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Conservative algorithm of substance transport
over a closed graph of cardiovascular system

A. G. BORZOV∗, S. I. MUKHIN∗, and N. V. SOSNIN∗

Abstract — Mathematical models and numerical algorithms of substance transport over a closed
graph of a cardiovascular system must satisfy the property of conservativity. A conservative model
and a numerical algorithm for calculation of substance transport through a working heart are proposed
in the paper. The efficiency of the algorithm considered hereis confirmed by test calculations. A
method for simulation of substance transport in tissues surrounding vessels is also proposed.

Simulation of transport of substances dissolved in blood (gases, salts, reactants) over
a vessel channel is an urgent challenge in physiology and pharmacology. Numerical
experiments are often required in the development of new medicines and in studies
of oxygen saturability of organs and tissues. An integral part of such experiments is
the development of adequate mathematical models and numerical algorithms.

Several research papers have been focused on the construction of models of
substance transport in a cardiovascular system. In general, those papers considered
either local processes (often in many-dimensional formulation), or a transport of
substances over a system of vessels (in one-dimensional or quasi-one-dimensional
formulations). An example of the former approach is [13] where transport dynam-
ics of a substance in a separate vessel is studied in a three-dimensional geometry.
The latter approach is represented by [1, 3–7, 9–12]. In [5–7], where a quasi-one-
dimensional model with a nonlinear diffusion coefficient was used for the calcula-
tion of flows in large vessels in the arterial section. A modelof substance transport
over a branched vascular network without diffusion was considered in [9]. The dif-
fusion of oxygen in a model system consisting of two circles of blood circulation
was considered in [10, 11]. In particular, a numerical solution algorithm was de-
veloped for quasi-one-dimensional hemodynamic equationscombined with oxygen
transport equations.

Within the quasi-one-dimensional approach, the authors in[1, 3, 4, 12] use a
representation of a cardiovascular system as a whole or its parts as a graph of vessels.
Researchers have constructed a model of a cardiovascular system closed through
the heart and preserving the total volume of blood. A transport of a substance over
a vascular network was also considered and some variants of closure of the model
with respect to the transported substance were proposed.
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However, requirements for models and numerical algorithmsare becoming
stronger. In particular, conservativity is one of such requirements. This is caused
by the necessity to adequately represent the influence of dissolved substances on
the whole system, because the system may often strongly react even to small con-
centrations (for example, those of medications), or to the total amount of substances
in different groups of vessels [16]. The presence of uncontrolled non-physiological
sources of substances may render impossible a correct representation of the corre-
sponding reactions of the organism in numerical calculations.

In this research we propose a conservative model and the corresponding numer-
ical method for the calculation of substance transport through the heart closing the
vascular system. The conservativity of the model here meansthe global preservation
of the substance in the whole system under the condition thatthe blood volume in
the considered closed vascular system remains constant.

The paper continues the studies in [3,4,12] and is based on the model of closed
blood circulation and the calculation algorithm for blood flow parameters developed
there. The efficiency of the substance transport algorithm proposed in this paper is
confirmed by test calculations. A simulation method for diffusion of substances in
tissues surrounding vessels is also proposed.

1. Substance transport over a vascular system closed through the heart

1.1. Substance transport in blood vessels

We associate a vascular system with a graph of elastic vessels. The vessels serve
as the graph edges, the nodes are either the points of conjunction of two or more
vessels (so-calledbranching nodes), or the heart, organs, and tissues. We consider
the model of the two-chamber heart (see [3, 12]) and associate the heart with two
nodes corresponding to the left and right ventricles.

We suppose the flow is quasi-one-dimensional in each vessel,i.e., assume that
the pressureP, the velocityU , and the flowQ are constant in each cross-section of
any vessel (see [1, 12]). In addition, assume that the blood density ρ is constant.
Considering the problem of substance transport, we assume that all these values and
also the cross-section areaSof the vessel are known, because they are calculated by
an independent computation module of the CVSS software complex on the base of
hemodynamic equations [4,12,15].

