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Conservative algorithm of substance transport
over a closed graph of cardiovascular system

A. G.BORZOVf S.I. MUKHIN* and N.V. SOSNIN

Abstract — Mathematical models and numerical algorithms of substarensport over a closed
graph of a cardiovascular system must satisfy the propdrepservativity. A conservative model
and a numerical algorithm for calculation of substancespart through a working heart are proposed
in the paper. The efficiency of the algorithm considered hereonfirmed by test calculations. A
method for simulation of substance transport in tissuemeading vessels is also proposed.

Simulation of transport of substances dissolved in bload€g, salts, reactants) over
a vessel channel is an urgent challenge in physiology andnawmlogy. Numerical
experiments are often required in the development of newigimad and in studies
of oxygen saturability of organs and tissues. An integrat pisuch experiments is
the development of adequate mathematical models and reahalgorithms.

Several research papers have been focused on the comstro€tmodels of
substance transport in a cardiovascular system. In genleoske papers considered
either local processes (often in many-dimensional fortiadg, or a transport of
substances over a system of vessels (in one-dimensionalasi-gne-dimensional
formulations). An example of the former approach is [13] vehgansport dynam-
ics of a substance in a separate vessel is studied in a thmamsional geometry.
The latter approach is represented by [1, 3—-7,9-12]. In][5adere a quasi-one-
dimensional model with a nonlinear diffusion coefficientswased for the calcula-
tion of flows in large vessels in the arterial section. A maafedubstance transport
over a branched vascular network without diffusion was wred in [9]. The dif-
fusion of oxygen in a model system consisting of two circléblood circulation
was considered in [10, 11]. In particular, a numerical sofuialgorithm was de-
veloped for quasi-one-dimensional hemodynamic equationthined with oxygen
transport equations.

Within the quasi-one-dimensional approach, the authoid,,i, 4, 12] use a
representation of a cardiovascular system as a whole aiits @s a graph of vessels.
Researchers have constructed a model of a cardiovascat@nsylosed through
the heart and preserving the total volume of blood. A trartspioa substance over
a vascular network was also considered and some variantesafre of the model
with respect to the transported substance were proposed.
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However, requirements for models and numerical algorittares becoming
stronger. In particular, conservativity is one of such iesuents. This is caused
by the necessity to adequately represent the influence sbldexd substances on
the whole system, because the system may often strongly eeaic to small con-
centrations (for example, those of medications), or todked amount of substances
in different groups of vessels [16]. The presence of unodiett non-physiological
sources of substances may render impossible a correcsegpation of the corre-
sponding reactions of the organism in numerical calcuhatio

In this research we propose a conservative model and thespamding numer-
ical method for the calculation of substance transportuphothe heart closing the
vascular system. The conservativity of the model here mienglobal preservation
of the substance in the whole system under the conditiorthieablood volume in
the considered closed vascular system remains constant.

The paper continues the studies in [3,4,12] and is basedeomditlel of closed
blood circulation and the calculation algorithm for blocaflparameters developed
there. The efficiency of the substance transport algoritropgsed in this paper is
confirmed by test calculations. A simulation method forukfon of substances in
tissues surrounding vessels is also proposed.

1. Substance transport over a vascular system closed throbhghe heart

1.1. Substance transport in blood vessels

We associate a vascular system with a graph of elastic wesHet vessels serve
as the graph edges, the nodes are either the points of ctiojurat two or more
vessels (so-calledranching nodes or the heart, organs, and tissues. We consider
the model of the two-chamber heart (see [3, 12]) and assottiatheart with two
nodes corresponding to the left and right ventricles.

We suppose the flow is quasi-one-dimensional in each vasselassume that
the pressur®, the velocityU, and the flonQ are constant in each cross-section of
any vessel (see [1, 12]). In addition, assume that the bl@wsity p is constant.
Considering the problem of substance transport, we asswahalt these values and
also the cross-section ar8af the vessel are known, because they are calculated by
an independent computation module of the CVSS software oagm the base of
hemodynamic equations [4,12, 15].

