under study denoted by[0,T ]:

0 6 u(t) 6 R, t ∈ [0,T ]. (1.3)

The valueR must be given in advance.
For the time period under consideration, i.e.[0,T ], one year (360 days) was

taken. It was divided in twelve time intervals, 30 days each.We assume that the day
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dose of the drug injection that satisfies the constraint (1.3) is not changed during
each of the twelve time intervals. It means that the control functionu(t), i.e. the dose
of the drug, is described by twelve parameters. These twelveparameters constitute
the decision variables, which have to be found during the decision making process.

The initial values of the state variables are assumed to be known

n(0) = n0, I1(0) = I0
1, I2(0) = I0

2 , h(0) = 0. (1.4)

The following six criterions were used in the multicriteriaoptimization:

y1 =

∫
u(t)dt

y2 = maxh(t)

y3 = I1(T )+ I2(T )

y4 = max(I1(t)+ I2(t))

y5 = n(T )

y6 = minn(t).

The first criterion describes the total quantity of the drug applied during the
period of the therapy[0,T ]. This criterion characterizes the cost of the drug. The
second criterion describes the maximal quantity of the drugin the body during the
time of the therapy. It is clear that it is desirable to decrease the values of the first
and of the second criteria.

The third and the fourth criteria are related to the sum of thelymphocytes in-
fected by the WT and the mutant viruses. The third criterion describes this value at
the end of the therapy. The fourth criterion describes the maximal number of the in-
fected lymphocytes during the therapy process. These criteria should be decreased,
as well.

The two last criteria describe the number of healthy lymphocytes at the end
of the therapy process and the minimal number of healthy lymphocytes during the
therapy process. It is necessary to maximize the values of these criteria.

As the result, we have got the nonlinear multicriteria optimization problem with
6 criteria and 12-dimensional decision vector. To solve theproblem we use the tech-
nique for visualization of the Pareto frontier.

2. Visualization technique

Let us start with several definitions used in multi-criteriaoptimization (MCO). It is
assumed here that the decisions are the points of the linear decision space Rn. Below
we denote the set of feasible decisions byX . The space of the criteria is assumed to
be them-dimensional linear spaceRm. Any pointx ∈ X results in the criterion point
y ∈ Rm, which can be computed by using the given vector-function

f (x) = ( f1(x), . . . , fm(x)).
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Thus, the set of criterion points that can be obtained by using the feasible decisions,
the feasible criterion setY , is given byY = f (X). Note that in contrast to the setX ,
the setY is not given in advance.

As usually in MCO, we have to define the improvement directions of the criteria.
For the sake of simplicity, in this section we consider the case where all criteria must
be maximized. We assume that a criterion pointy dominates the criterion point
y′, i.e. y is better thany′, if y > y′ and y 6= y′. In other words, we use the Pareto
domination. Then, the Pareto (non-dominated) frontier of the setY is of interest,
which is defined as

P(Y ) = {y ∈Y : {y′ ∈ Y : y′ > y,y′ 6= y} = ∅}.

Let Rm
− be the non-positive orthant in Rm. The set

YP = Y +Rm
−

is called the Edgeworth–Pareto Hull (EPH) of the setY . Along with the points of
the setY , the EPH includes all criterion points dominated by the points of the setY .
It is important for the EPH to be the maximal set that satisfiesP(YP) = P(Y ).

The main feature of the Interactive Decision Maps (IDM) technique that we use
in this paper consists in approximating the EPH and in subsequent interactive study
of the Pareto frontier by displaying two-criteria slices ofthe EPH approximation.
To define a two-criteria slice of the EPH, one has to relate twocriteria to the axes
and to set fixed values for the rest of criteria. Mathematically, a two-criteria slice is
defined as follows. Let us by(y1,y2) denote two ‘axis’ criteria, and byz denote the
remaining criteria, whose values are given asz = z∗. A two-criteria slice of the set
YP, parallel to the plane(y1,y2) and related toz = z∗ is defined as

G(YP,z∗) = {(y1,y2) : (y1,y2,z) ∈ YP, z = z∗}.

