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Numerical issues of modelling blood flow in networks
of vessels with pathologies

Yu. VASSILEVSKI∗, S. SIMAKOV†, V. SALAMATOVA‡, Yu. IVANOV∗,
and T. DOBROSERDOVA§

Abstract — The synthesis of the blood circulation model and the elastic fiber model of the vessel wall
allows us to take into account the influence of possible vessel pathologies on the global blood flow.
The interaction is based on the state equation representing the dependence of the transmural pressure
on the cross-section of the vessel. Numerical properties of both models are considered in the paper.

The mathematical modelling of blood circulation is a fundamental problem lying at
the junction of several disciplines, such as differential equations, numerical analysis,
elasticity theory, and physiology. Several numerical implementations of blood circu-
lation models taking into account elastic properties of blood vessels were created in
the last decade [6,9,10,14,21,22]. Previously we proposed an approach to synthesis
of the blood circulation model and the elastic model of the vessel wall [24] taking
into account the influence of possible vessel pathologies on the global blood flow.
The distinctive feature of the approach is the use of merely one-dimensional dif-
ferential operators, which provided us with an efficient numerical simulation tech-
nology. The mathematical blood flow model is a system of differential equations for
each vessel linked by boundary conditions at the points of vessel junctions [22]. The
mathematical model of the elastic vessel wall is based on the fiber approach [17,18]
to the calculation of the reaction force as a response to the deformation of a fiber.
The representation of an elastic body by sets of fibers of different configurations
was successfully used for simulation of cardiac work [13] and collapsed veins [18].
In our model we used the same types of fibers as in [18].

The synthesis of both models is based on the state equation representing the
dependence of the transmural pressure on the cross-section area of the vessel. This
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dependence takes into account the elastic properties of the blood vessel and is a key
characteristic of the vessel in the global blood circulation model. The state equation
both for a healthy vessel and for the case of some pathology (an atherosclerotic
plaque, an installed implant) can be calculated with the use of the fiber model of the
blood vessel wall. Results of blood flow modelling in a system of healthy vessels
and vessels with pathologies were presented in [7,22–25]. In this paper we consider
numerical properties of the models of the global blood circulation and the vessel
wall.

The paper is organized as follows. The second section presents the basic nu-
merical methods used in our models. Numerical properties of the blood vessel wall
model and peculiarities of solution methods are considered in the third section. The
fourth section describes the global blood circulation model and discusses the pecu-
liarities of its numerical implementation.

1. Numerical methods used in the models

1.1. Discretization of differential operators

The models considered in the paper (model of the elastic vessel wall and model of
blood circulation) are based on a set of differential equations on one-dimensional
curvilinear segments given in the three-dimensional space and interacting with each
other. This formulation allows us to simplify the arising discrete systems as much
as possible and to preserve simultaneously the flexibility and generality of the ap-
proach.

Consider the curvilinear segment [x0,xN ] and N + 1 points x0,x1, . . . ,xN uni-
formly positioned on this segment and called the nodes of the calculation grid. De-
note the midpoints of the segments [xi,xi+1] by xi+1/2 and a grid function defined at
the nodes xi by fi. The finite difference discretization of the first-order differential
operator is determined at the nodes xi+1/2 in the usual way:

d f
ds

(xi+1/2)≈
fi+1− fi

si+1− si
(1.1)

where si is the distance along the segment from xi to x0. The discretization of the
second-order operator at the nodes xi is the successive application of two opera-
tions of finite difference differentiation (1.1). Under the assumption of a sufficient
smoothness of the function f , both discretizations provide the second order of ap-
proximation with respect to the mesh size ∆s = s1− s0 = ... = sN− sN−1.

Note that, in addition to the differentiation of functions on a given segment,
finite difference discretizations can be used for estimation of geometric characteris-
tics of a curvilinear segment. For example, the curvature vector at the node xi can
be approximated by the formula

d2X
ds2 (xi)≈

τττ i+1/2−τττ i−1/2

∆s
, τττ i+1/2 =

Xi+1−Xi

∆s
(1.2)
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where X is the coordinate vector of the node x in the three-dimensional space, τττ i+1/2
is the discretization of the tangent vector at the point xi+1/2.

1.2. Solution of linear problems

The solution of the system of linear equations with a nondegenerate square matrix
of coefficients

Ax = b (1.3)

is a well-developed numerical technology. In the case of dense matrices, the pro-
gram package LAPACK [26] is the standard instrument for this purpose.