By C(x, t) we denote the mass concentration of the substance dissolvedin blood
in the cross-sectionx of a vessel at some time momentt. The spread of the substance
is carried out by convection and diffusion in the axisx directed along the vessel axis.
In the case of hemodynamic (subsonic) flows inside each vessel, this spread can be
described by the equation (see [4,12]):

∂C
∂ t

+U
∂C
∂x

= D
∂ 2C
∂x2 (1.1)

whereD is the diffusion coefficient assumed to be constant within the vessel. Equa-
tion (1.1) is parabolic and hence requires boundary conditions at both ends of the
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vessel (see [17]). Those are the conjunction conditions at the inner graph nodes and
the boundary conditions at the boundary nodes (see [1,12]).

The conjunction conditions are formed by the requirements of continuity of the
concentrationC and the volume flowW of the substance at a branching node. This
flow has convective and diffusive components (Wc andWd, respectively) and takes
the following form in the quasi-one-dimensional case:

W = Wc +Wd = CSU−DS
∂C
∂x

. (1.2)

The requirement of the continuity of the flow at a branching node leads to the rela-
tion

∑
i∈+(m)

(

CiSiUi −DSi
∂Ci

∂x

)

= ∑
i∈−(m)

(

CiSiUi −DSi
∂Ci

∂x

)

(1.3)

where (+(m)) and (−(m)) are the sets of edges incoming to and outgoing from the
vertex m. Posing the continuity condition for the concentration at the branching
node, we get the system of equalities

Ci
∣

∣

m = Cj
∣

∣

m, i 6= j, i, j ∈ (m) (1.4)

wherei and j are all possible numbers of edges from(m) = +(m)+−(m).

1.2. Model of the heart

A heart is considered as a pump providing in its normal condition a periodic inflow
of blood into the aorta and then into the whole vascular system. In the two-chamber
point model, the heart consists of a ventricle pushing out blood into the aorta and
an auricle through which blood gets into the ventricle from the venous vessels. The
work of the heart is cyclic, and each cycle consists of the period of blood accumula-
tion in the ventricle (diastole) and the period of blood output into the aorta (systole).
In this case the blood is not released into arterial vessels in diastole and does not
come to the ventricle from the venous part of the vascular system (auricle) during
the systole.

The heart is represented by two vertices in the graph of vessels, these vertices
serve as the ‘input’ and ‘output’ of the circle of blood circulation. There exist dif-
ferent methods to simulate the cardiac function. We use the model coordinated in its
flows and described in detail in [1,12]. This model states thefollowing dependence
of the blood volume in the heart ventricleVH on time:

VH(t) =



























VH(0)−

t
∫

0

QA(τ)dτ , 0 6 t 6 τs

VH(τs)+

t
∫

τs

QV(τ)dτ , τs 6 t 6 τs+ τd

(1.5)
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whereτs, τd are the durations of the systole and diastole, respectively; VH(0) means
the blood volume in the ventricle at the beginning of the current cardiac cycle;QA
andQV correspond to the cardiac output into the aorta and the inflowinto the ven-
tricle from the auricle. The volumeVH is bounded by the valuesVmin andVmax. If VH
reaches the valueVmax in the course of blood accumulation, the diastole stops and
the systole begins. Similarly, ifVH reaches the valueVmin in the process of blood
release, then the systole is replaced by the diastole. Thus,generally speaking, the
valuesτs andτd are not constant, but the model blood circulation system considered
here is closed and the total blood volume is preserved.

The flow QA(t) is specified explicitly (a typical form of dependence was pre-
sented in [12]), the valuesQV(t) andVH(t) are calculated in the solution of the
system of hemodynamic equations ( [2, 4]), and in the substance transport problem
we assume these values to be known.

1.3. Substance transport through the heart

We assume that the substance carried by blood is uniformly distributed inside the
ventricle and has the concentrationCH(t). A variation ofCH in the systole can occur
only due to the inflow of the substance from the auricle. ByWV andWA we denote
the flows of the substance from (1.2) at the entrance to the heart in the venous part
of the system and at the outlet from the heart at the beginningof the aorta. Then in
the systolic period (06 t 6 τs) we have

CH(t)VH(t) = CH(0)VH(0)−

t
∫

0

WA(τ)dτ

WV(t) = 0.