Note that in the case of the maximization problem, a slice ofYP contains such com-
binations of values(y1,y2), for which there exists a vectorz, z > z∗, so that the values
(y1,y2) are feasible . An example of a two-criteria slice of an EPH approximation
for a non-linear five-criterion model is provided in Fig. 1.

In Fig. 1, the values of criteriaf 1 andf 2 are related to the horizontal and vertical
axis, respectively, and the ranges of three other criteria are defined by the sliders of
the scroll-bars. Note that the equalitiesf 3= 4.5, f 4= 9.5, f 5= 10.0, which are set
fixed by the left sliders of the scroll-bars, define the slice.The Pareto frontier of the
slice ( f 1, f 2) is approximately given by the part of the frontier between the points
A andB and by a small part of its frontier near the pointC. Roughly speaking, it is
the tradeoff curve among criteriaf 1 and f 2 if the values of the rest of criteria are
not lower than the values given by the left sliders. One can move the left sliders to
study the influence of criteriaf 3, f 4, f 5 on the tradeoff curve. The right sliders of
the scroll-bars are not used while studying the EPH in the maximization case: they
are needed in the case of minimization.
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Figure 1. A two-criteria slice of an EPH approximation.

In the IDM technique, two-criteria slices are usually displayed in the form ofde-
cision maps. To define a particular decision map, in addition to relatingtwo criteria
to the axes, one has to specify a color-associated criterionamong the rest of criteria.
A decision map is a set of superimposed differently colored slices, for which the
value of the color-associated criterion changes, while thevalues of the remaining
criteria are set fixed. It is important that the frontiers of the slices of the EPH dis-
played at a decision map do not intersect — the upper slice belongs to the lower
one. An example of a gray copy of a color decision map is provided in Fig. 2.

Here, in contrast to Fig. 1, the values of criterionf 3 are associated with different
colors (shades of gray in the figure). The relation among the color (shading) and the
value range of the criterionf 3 is given in the palette located to the right of the
decision map. One can see, for example, that the maximal values of f 3 (more than
16.5) can be achieved only for small values off 1 and f 2 (not greater than 10.0).
However, the values off 3 greater than 15.0 can be achieved for relatively high
values off 2. Once again, the user can apply the sliders for studying theeffect of the
criteria associated with the scroll-bars.

As we have already said, to select a preferable decision, theIDM technique is
combined with a method that uses preference information in the form of the prefer-
able criterion point (goal) identified by the user directly at one of the tradeoff curves.
One of the goal methods developed on the basis of the IDM technique is the Feasi-
ble Goals Method (FGM), in which a decision is found that results in the identified
goal. Implementation of the FGM method depends on the methodfor approximating
the EPH, which, in turn, depends on the properties of the decision problem.

If the EPH is convex (for example, the setX is convex and the vector function
f (x) is linear), its approximation can be constructed in the formof the solution set of
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Figure 2. A decision map (gray copy).

a linear inequalities system using the methods for polyhedral approximation of con-
vex multi-dimensional sets [16]. Such an approximation supports instant displaying
the decision maps. After the exploration of the Pareto frontier and identification of
a goal, the associated decision is found by using a special single-criterion optimiza-
tion problem (see [16] for details).

If the EPH is not convex, it can be approximated by a finite system of cones
with vertices that are close to the Pareto frontier. Denoting the set of such vertices
by T , we can describe an approximation of the EPH as

T ∗ = T +Rm
−. (2.1)

The finite setT is called the approximation base. Approximating the non-convex
EPH in form (2.1) provides an opportunity of fast computing the two-criteria slices
of the EPH in the non-linear case.