By C(x,t) we denote the mass concentration of the substance dissoliszbd
in the cross-sectiorof a vessel at some time momeénThe spread of the substance
is carried out by convection and diffusion in the axiirected along the vessel axis.

In the case of hemodynamic (subsonic) flows inside each yéBsespread can be
described by the equation (see [4,12]):
oC oC 0’C
ot "V ox ~Pax
whereD is the diffusion coefficient assumed to be constant withinvibssel. Equa-
tion (1.1) is parabolic and hence requires boundary canditiat both ends of the

(1.1)
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vessel (see [17]). Those are the conjunction conditionseainner graph nodes and
the boundary conditions at the boundary nodes (see [1,12]).

The conjunction conditions are formed by the requiremehtootinuity of the
concentratiorC and the volume floWV of the substance at a branching node. This
flow has convective and diffusive componentg @ndW, respectively) and takes
the following form in the quasi-one-dimensional case:

oc

W=W+Wy = CSU—DS&. 1.2)
The requirement of the continuity of the flow at a branchingenteads to the rela-
tion
oG oG
> (cisui - Dsa—'> =y (cisui - Dsd—'> (1.3)
i Tm) XJ i) X

where (*(m)) and (" (m)) are the sets of edges incoming to and outgoing from the
vertex m. Posing the continuity condition for the concentration re branching
node, we get the system of equalities

Clp=Cily 1#1 Lie(m) (1.4)

wherei and j are all possible numbers of edges frém) = *(m) + ~(m).

1.2. Model of the heart

A heart is considered as a pump providing in its normal camdia periodic inflow
of blood into the aorta and then into the whole vascular syste the two-chamber
point model, the heart consists of a ventricle pushing ooodlinto the aorta and
an auricle through which blood gets into the ventricle fréva venous vessels. The
work of the heart is cyclic, and each cycle consists of theodesf blood accumula-
tion in the ventricle diastold and the period of blood output into the aorsggtole.

In this case the blood is not released into arterial vessethastole and does not
come to the ventricle from the venous part of the vasculaesygauricle) during
the systole.

The heart is represented by two vertices in the graph of idbese vertices
serve as the ‘input’ and ‘output’ of the circle of blood citation. There exist dif-
ferent methods to simulate the cardiac function. We use thdehtoordinated in its
flows and described in detail in [1, 12]. This model statedoflewing dependence
of the blood volume in the heart ventridly on time:

t
Vit (0) — / Qa(T)dr, 0<t<Ts
Vh(t) = % (1.5)
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whererts, 14 are the durations of the systole and diastole, respectivgl{0) means

the blood volume in the ventricle at the beginning of the entrrcardiac cycleQa
andQy correspond to the cardiac output into the aorta and the infitmvthe ven-
tricle from the auricle. The voluméy is bounded by the valué4in andVimax. If V4
reaches the valué,,x in the course of blood accumulation, the diastole stops and
the systole begins. Similarly, Wy reaches the valu€y,, in the process of blood
release, then the systole is replaced by the diastole. Qamgrally speaking, the
valuests and 1y are not constant, but the model blood circulation systensidened
here is closed and the total blood volume is preserved.

The flow Qa(t) is specified explicitly (a typical form of dependence was-pre
sented in [12]), the value®y (t) andVy(t) are calculated in the solution of the
system of hemodynamic equations ( [2, 4]), and in the subst&ansport problem
we assume these values to be known.

1.3. Substance transport through the heart

We assume that the substance carried by blood is uniformslyilalited inside the
ventricle and has the concentratiog(t). A variation ofCy in the systole can occur
only due to the inflow of the substance from the auricle VRyandW, we denote

the flows of the substance from (1.2) at the entrance to the imetlhe venous part
of the system and at the outlet from the heart at the beginoiitige aorta. Then in
the systolic period (&t < 15) we have

t
Cri (Vs (t) = Cit (0) Wiy (0) — / Wa(1)dr

J (1.6)
W, (t) =0.
Similarly, in the diastole s <t < 14) we have
t
Cht ()i (t) = Ci (T5) Via (Ts) +T/V\&/(T)dr wn

Wa(t) = 0.