(1.6)

Similarly, in the diastole (τs 6 t 6 τd) we have

CH(t)VH(t) = CH(τs)VH(τs)+

t
∫

τs

WV(τ)dτ

WA(t) = 0.

(1.7)

In both cases the volumeVH(t) can be calculated by formula (1.5). The formula-
tion of the problem within the model described here is the following: determine
the function C(x, t) on the graph of vessels with the heart so that it satisfies equa-
tion (1.1) at the inner points of each vessel, conditions(1.3) and (1.4) hold at the
branching nodes, relations(1.6) hold in the systole, and relations(1.7) hold in the
diastole.

1.4. Difference problem

In order to solve numerically the problem formulated here, we use the method of
finite differences. Introduce the uniform gridωh = {xi = ih, i = 0, . . . ,N} in each
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vessel. Assume that the step in timeτ is constant. Along with the ‘integer’ pointsxi ,
we consider ‘half-integer’ pointsxi+1/2 = xi + h/2, i = 0, . . . ,N−1. Instead of the
functionsC, U , S, W of a continuous argument, we consider their grid analoguesc,
u, s, w. Construct difference approximations for all conditions of the problem.

The following approximation is used for equation (1.1) fulfilled at the inner
points of a vessel:

ĉi −ci

τ
+uic

(σc)
◦
x,i

= Dc(σd)
x̄x,i , i = 1, . . . ,N−1 (1.8)

where ˆci andci are approximate values of the functionC at the pointxi on the upper
and lower time layers, respectively, and, according to [14], we use the notations

c◦
x,i

=
ci+1−ci−1

2h
, cx̄x,i =

ci+1−2ci +ci−1

h2 , c(σ) = σ ĉ+(1−σ)c.

In order to construct an approximation of the boundary conditions at branching
nodes (conjunction conditions), we use the following approximations for the flows:

w0 = ĉ0 s0 u0−D
s0 +s1

2
·
ĉ1− ĉ0

h
(1.9a)

wN = ĉN sN uN −D
sN +sN−1

2
·
ĉN − ĉN−1

h
. (1.9b)

Introduce the notations

E =

{

0 if mcorresponds tox0

N if mcorresponds toxN,
zi =

{

−1 if E = 0 on the edgel i
1 if E = N on the edgel i .

Under these notations, the conditions of continuity of the flows and concentrations
are written in the following way [8]:

∑
i∈(m)

ziwE
∣

∣

li
= 0 (1.10)

ĉE
∣

∣

li
= ĉE

∣

∣

l j
, i, j ∈ (m), i 6= j. (1.11)

1.5. Approximation of boundary conditions on the heart

Systems of equalities (1.8), (1.10)– (1.11) givel(N + 1)− 2 conditions, whereas
the number of all unknowns, including ˆcH is equal tol(N + 1) + 1 (l means here
the number of the edges of the graph). We have to supplement the system with
three more conditions. However, relations (1.6), (1.7) contain only two equations
both for the systole and the diastole. These equations describe the balance of the
concentrations in the heart and in the vessel adjacent to theheart valve closed at
the moment (the aorta in diastole and the venous sinus in systole). Therefore, it is
necessary to describe separately the balance of the substance at the end of the vessel
communicating with the heart at that moment.
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Figure 1. Heart and adjacent vessels. Flows of substance.
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Figure 2. Heart and auricle in diastole.

1.5.1. Balance of substance at the heart interface.Consider a part of the blood
vascular system containing the heart and the ends of the adjacent vessels (see Fig. 1).

For definiteness sake, let the coordinate axis of the adjacent vessel be directed
to the heart in the auricle and from the heart in the aorta.

The balance of the substance in the venous part in the segment[xN−1,xN] is de-
termined in the time period[t1, t2] in thediastoleby the following integral equation:

xN
∫

xN−1

SC
∣

∣

∣

t2

t1
dx =

t2
∫

t1

(WN−1−WN)dt.

The balance equation in the segment[x0,x1] in the aorta in thesystoleis similar:

x1
∫

x0

SC
∣

∣

t2
t1

dx =

t2
∫

t1

(W0−W1)dt.

Consider a technique of approximation of these integral relations.