There are a lot of studies (see, for example, [19]) that develop various meth-
ods for approximating the Pareto frontier by a finite number of criterion points.
In principle, these points can be used as the approximation base. Fairly often, it
is proposed to solve a large number of single objective optimization problems for
determining such points. However, one has to take into account that solving just
one non-linear non-convex global optimization problem maybe not a simple task
in a general case [9]. Thus, the approach based on a straightforward application of
classic optimization methods can be effectively used only in simple cases. Another
approach to constructing a finite number of objective pointsthat approximate the
Pareto frontier can be based on application of multi-criteria evolutionary methods
that can be applied in a general case [5]. However, the problem is still far from being
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solved, since the evolutionary methods concentrate mainlyon problems with two or
three criteria.

In the IDM technique, hybrid methods are used for constructing the approxi-
mation base. They combine global random search, gradient-based methods of local
optimization, and evolutionary methods (see for details [3,17]). There are examples
of successful approximation of such approach in complicated non-linear problems
with several hundreds of decision variables and more than three criteria [15]. Con-
structing the EPH approximation in this complicated problem, a weak notebook was
used. It took several dozen hours to complete this job.

Integrating random search with local optimization is a standard approach in
global nonlinear single-criterion optimization [9]. Suchoptimization methods are
called two-phase optimization methods. In the framework ofnonlinear IDM tech-
nique, two-phase optimization methods are applied in multi-criteria problems for
approximating the EPH as a part of hybrid methods. Random search is generally
used: points of the feasible decision setX are generated randomly and the related
criterion points are computed. To apply the local optimization technique in multi-
criteria optimization, one has to use scalar functions of the criteria. In the IDM
technique, the scalar functions depend on the parameters associated with random
criterion points, from which the scalar local optimizationstarts. To apply the ap-
proximation technique for the optimization of complicatedmathematical models,
simulation-based optimization is applied: using a code that computes the criterion
vector y = f (x) for any feasible decision vectorx ∈ X , the gradient of the scalar
function is approximated and used in a gradient-based search for a local maximum
(or minimum) of the scalar function. It is important that onedoes not need to know
any special feature of the model: the ability of the code to compute the value of
f (x) is sufficient. Due to the random search, the nonlinear IDM technique can find
the Pareto optimal points even in the case of a fairly large number of local minima
of the criteria. The process of EPH approximation ends with the application of a
multi-criteria evolutionary method [3].

If the EPH is approximated in form (2.1), the Pareto-optimalcriterion points of
the approximating baseT are found along with the Pareto-optimal decisions in the
process the gradient-based search. By identifying the goal, the user simultaneously
identifies the coney+ +Rm

− that contains the goal. Thus, the criterion pointy+ that
belongs to the approximation baseT and the decisionx+ are found, for which it
holds y+ = f (x+). The decisionx+ is considered to be the best one for the user
among the points of the approximating base.

We end this section with the main steps of the IDM/FGM technique:

Step 1. Approximating the EPH.

Step 2. Application of the IDM technique for exploration of the Pareto frontier.

Step 3. Identification of the preferred Pareto-optimal criterion point (feasible goal).

Step 4. Construction and display of the decision that results in theidentified goal.
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3. Model study

The model has been studied for plausible values of the parameters. Therefore, we do
not provide the parameters that were used in the study. The initial data were selected
by us to consider a patient with a low rate of healthy lymphocytes, a high rate of
lymphocytes infected by the WT virus, and a low rate of lymphocytes infected by
the mutant virus, namelyn0 = 1.5×106, I1 = 5×105, I2 = 15×103. Such numbers
of lymphocytes seem plausible for an infected patient before the therapy starts.

For testing the model we studied the case of the absence of treatment (u(t) = 0 at
all time momentst ∈ [0,T ]). After a relatively short time period (about two months),
the number of healthy lymphocytes decreases from 1.5 million to about 0.5 million
and the number of lymphocytes infected by the WT virus grows several times. The
number of lymphocytes infected by the mutant virus is growing very slowly in the
absence of drugs, and their influence is not important. Because of a small number of
healthy lymphocytes and a large number of infected lymphocytes, a complete loss
of immunity takes place.