In both cases the volumé, (t) can be calculated by formula (1.5). The formula-
tion of the problem within the model described here is théofaihg: determine
the function @x,t) on the graph of vessels with the heart so that it satisfies -equa
tion (1.1) at the inner points of each vessel, conditi¢fs3) and (1.4) hold at the
branching nodes, relation@l.6) hold in the systole, and relatior(&.7) hold in the
diastole

1.4. Difference problem

In order to solve numerically the problem formulated here,wse the method of
finite differences. Introduce the uniform grid, = {x; = ih, i =0,...,N} in each
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vessel. Assume that the step in timis constant. Along with the ‘integer’ poinis,
we consider ‘half-integer’ point&_ 1, =% +h/2,i=0,...,N—1. Instead of the
functionsC, U, S W of a continuous argument, we consider their grid analogues
u, s, w. Construct difference approximations for all conditiorishe problem.
The following approximation is used for equation (1.1) fiefi at the inner
points of a vessel:
GG +uic§<0i°>:Dc)((—§?), i=1.. N—-1 (1.8)

wherec andc; are approximate values of the functiGrat the points; on the upper
and lower time layers, respectively, and, according to,[#4] use the notations
_ Ciy1—Gi1 . Ciy1— 26 +Cig (0) — gé
Ci = ~n Crxi = e c¢? =o€+ (1-o0)c.

In order to construct an approximation of the boundary dims at branching
nodes (conjunction conditions), we use the following agpnations for the flows:

& — &
W():éo&)UO—Ds)_F—Sl' 1~ C
2 h
S tSea &—Gus
2 h

(1.93)

WNZCNS\IUN—D

(1.9b)

Introduce the notations

E_ 0 ifmcorrespondstey _ | -1 if E=0onthe edgé
~ I N if mcorresponds tay, ~]1 if E=Nonthe edgé.

Under these notations, the conditions of continuity of tbe/fl and concentrations
are written in the following way [8]:

> ZiWEhi =0 (1.10)

ie(m)

éE‘h :éE I iaje(m)a I#J (lll)

1.5. Approximation of boundary conditions on the heart

Systems of equalities (1.8), (1.10)—(1.11) giv& + 1) — 2 conditions, whereas
the number of all unknowns, including; is equal tol (N + 1) +1 (I means here
the number of the edges of the graph). We have to supplemergytem with
three more conditions. However, relations (1.6), (1.7)taononly two equations
both for the systole and the diastole. These equationsidesitre balance of the
concentrations in the heart and in the vessel adjacent tbehd valve closed at
the moment (the aorta in diastole and the venous sinus ioleyst herefore, it is
necessary to describe separately the balance of the sobstatie end of the vessel
communicating with the heart at that moment.
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Figure 1. Heart and adjacent vessels. Flows of substance.
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Figure 2. Heart and auricle in diastole.

1.5.1. Balance of substance at the heart interface.Consider a part of the blood
vascular system containing the heart and the ends of thecadjaessels (see Fig. 1).
For definiteness sake, let the coordinate axis of the adjaemsel be directed
to the heart in the auricle and from the heart in the aorta.
The balance of the substance in the venous part in the sedryenk,| is de-
termined in the time periof;,t;] in the diastoleby the following integral equation:

XN ‘ tz.
/ S tde: / (WNfl_WN)dt'
XN-1 ! t1

The balance equation in the segmp@tx;] in the aorta in thesystoleis similar:

t2

7sq§jdx _ /(V\/O—Wl)dt.
Xo

t1

Consider a technique of approximation of these integratiaais.

Auricle. Consider the condition valid in the diastole in the venous githe vascu-
lar system. Approximate the integral at the left-hand siglthle quadrature formula

XN

t
/ sd “dx~ (6, ¢,)s,h. (1.12)
XN—-1 e

Here we have used the notatiép= yfy + (1—y) fy_, for the grid functionsc and
s. The choice ofy determines a particular quadrature and, generally spgakin
fluences the order of approximation of the integral at theHahd side of (1.12)
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(see [8]). Fory = 1/2 the approximation used here has the third order, and in the
general case the second order of approximation is attaBeldw we consider the
values ofy from the segmenD, 1.