Auricle. Consider the condition valid in the diastole in the venous part of the vascu-
lar system. Approximate the integral at the left-hand side by the quadrature formula

xN
∫

xN−1

SC
∣

∣

∣

t2

t1
dx≈ (ĉγ −cγ)sγ h. (1.12)

Here we have used the notationfγ = γ fN +(1− γ) fN−1 for the grid functionsc and
s. The choice ofγ determines a particular quadrature and, generally speaking, in-
fluences the order of approximation of the integral at the left-hand side of (1.12)
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(see [8]). Forγ = 1/2 the approximation used here has the third order, and in the
general case the second order of approximation is attained.Below we consider the
values ofγ from the segment[0,1].

Now consider the right-hand side of the balance equation. Weuse the following
approximations for the flows:

wN−1 = sN−1 uN−1 cN−1−DsN−1

cN −cN−1

h

wN = sN uN cN −DsN

cH −cN

h
.

In this case the boundary condition in the auricle takes the following form (not
taking into account the weight multipliers):

hsγ (ĉγ −cγ) = τ
(

sN−1 uN−1 cN−1−DsN−1

cN −cN−1

h

)

− τ
(

sN uN cN −DsN

cH −cN

h

)

, γ ∈ [0,1] .

(1.13)

The expression for the flowwN corresponds to the part of the venous channel at
the boundary with the heart presented in Fig. 2. In this representation, the valuecH

is associated with the fictitious pointxN+1 = xN +h.
Now we get an approximation of the first equation of system (1.7). It follows

from (1.5) that in the diastole we have

VH(t + ∆t) = VH(t)+

t+∆t
∫

t

S(xN,τ)U(xN,τ)dτ

which can be approximated by the relation

V̂H = VH + τsNuN.

Similarly, from (1.7) we get

CH(t + ∆t)VH(t + ∆t) = CH(t)VH(t)+

t+∆t
∫

t

WN(τ)dτ .

This relation can be approximated in the following way:

ĉH =

VH cH + τ
(

sN uN cN −DsN

cH −cN−1

h

)

VH + τ sN uN

. (1.14)
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cH = c0
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c1

✲
w0

Figure 3. Heart and aorta in systole.

Aorta. Consider the ventricle-aorta zone in the systole (see Fig. 3). The model is
based on the equality

ĉ0 = cH . (1.15)

We calculate the floww0 from the heart to the aorta by the formula

w0 = s0 u0 cH −Ds0
c1−cH

h
.

Similar to formula (1.14), from (1.5) we get that the balanceof the substance
inside the ventricle in the systole takes the form

ĉH =

VH cH − τ
(

s0u0 cH −Ds0
c1−cH

h

)

VH − τ s0u0
. (1.16)

Closed heart valve.Let us obtain an approximation of the boundary conditions ap-
pearing in the auricle in systole and in the aorta in diastole, i.e., in the periods when
these vessels do not communicate with the heart. The grid functionsw0 andwN are
used as approximate values ofW0 andWN, these functions are defined by formu-
las (1.9). Then, according to relations (1.6), (1.7), the missing boundary conditions
have the form

ĉ0 s0 u0−D
s0 +s1

2
ĉ1− ĉ0

h
= 0 (1.17a)

ĉN sN uN −D
sN +sN−1

2
ĉN − ĉN−1

h
= 0. (1.17b)

The relations obtained above supplement the set of boundaryconditions for the heart
in the diastole and systole, respectively.

Difference scheme.The difference scheme constructed here includes:

• equations (1.8) at the inner points of vessels;

• relations (1.11) and (1.10) at the branching nodes;
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✲
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Figure 4. Diffusion of substance in vessel-tissue system: one-dimensional model.

• boundary conditions (1.16), (1.17b), and (1.15) for the heart in the systole;

• boundary conditions (1.14), (1.17a), and (1.13) for the heart in the diastole.

2. Transport of substance in the vessel-tissue system

Consider one- and two-dimensional models of distributed diffusion through a ves-
sel wall into a tissue adjacent to the vessel for a substance carried by blood. Within
a one-dimensional approximation, the concentration of thecarried substance is as-
sumed to be the same in the whole vessel and also at the points of the tissue equidis-
tant from the vessel wall. For example, it is convenient to use such model for the
study of propagation of a substance in vessels of a small length or for a small vari-
ation of the concentration along the vessel. Within a two-dimensional approxima-
tion, the values are assumed to be different not only at increasing distances from
the vessel, but also along the vessel itself, which allows usto take into account the
specificity of the concentration profile in the vessel.