Let us apply the IDM/FGM technique for constructing a therapy strategy that
provides a balance of six criteria listed above. Approximating the EPH required
several hours of computing using a standard notebook. The IDM technique allowed
exploring the Pareto frontier for all six criteria. Dozens of different decision maps
were displayed and animated. The study helped to understandpossible criterion
values, as well as the tradeoffs between the criteria. A black and white copy of one
of the color decision maps is given in Fig. 3. At the horizontal axis, the values of the
criteriony2 (the maximal amount of the drug in the body over the treatmentperiod)
are given. At the vertical axis, the values of criteriony5 are provided, i.e. the number
of the healthy lymphocytes by the end of treatment. The valueof the criteriony2 has
to be minimized, and the value of the criteriony5 has to be maximized. Thus, the
left upper frontiers of the slices are of interest in the study. The shade of gray (color
at the computer display) is related to the value of the criterion y1, i.e. the quantity of
the drug used during the treatment procedure.

In Fig. 3, the values of the criteriay3 andy4 (the number of infected lymphocytes
at the end of the treatment and their maximum number during the treatment), as
well as the criteriony6 (minimum of the healthy lymphocytes for the entire period
of treatment) are given at the scroll-bars. Note that we are interested in decreasing
the values ofy3 andy4 and increasing the value ofy6. This is why the right sliders
are used to study the influence of the criteriay3 andy4 and the left slider in the case
of y6. It is important to note that any attempt to lower the value ofy3 andy4 or to
increase the value ofy6 results in a qualitative change of the decision map: a number
of slices of the decision map disappear. This is why the full ranges of the criteriay3,
y4 andy6 are considered.

In the decision map, the lightest shade of gray represents the minimal applica-
tion of drug (06 y1 6 400). As one can see, the number of healthy lymphocytes by
the end of the treatment period (the criteriony5) does not exceed 0.4 million at this
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Figure 3. Shades of the gray copy of the color decision map.

slice, which means a complete loss of immunity. Thus, it is necessarily to consider
alternative values ofy1 that are related to different slices of the EPH.

As can be seen, it is possible to increase the number of healthy lymphocytes
by the end of the treatment (y5) up to 2 million, if application of the drug (y1) is
between 800 and 1200 units (gray area in Fig. 3). Note that thedependence ofy5
on y1 has a jump: application of the drug (y1) ranging from 400 to 800 units does
not increase the value ofy5. The dependence ofy5 on the amount of the drug in the
body (y2) is not continuous, either: ify2 is about 10 units, the value ofy5 increases
abruptly from 0.4 million to about 2 million.

Let us consider the dark gray strip that appears when the drugapplication (y1)
increases to the range from 1600 to 2000 units. Though such anincrease in the
drug application does not produce in a significant change of the number of healthy
lymphocytes at the end of the treatment period (y5), it allows to achieve the same
value ofy5 for a smaller value ofy2, i.e., the maximal amount of drug in the body
(about 9 units).

Consider the criterion pointA located in the left upper corner of the dark gray
band that arises as the result of the drug application in the range from 1600 to 2000
units. The pointA is related to the criterion valuesy1 = 1711,y2 = 8.80,y3 = 1451,
y4 = 743000,y5 = 2×106, y6 = 1.5×106. Note that the number of infected lym-
phocytes at the end of treatment is about 1.5 thousand (in contrast to about half
million in the beginning of the course). The maximal number of infected lympho-
cytes during the course is not greater than the initial number. The number of healthy
lymphocytes in the end of course, as has already been stated,is approximately equal
to 2 million, which is quite satisfactory. The number of healthy lymphocytes for the
entire period of treatment does not fall below its initial value of 1.5 million.