Now consider the right-hand side of the balance equationus®ehe following
approximations for the flows:

Cy — Cn—1
h

Wh-1 = Sy-1Un—1Cnvos — D3\171
CH —CN

Wy =S UyCy — DSy —

In this case the boundary condition in the auricle takes tlleviing form (not
taking into account the weight multipliers):

A Cy — Gy
hsy(CV_ CV) =T <3u1 Uy 1Cy 1 —Dsya " h A l>
(1.13)
Cy — Cy

—r<sNuNcN—Dsu n > ye[0,1].

The expression for the flow, corresponds to the part of the venous channel at
the boundary with the heart presented in Fig. 2. In this sgation, the value,
is associated with the fictitious poirt, , = Xy + h.

Now we get an approximation of the first equation of syster)(1t follows
from (1.5) that in the diastole we have

t+At
Vi (t 4 At) = Vi (t) + / (%, T)U (%, T) dT
t

which can be approximated by the relation
\7H == VH + TS\IUN‘
Similarly, from (1.7) we get

t+At
Cor(t+ DUV (t +At) = Cy(t) Vi (t) + / W(7)dr.
t

This relation can be approximated in the following way:

h
Gy = . 1.14
H V, + TSy Uy (1.14)

Cy — C\_
VHCH+T<S\IUNCN_DS\I$>
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Cyg = Cp | »

Figure 3. Heart and aorta in systole.

Aorta. Consider the ventricle-aorta zone in the systole (see Figl'tee model is
based on the equality
C==¢Cy. (1.15)

We calculate the flowvg from the heart to the aorta by the formula
C]_ - CH

T

Similar to formula (1.14), from (1.5) we get that the balanf¢he substance
inside the ventricle in the systole takes the form

Wo =SoUpCy —DSo

Cl—CH

VHCH—T S)U()CH—DS) h

¢ = . 1.16
H Vi Tl (1.16)

Closed heart valve.Let us obtain an approximation of the boundary conditions ap
pearing in the auricle in systole and in the aorta in diasiae in the periods when
these vessels do not communicate with the heart. The gridifunswg andw, are
used as approximate values\W§ andW,, these functions are defined by formu-
las (1.9). Then, according to relations (1.6), (1.7), thesinig boundary conditions
have the form

éosouo—Dsonrsl 01;00 —0 (1.17a)
& — &
éNsNuN—DS“LZSH A . oo (1.17b)

The relations obtained above supplement the set of bourdaditions for the heart
in the diastole and systole, respectively.

Difference schemeThe difference scheme constructed here includes:
e equations (1.8) at the inner points of vessels;

e relations (1.11) and (1.10) at the branching nodes;
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~—— C(t) u(z,t), a(x,t)

Figure 4. Diffusion of substance in vessel-tissue system: one-d&neal model.

e boundary conditions (1.16), (1.17b), and (1.15) for thetieahe systole;
e boundary conditions (1.14), (1.17a), and (1.13) for thetieahe diastole.

2. Transport of substance in the vessel-tissue system

Consider one- and two-dimensional models of distributdfision through a ves-
sel wall into a tissue adjacent to the vessel for a substamted by blood. Within
a one-dimensional approximation, the concentration ottreéed substance is as-
sumed to be the same in the whole vessel and also at the pbihstssue equidis-
tant from the vessel wall. For example, it is convenient te sisch model for the
study of propagation of a substance in vessels of a smaltiesrgfor a small vari-
ation of the concentration along the vessel. Within a twaetisional approxima-
tion, the values are assumed to be different not only at #sing distances from
the vessel, but also along the vessel itself, which allow® take into account the
specificity of the concentration profile in the vessel.
Note that in this paper a tissue is considered in a rectangetametry.