In the case of sparse matrices, iterative methods on Krylov subspaces are the
most efficient. In the case of unsymmetric nondegenerate matrices, the commonly
used methods are the generalized method of minimal residuals, GMRES, and the
stabilized method of biconjugate gradients, BiCGStab [20]. In this paper we use the
non-preconditioned BiCGStab method.

1.3. Solution of nonlinear systems

The basic solution method for systems of nonlinear equations of the form

F(x) = 0 (1.4)

is the Newton method. In its canonical form, Newton’s method assumes that the
Jacobian F′(x) of the vector function F is known for any vector x:

Algorithm 1.1.
Let x0 be given.

For k = 0,1, . . . (until the convergence) do:
calculate the vector sk from the linear system

F′(xk)sk =−F(xk) (1.5)

assume
xk+1 = xk + sk. (1.6)

The convergence criteria can be different. For example, the Euclidean norm of
the residual vector F(xk) must be less than the specified threshold. The convergence
of Newton’s method is quadratic and conditional on the closeness of the initial guess
to the solution and on the assumption of the exact solution of linear systems (1.5).
The local convergence of the method may cause difficulties in the solution of applied
problems.

One of the modern solution technologies for nonlinear systems is the Inexact
Newton Backtracking (INB) [1,8,16]. It does not require an exact solution of linear
systems, nor the knowledge of a Jacobi matrix and combines the properties of global
convergence with the properties of fast local convergence.
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Algorithm 1.2.
Let x0, ηmax ∈ [0,1), t ∈ (0,1), and 0 < θmin < θmax < 1 be given.

For k = 0,1, . . . (until the convergence) do:
Assign initial ηk ∈ [0,ηmax] to

ηk =

{
min{ηmax,

|‖F(xk)‖−‖F(xk−1)+F′(xk−1)sk−1‖|
‖F(xk−1)‖ }, k > 0

0.5, k = 0.
(1.7)

Calculate initial sk so that

‖F(xk)+F′(xk)sk‖6 ηk‖F(xk)‖, (1.8)

While ‖F(xk + sk)‖> [1− t(1−ηk)]‖F(xk)‖ do:

Take θ ∈ [θmin,θmax]; (1.9)
Recalculate sk← θsk and ηk← 1−θ(1−ηk).

Assign
xk+1 = xk + sk. (1.10)

The typical values of the parameters of this algorithm [16] are ηmax = 0.9,
θmin = 0.1, θmax = 0.5, t = 10−4. The algorithm has the theoretical justification [4,5]
indicating its superlinear convergence and its global nature.

The iterative solution of (1.5) by a method on a Krylov subspace (e.g., BiCGstab)
requires only the results of the multiplication of F′(xk) by a vector. This allows us
to replace the action of the operator F′(xk)v by its finite difference approximation.
For example,

F′(xk)v =
1
ε
[F(xk + εv)−F(xk)]. (1.11)

This variant of the Newton method is often called the Newton–Krylov method not
using the Jacobian [8]. There exist several technical implementations of the algo-
rithm [16, 27] admitting preconditioning of arising linear systems. In our calcula-
tions we use the implementation of [27] and do not apply any preconditioner. The
arithmetical complexity of the method is expressed through the total number of
evaluations of the function nevF , the other costs may neglected.

2. Fiber models of the blood vessel wall

2.1. General fiber model and its application to healthy vessels
and to vessels with pathologies

The elastic properties of blood vessel walls are mainly determined by a system of
interweaved fibers (elastic, smooth muscle, collagenous) [2]. This peculiarity of the
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histological structure of venous and arterial walls gives us the idea of simulating
the elastic strain of a vessel by a set of fibers of different configurations, namely,
by longitudinal, circular, and spiral fibers. The fiber approach used in this paper for
the representation of an elastic shell was first proposed by Ch. Peskin and described
in [17, 18].

Let X = X(q,r,s, t) determine the motion equations for the material points of
an incompressible elastic body in the chosen system of rectangular coordinates.
Here X = (X1,X2,X3) are the spatial coordinates of a moving point and q,r,s are
the material coordinates individualizing the material point. Denote the elastic strain
energy corresponding to some configuration of the solid body by E[X]. As was
shown in [17], one can conclude from the virtual work principle that the density of
the force f of the elastic body reaction to the applied strain is equal to the Fréchet
derivative of the strain energy

f =−δE
δX

(2.1)

where δ is the symbol of the variation.
Present here two essentially important cases. Let q,r,s be material curvilinear

coordinates taken so that q,r are constant along each fiber. First consider the system
of equally directed elastic fibers reacting only to stretch and subjected to a strain.
The corresponding density of the force of elasticity has the form [13]:

f =
∂

∂ s
(Tτττ) (2.2)

where T is the stress in the fiber, τττ is the unit tangent vector to the fiber

T = σ

(∣∣∣∣∂X
∂ s

∣∣∣∣) , τττ =
∂X/∂ s
|∂X/∂ s|

. (2.3)

Consider another example. Let the system of elastic fibers be such that the fibers
react only to bending and are subjected to a strain. Then the elastic strain energy and
the corresponding elastic force density have the form [13]:

f =
∂ 2

∂ s2

(
cb(q,r,s)

∂ 2X
∂ s2

)
(2.4)

where cb is the coefficient characterizing the flexural rigidity of the fiber.