Note that in this paper a tissue is considered in a rectangular geometry.

2.1. One-dimensional model

Consider a vessel of a blood vascular system together with the adjacent tissue (see
Fig. 4). Direct the coordinate axis along the tissue, associate the pointx= 0 with the
wall of the vessel adjacent to the tissue. The pointx = l bounds the tissue from the
other side. A substance with the volume concentrationC(t) is contained inside the
vessel. We assume that the concentration is a known function. The tissue is consid-
ered as a porous sorbing medium where we point out two types ofconcentrations:
the concentrationu(x, t) of the substance contained in the pores of the sorbent and
the quantity of the substance absorbed by a unit volume of thesorbent denoted by
a(x, t) (see [17,18]).

We study the propagation dynamics of the substance in this system assuming
that a two-way exchange takes place between the vessel and the tissue; the intensity
and direction of this exchange depend on the difference between the concentrations
u(0, t) andC(t). In addition to sorption and desorption, we have the diffusion of the
free substanceu(x, t). The coefficient of diffusion is assumed to be constant.

Write the balance equation for the transported substance inthe following differ-
ential form [8,17]:

∂
∂ t

u = D
∂ 2u
∂x2 −β (u− γa)− ftiss. (2.1)
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In order to describe the sorption-desorption directly, we use the sorption kinetic
equation with the Henry isotherm [17]:

∂a
∂ t

= β (u− γa)+ ftiss. (2.2)

The coefficientγ here specifies the point of equilibrium betweenu anda: in the case
u > γa the valuea grows, i.e., we have absorption of the substance by the sorbent,
and if u < γa, then the quantity of the bound substance decreases. The multiplier β
called the kinetic coefficient is responsible for the intensity of absorption, or release
of the substance by the sorbent. Byftiss we have denoted here the external volume
flow of the substance. For example, it may correspond to the absorption of oxygen
or glucose by a working muscle, to the release of CO2 into the blood vascular system
in the process of work of muscles and organs, or may take into account chemical
reactions with the sorbed substance, etc.

The following equation is taken as the boundary condition for the free concen-
trationu(x, t) on the boundary with the vessel (x = 0):

∂u
∂x

(0, t) = κu(t)
(

αu(t)u(0, t)−C(t)
)

(2.3)

it describes the exchange of the substance between the tissue and the blood vas-
cular system. The equilibrium point is set by the coefficientαu (αuu = C) and the
exchange rate is governed by the valueκu.

We supplement system of equations (2.1)–(2.3) with the following second-order
homogeneous boundary conditions:

∂u
∂x

(l , t) =
∂a
∂x

(l , t) =
∂a
∂x

(0, t) = 0 (2.4)

expressing the absence of the corresponding flows of the substance through the
boundaries. In addition, we assume the initial conditions

a(x,0) = a0(x), u(x,0) = u0(x). (2.5)

Within the model described above, the formulation of the problem is the follow-
ing: find the functions u(x, t), a(x, t) determined in the domain{0 6 x 6 l , t > 0}
satisfying equations(2.1), (2.2) inside the domain and boundary and initial condi-
tions (2.3)–(2.5)on its boundaries.

2.2. Two-dimensional model

We consider a blood vessel with adjacent tissue representedas a two-dimensional
rectangular domain (see Fig. 5).

As before, direct the axisx along the tissue and the axisy along the vessel. In
the coordinates introduced in this way, the tissue occupiesthe domain[0, lx]× [0, ly],
the vessel has the lengthly and is placed along the straight linex = 0.
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✲

C(t, y)

x
0 lx

u(x, y, t), a(x, y, t)

❄

0

ly

y

✛

Figure 5. Diffusion of substance in vessel–tissue system, two-dimensional model.