Let us now consider the criterion pointB located in the upper left corner of the
area that corresponds to the drug application in the range from 800 to 1200 units.
The pointB has the following criterion values:y1 = 959,y2 = 10.0,y3 = 12913,y4 =
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Figure 4. Graph of the daily dose of the drug that results in the criterion point A.

628000,y5 = 2×106, y6 = 1.5×106. As one can see, the drug application decreases
nearly by half to 960 units as compared with pointA. Thus, a significant reduction
of the treatment cost is achieved. Moreover, the number of healthy lymphocytes at
the end of the treatment and the minimal number of healthy lymphocytes during the
treatment remain the same. Thus, for reducing the drug application, one needs to
offset it by an increase of the maximal amount of drug in the body during the course
up to 10 units and by an insignificant growth of the number of infected lymphocytes
at the end of the treatment.

Let us compare the treatment strategies that result in points A andB in details.
In Fig. 4 the graph is provided that displays the dependence of the daily dose of the
drug on time for the criterion pointA.

Figure 5 contains the graphs for the criterion pointA that describe the dynamics
of healthy lymphocytes (the solid curve emanating from the point 1.5), of lympho-
cytes infected with the virus of the WT type (the solid curve emanating from the
point 0.5), and lymphocytes infected with the mutant virus (the dashed curve ema-
nating from the point 0).

These graphs show that the drug is extensively used during the first seven
months. By this time the number of WT-infected lymphocytes is substantially re-
duced. Simultaneously, the number of lymphocytes infectedwith the mutant virus
increases from zero to 0.5 million. Then, the intensity of treatment weakens, how-
ever, the low intensity of treatment is sufficient for reducing the number of lympho-
cytes infected with the mutant virus to virtually zero.

Now let us consider the graph that displays the dependence ofthe daily dose of
the drug on time for the criterion pointB (see Fig. 6).

As one can see, the schedule of the daily doses of the drug, which results in the
criterion pointB, is substantially different from the schedule related to the criterion
point A. In the case of the criterion pointB, a month-long low intensity treatment
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Figure 5. Dynamics of healthy lymphocytes, lymphocytes infected with the virus of the WT type and
lymphocytes infected with the mutant virus (criterion point A).

Figure 6. Graph of the daily dose of the drug that corresponds to the criterion point B.
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Figure 7. Dynamics of healthy lymphocytes, lymphocytes infected with the virus of the WT type and
lymphocytes infected with the mutant virus (criterion point B).

follows an intensive treatment during the first two months. Then, a month-long
medium-intensity treatment follows. The subsequent treatment is almost periodic
with a period of four months. A four-month period consists oftwo months with
low to medium intensity, each of which is preceded by a month with no treatment.
The resulting dynamics of healthy lymphocytes, lymphocytes infected with the WT
virus, and lymphocytes infected with the mutant virus is shown in Fig. 7.

As one can see, the dynamics of infected lymphocytes is different from the
lymphocyte dynamics that corresponds to the criterion point A (see Fig. 5). The
number of lymphocytes infected by the WT virus is rapidly decreasing. Moreover,
the number of lymphocytes infected by the mutant virus is kept in the range of 0.4
million and later reduced to practically zero.

Thus, the analysis of the Pareto frontier has helped to develop a treatment strat-
egy that differs from the more traditional strategy that corresponds to the criterion
point A. The constructed strategy is characterized by the reduced treatment cost,
fewer infected lymphocytes, and a more sparing schedule.

4. Summary

The model that is used in this study is an abstract model of a virus disease. Thus, the
results of the study cannot be used in therapy immediately: amore precise descrip-
tion of the illness and a calibration of the model are required. However, the results
provided here prove that Pareto frontier visualization is an effective technique for
constructing balanced therapy strategies. It is possible to apply the method for anal-
ysis of different criteria or modifications of the model. Forexample, more compli-
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cated models of the HIV infection that take into account several types of the mutant
virus or complicated immunity models can be studied. Therapy strategies for other
kinds of diseases can be developed as well.
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