2.1. One-dimensional model

Consider a vessel of a blood vascular system together wathdfacent tissue (see
Fig. 4). Direct the coordinate axis along the tissue, assethe poink = 0 with the
wall of the vessel adjacent to the tissue. The pgiatl bounds the tissue from the
other side. A substance with the volume concentrafi¢h) is contained inside the
vessel. We assume that the concentration is a known fundttemtissue is consid-
ered as a porous sorbing medium where we point out two typesrafentrations:
the concentrationi(x,t) of the substance contained in the pores of the sorbent and
the quantity of the substance absorbed by a unit volume ofdh@ent denoted by
a(x,t) (see [17,18]).

We study the propagation dynamics of the substance in tigisyassuming
that a two-way exchange takes place between the vesselatidghe; the intensity
and direction of this exchange depend on the differencedmithe concentrations
u(0,t) andC(t). In addition to sorption and desorption, we have the diffosif the
free substance(x,t). The coefficient of diffusion is assumed to be constant.

Write the balance equation for the transported substantte ifollowing differ-
ential form [8, 17]: ,

17} J<u
EUZDW_B(U_Va)_ fiiss. (2-1)
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In order to describe the sorption-desorption directly, we the sorption kinetic
equation with the Henry isotherm [17]:

98— B(u-ya) + fuss 22)
The coefficienty here specifies the point of equilibrium betwaeanda: in the case
u > yathe valuea grows, i.e., we have absorption of the substance by the sprbe
and ifu < ya, then the quantity of the bound substance decreases. Thipleul3
called the kinetic coefficient is responsible for the intgnsf absorption, or release
of the substance by the sorbent. Bys we have denoted here the external volume
flow of the substance. For example, it may correspond to tkerphion of oxygen
or glucose by a working muscle, to the release ob @b the blood vascular system
in the process of work of muscles and organs, or may take itdouat chemical
reactions with the sorbed substance, etc.

The following equation is taken as the boundary conditiarttie free concen-
trationu(x,t) on the boundary with the vessel=£ 0):

%(O,t) = 5(t) (au(t)u(0,t) — C(t)) (2.3)

it describes the exchange of the substance between the tigglithe blood vas-
cular system. The equilibrium point is set by the coefficiepta,u = C) and the
exchange rate is governed by the valge

We supplement system of equations (2.1)—(2.3) with theiotig second-order
homogeneous boundary conditions:

Ju Jda Jda
=73 (L) =5(01=0 (2.4)

expressing the absence of the corresponding flows of thdasdes through the
boundaries. In addition, we assume the initial conditions

a(x,0) = ap(x), u(x,0) =up(x). (2.5)

Within the model described above, the formulation of theéofgm is the follow-
ing: find the functions (x,t), a(x,t) determined in the domaifi0 < x < I,t > 0}
satisfying equation§2.1), (2.2) inside the domain and boundary and initial condi-
tions (2.3)—(2.5)on its boundaries.

2.2. Two-dimensional model

We consider a blood vessel with adjacent tissue represastedtwo-dimensional
rectangular domain (see Fig. 5).

As before, direct the axis along the tissue and the axisalong the vessel. In
the coordinates introduced in this way, the tissue occupiesomain0,ly] x [0,ly],
the vessel has the lengthand is placed along the straight lire= 0.
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Figure 5. Diffusion of substance in vessel-tissue system, two-dsioeral model.

The vessel contains a substance of the concentr@tie(y, t), and the tissue is
a sorbing medium where we consider the concentrat{ofs y,t)) and (a(x,y,t))
of the free substance and the substance bound by the sorbspctively. As be-
fore, we assume that diffusion of the free substameith the constant coefficient
D) takes place in the tissue in addition to sorption/desomptand the exchange be-
tween the vessel and the tissue is two-way and depends oiiffdrente between
the concentrations(0,y,t) andC(y,t).
By the analogy with the one-dimensional case, we can writedifferential
equation describing the balance of the substance in theetiss
0 0%u  d4u
e (a+u)=D (0)(2 + dy2> . (2.6)