The vessel contains a substance of the concentrationC=C(y, t), and the tissue is
a sorbing medium where we consider the concentrations

(

u(x,y, t)
)

and
(

a(x,y, t)
)

of the free substance and the substance bound by the sorbent,respectively. As be-
fore, we assume that diffusion of the free substanceu (with the constant coefficient
D) takes place in the tissue in addition to sorption/desorption, and the exchange be-
tween the vessel and the tissue is two-way and depends on the difference between
the concentrationsu(0,y, t) andC(y, t).

By the analogy with the one-dimensional case, we can write the differential
equation describing the balance of the substance in the tissue

∂
∂ t

(a+u) = D

(

∂ 2u
∂x2 +

∂ 2u
∂y2

)

. (2.6)

As above, we use the sorption kinetic equation with Henry isotherm (2.2). In the
two-dimensional case, the boundary condition foru on the boundaryx= 0 takes the
form

∂u
∂x

(0,y, t) = κu(y, t)
(

αu(y, t)u(0,y, t)−C(y, t)
)

. (2.7)

Supply the system of equations with the following second-order homogeneous
boundary conditions:

∂u
∂x

(lx,y, t) =
∂a
∂x

(0,y, t) =
∂a
∂x

(lx,y, t) = 0 (2.8a)

∂u
∂y

(x,0, t) =
∂u
∂y

(x, ly, t) =
∂a
∂y

(x,0, t) =
∂a
∂y

(x, ly, t) = 0. (2.8b)

In addition, we assume the initial conditions

u(x,y,0) = u0(x,y), a(x,y,0) = a0(x,y). (2.9)

Within the model described here, the formulation of the differential problem
is the following: find the functions u(x,y, t), a(x,y, t) determined in the domain
{[0, lx]× [0, ly], t > 0} satisfying equations(2.6), (2.2) inside the domain and bound-
ary and initial conditions(2.7)–(2.9)on its boundaries.
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Figure 6. Model graph of vessels.

3. Test calculations

The calculations of hemodynamic parameters were performedwith the use of the
CVSS software package (CardioVascular Simulating System,the package for cal-
culation of hemodynamic flows developed by the researchers of the Department
of Mathematical Methods, Computational Mathematics and Cybernetics Faculty of
the Lomonosov Moscow State University) [4]. The algorithm described in this pa-
per was implemented according to the standards of this package and was integrated
into it. The following model graph of the blood vascular system was used for test
calculations (see Fig. 6). The circle of blood circulation is formed by four vessels I,
II, III, IV. Nodes 1,2,3 correspond to the points of the vessel conjunctions, nodes0
and 4 are boundary for the graph and correspond to the heart (edge I is considered
as the aorta and edge IV is considered as the venous sinus). The arrows indicate the
typical direction of the blood flow.

The graph was taken with a small number of edges for simplicity of analysis
and visible clarity of calculation results.

The initial conditions on edge III (of lengthL) were specified by the function

C(x,0) =
1
2

[

cos

(

π
(

2
x
L
−1

)

)

+1

]

, x∈ [0,L] (3.1)

taking the value 0 at the ends of the segment[0,L] together with its first derivative.
The initial concentrations on the other edges and in the heart were taken equal to 0.

We used the following scheme with the condition on the auricle differing from
formula (1.13) by the presence of weight factors:

hsγ (ĉγ −cγ) = τ
(

sN−1 uN−1 c(σ1)
N−1 −DsN−1

cN −cN−1

h

)

− τ
(

sN uN c(σ2)
N −DsN

cH −cN

h

)

, γ ∈ [0,1] .

(3.2)

The calculations were performed according to the implicit variant of the algorithm,
σ1 = σ2 = 1. The illustrations presented below correspond to the calculations with
γ = 3/4.
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Figure 7. Convective and diffusive flows on the boundary with the heart.
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Figure 8. Volumes of substance forγ = 3/4.

Flows of substance on the heart boundary.As is seen from Fig. 7a, convective
flows take both positive and negative values, which indicates the appearance of re-
verse flows. The absolute magnitudes of the convective flows have the order 101

ml/s for large time periods.