As above, we use the sorption kinetic equation with Henryhesion (2.2). In the
two-dimensional case, the boundary conditiondfan the boundary = 0 takes the
form )

u

&(Oawt) = %u(y>t) (au()’at) U(O, yat) —C(yat)) . (27)

Supply the system of equations with the following secordeohomogeneous
boundary conditions:

Ju Jda Jda
&(Ihyat) = &(anat) = &(IXayat) = O (28a)
au Jau fJda Jda
0—y(x, O,t) - 0—y(X,|y,t) - 0—y(x, O,t) - a—y(X,ly,t) - 0 (28b)
In addition, we assume the initial conditions
u(x,y;0) = uo(x,y), a(xy,0) = ao(x,y). (2.9)

Within the model described here, the formulation of theeddhtial problem
is the following: find the functions (x,y,t), a(x,y,t) determined in the domain
{[0,1x] x [0,ly], t > O} satisfying equation.6), (2.2)inside the domain and bound-
ary and initial conditiong2.7)—(2.9)on its boundaries.
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111 II

Figure 6. Model graph of vessels.
3. Test calculations

The calculations of hemodynamic parameters were perfomvithdthe use of the
CVSS software package (CardioVascular Simulating Systieenpackage for cal-
culation of hemodynamic flows developed by the researchietieoDepartment
of Mathematical Methods, Computational Mathematics andeDyetics Faculty of
the Lomonosov Moscow State University) [4]. The algorithasdibed in this pa-
per was implemented according to the standards of this packad was integrated
into it. The following model graph of the blood vascular gystwas used for test
calculations (see Fig. 6). The circle of blood circulatieridrmed by four vessels I,
I, 11, IV. Nodes 1,2, 3 correspond to the points of the vessel conjunctions, nddes
and 4 are boundary for the graph and correspond to the helge (ds considered
as the aorta and edge IV is considered as the venous singsariidws indicate the
typical direction of the blood flow.

The graph was taken with a small number of edges for simplafitanalysis
and visible clarity of calculation results.

The initial conditions on edge Il (of length) were specified by the function

C(x,0) = % [cos(n(Z% - 1)) 11|, xeolL] 3.1)

taking the value O at the ends of the segm@rit] together with its first derivative.
The initial concentrations on the other edges and in thet hesre taken equal to 0.

We used the following scheme with the condition on the aeritiffering from
formula (1.13) by the presence of weight factors:

~ Cy — Cno
hs/ (&, —cy) =1 <s“uN1C&"ll) ~D§y l>
(3.2)

—T(&UNC&“2>—D& - ) ye0,1].

The calculations were performed according to the impliaiiant of the algorithm,
01 = 0 = 1. The illustrations presented below correspond to theutations with

y=3/4.
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(a) Volumes of substance for small time period¢b) Volumes of substance for large time periods
Figure 8. Volumes of substance fogr= 3/4.

Flows of substance on the heart boundaryAs is seen from Fig. 7a, convective
flows take both positive and negative values, which ind#te appearance of re-
verse flows. The absolute magnitudes of the convective flaws the order 10
ml/s for large time periods.

Diffusive flows are presented in Fig. 7b. These flows becongdigibly small
in comparison with the convective ones (of orderd@nl/s). It is seen from the
graph that the diffusive transport of substance betweerhdlagt and the aorta in
the systole stops after some period of time, which is caugdatiéthe fact that the
substance concentrations in the heart and at the beginfiagra become equal.
Note also that the diffusive and convective flows are absetitd part of the blood
vascular system where the heart valve is closed (in thelauni¢he systole and at
the beginning of the aorta in the diastole).

Total volume of transported substanceThe total volumes of the substance in the
vessels, in the heart, and in the whole system are presanfeid.i8. The volume
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in the heart (lower curve) and in the vessels (middle curve)changed quasi-
periodically. We can point two types of oscillations. Okatibns of the first type
have the period of order 0.8s and are related to the accuomnlahd release of
the substance within a single cardiac cycle. Oscillatidrth®second type are well
visible for small time periods (about 10-15 s), their peiimdbout 5s. These oscil-
lations are caused by the presence of a concentration wive system. Its advance
through the heart ventricle causes an overall increaseeadubstance in the heart
(with continuing oscillations of the first type) and its slamidecrease in the vessels.
Both types of oscillations of the substance volume in thetrea in the antiphase
to the oscillations of the substance volume in the vessdis.tdtal volume of the
substance in the system is changed for small time periods.iFbaused by the fact
that, from the viewpoint of hemodynamics, these calcutetibegin from zero, i.e.,
from the state of the system when the blood flow velocities predsures are not
coordinated (as a rule, equal to zero). The computatiogaki#thm has to bring the
system into a working state. The system of hemodynamic emsafor the graph
(forming the base of the solution of the substance trangpotilem) is essentially
nonlinear, and an iterative process is used at each timdatép solution. This cal-
culation stage, which is the most difficult from the compiataal viewpoint, con-
tains iterations not completely convergent, which indaitamplies a disbalance of
the total blood volume, large gradients of the functions, ©ntil the system comes
to a mathematically or physically adequate mode (the sakibn of the total blood
volume is the indicator of such mode), i.e., while the iterat on time steps do not
converge, the errors are essential in calculations of hgnedic parameters (and
hence in concentrations), and the whole stage is consideredspecific iterative
process. A solution to this problem will be the subject offfer studies.

When the system attains the stationary mode (25-30 s), thlevtume of the
substance is preserved and remains the same in prolongadati@ains. Thus, the
algorithm proposed here is a conservative model of a diffusubstance transport.

Concentration profile. The dynamics of the substance transport over a model blood
vascular system is presented in Fig. 9. At the initial timemeat we have substance
distribution (3.1) specified in vessel lll. In the course akaardiac cycle, the per-
turbation reaches the heart. In this case the amplitudeeotdimcentration wave
decreases, but the total length of vascular channels cimgathe transported sub-
stance is increased. The passage of the substance thraugiealt takes several
cardiac cycles. Thus, for example, for 3.4 s the transported substance is present
both in the venous and arterial parts of the blood vascuktesy. The release of the
substance from the heart into the aorta produces a new dopatien wave going
through all vessels of the vascular system until it reacheseart. The transported
substance is distributed over all parts of the vessel chatugeto diffusion, and a
concentration background is formed= 5.27 s). The substance accumulated in the
auricle passes through the heart. A new concentration Bayerierated (= 6.65 s)

and the process is repeated. The convection and diffusguit i@ a uniform distri-
bution of the transported substance over the blood vassytdem (approximately
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Figure 9. Variation of substance concentration profile in vessels.

Concentration

Concentration

Concentration

Concentration

Time: 1.160 s

15

0.8 F

0.6 F

0.4 F

Time: 3.400 s

it

0.8 F

0.6 F

04 F

Time: 6.650 s

1T

0.8 F

0.6 F

04 F

0.2 b

N\

I Vessels

Time: 18.290 s

it

0.8 F

0.6 F

04 F

0.2 F

v



16 A. G. Borzov, S. |. Mukhin, and N. V. Sosnin

by 25-30 s). The effect of the actual disappearance of dffusubstance transport
is related to this fact.

The process described here corresponds to the physioldbg spread of a sub-
stance introduced locally (for example, by injection) aver cardiovascular system.

Conclusion

A model of diffusive transport of a dissolved substance @veystem of vessels
closed through the heart and models of distributed diffusiba substance in tis-
sues are proposed in the paper. The model is conservativét preserves the total
amount of the substance in the system under the consenwttitire total blood

volume. The corresponding numerical algorithms are implatied in the standard
of the CVSS package (software complex for calculation of bynamic flows de-
veloped by researchers of the Department of Mathematicahddis of the Com-
putational Mathematics and Cybernetics Faculty of the Linosov Moscow State
University) and are integrated into this software packakgst calculations have
confirmed the efficiency of the proposed algorithms.
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