Diffusive flows are presented in Fig. 7b. These flows become negligibly small
in comparison with the convective ones (of order 10−3 ml/s). It is seen from the
graph that the diffusive transport of substance between theheart and the aorta in
the systole stops after some period of time, which is caused by the the fact that the
substance concentrations in the heart and at the beginning of aorta become equal.
Note also that the diffusive and convective flows are absent in the part of the blood
vascular system where the heart valve is closed (in the auricle in the systole and at
the beginning of the aorta in the diastole).

Total volume of transported substance.The total volumes of the substance in the
vessels, in the heart, and in the whole system are presented in Fig. 8. The volume
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in the heart (lower curve) and in the vessels (middle curve) are changed quasi-
periodically. We can point two types of oscillations. Oscillations of the first type
have the period of order 0.8 s and are related to the accumulation and release of
the substance within a single cardiac cycle. Oscillations of the second type are well
visible for small time periods (about 10–15 s), their periodis about 5 s. These oscil-
lations are caused by the presence of a concentration wave inthe system. Its advance
through the heart ventricle causes an overall increase of the substance in the heart
(with continuing oscillations of the first type) and its similar decrease in the vessels.
Both types of oscillations of the substance volume in the heart are in the antiphase
to the oscillations of the substance volume in the vessels. The total volume of the
substance in the system is changed for small time periods. This is caused by the fact
that, from the viewpoint of hemodynamics, these calculations begin from zero, i.e.,
from the state of the system when the blood flow velocities andpressures are not
coordinated (as a rule, equal to zero). The computational algorithm has to bring the
system into a working state. The system of hemodynamic equations for the graph
(forming the base of the solution of the substance transportproblem) is essentially
nonlinear, and an iterative process is used at each time stepfor its solution. This cal-
culation stage, which is the most difficult from the computational viewpoint, con-
tains iterations not completely convergent, which inevitably implies a disbalance of
the total blood volume, large gradients of the functions, etc. Until the system comes
to a mathematically or physically adequate mode (the stabilization of the total blood
volume is the indicator of such mode), i.e., while the iterations on time steps do not
converge, the errors are essential in calculations of hemodynamic parameters (and
hence in concentrations), and the whole stage is consideredas a specific iterative
process. A solution to this problem will be the subject of further studies.

When the system attains the stationary mode (25–30 s), the total volume of the
substance is preserved and remains the same in prolonged calculations. Thus, the
algorithm proposed here is a conservative model of a diffusive substance transport.

Concentration profile. The dynamics of the substance transport over a model blood
vascular system is presented in Fig. 9. At the initial time moment we have substance
distribution (3.1) specified in vessel III. In the course of one cardiac cycle, the per-
turbation reaches the heart. In this case the amplitude of the concentration wave
decreases, but the total length of vascular channels containing the transported sub-
stance is increased. The passage of the substance through the heart takes several
cardiac cycles. Thus, for example, fort = 3.4 s the transported substance is present
both in the venous and arterial parts of the blood vascular system. The release of the
substance from the heart into the aorta produces a new concentration wave going
through all vessels of the vascular system until it reaches the heart. The transported
substance is distributed over all parts of the vessel channel due to diffusion, and a
concentration background is formed (t = 5.27 s). The substance accumulated in the
auricle passes through the heart. A new concentration wave is generated (t = 6.65 s)
and the process is repeated. The convection and diffusion result in a uniform distri-
bution of the transported substance over the blood vascularsystem (approximately
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Figure 9. Variation of substance concentration profile in vessels.
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by 25–30 s). The effect of the actual disappearance of diffusive substance transport
is related to this fact.

The process described here corresponds to the physiology ofthe spread of a sub-
stance introduced locally (for example, by injection) overthe cardiovascular system.

Conclusion

A model of diffusive transport of a dissolved substance overa system of vessels
closed through the heart and models of distributed diffusion of a substance in tis-
sues are proposed in the paper. The model is conservative, i.e., it preserves the total
amount of the substance in the system under the conservationof the total blood
volume. The corresponding numerical algorithms are implemented in the standard
of the CVSS package (software complex for calculation of hemodynamic flows de-
veloped by researchers of the Department of Mathematical Methods of the Com-
putational Mathematics and Cybernetics Faculty of the Lomonosov Moscow State
University) and are integrated into this software package.Test calculations have
confirmed the efficiency of the proposed algorithms.
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