2.1.1. Healthy blood vessel. We assume that the blood vessel is a circular thin-
wall cylindrical shell made of a linearly elastic material experiencing internal pres-
sure [6]. The median surface of this shell is represented by some set of circular and
longitudinal fibers. All these fibers resist only extension and compression and for-
mulas (2.3), (2.2) are valid for them. The restriction posed by such type of fibers is
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quite justified for this axisymmetric strain; however, for more complex load laws,
naturally, it is necessary to model the shell by fibers of different types subject to
bending, as well as tension and compression, which will be done in the near fu-
ture. The use of the fiber model of an elastic wall allows us to take into account the
nonlinear properties of blood vessel walls [2].

Let Nb be the number of computational nodes on the fiber, Xk, k = 1, . . . ,Nb,
characterizes the position of the kth point in the three-dimensional space, ∆s is the
distance between the adjacent points of the fiber in the unstrained state; then, accord-
ing to formulas (2.2), (1.2), the discrete density of the elastic force is determined as

fk =
Tk+1/2τττk+1/2−Tk−1/2τττk−1/2

∆s
. (2.5)

For a linearly elastic material with the Young modulus E, according to Hooke’s law,
we have

σ

(∣∣∣∣∂X
∂ s

∣∣∣∣)= E
(∣∣∣∣∂X

∂ s

∣∣∣∣−1
)

.

Let the points of intersection of circular and longitudinal fibers be the computa-
tional nodes on the fibers. Then the total discrete density of elastic forces fi j at the
nodes of the formed grid is the sum of the discrete densities of circular and rectilin-
ear fibers. We assume that fi j is constant over the surface area element Si j and over
the thickness of the vessel wall, i.e., the density of the elastic forces is a piecewise-
constant function for the vessel wall. In the elementary volume of the vessel wall
Si j×h, the elastic force F has the form

F =
∫

Si j×h
fi jdV = fi jSi jh (2.6)

where h is the thickness of the wall. This force countervails the pressure acting onto
the inner vessel wall. Thus, the balance equation has the following form:

p = h fi j ·ni j (2.7)

where ni j is the normal to the corresponding element of the surface, p is the magni-
tude of the internal pressure. Relation (2.7) is basic for determining displacements
of vessel points for the given internal pressure.

In order to check numerically the approximations of the shell model by the grid
model of fiber representation, we take the following solution for the cylindrical shell
made of a linearly elastic material under the internal pressure P(z) = a0 +a1z [11]:

u = u(z) =
P(z)R2

Eh
, v = 0

w = w(z) =− νR
Eh

(
a0z+a1

z2

2

)
+

νR
Eh

(
a0L+

a1L2

2

)
(2.8)
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Table 1.
Relative error for the pressure function obtained by the fiber model for
different parameters of the computational grid.

Nz×Nθ a0 = 1 kPa, a1 = 5 kPa/cm a0 = 0 kPa, a1 = 5 kPa/cm

16×128 8.5% 9.0%
32×128 4.7% 5.0%
64×128 2.5% 2.6%

128×128 1.2% 1.3%

where R, L, and h are the median radius, length, and shell thickness, respectively;
u,v,w are the radial, circular, and axial displacements of shell points, respectively; E
is the Young modulus, ν = 0.5 is the Poisson coefficient, a0 and a1 are some numeric
values which we can vary. Here and further, (r,θ ,z) is the cylindrical system of
coordinates.

Represent the shell of the vessel as Nz circular fibers discretized by the same
number of points Nθ with the coordinates Xi j = (ri j,θi j,zi j), where i = 1, . . . ,Nz,
j = 1, . . . ,Nθ . Define the displacements of vessel points in accordance with formulas
(2.8), i.e.,

X∗i j = Xi j +ui jer +wi jez, ui j = u(zi j), wi j = w(zi j). (2.9)

Using relation (2.5) for forces and balance equation (2.7), we calculate the val-
ues of the internal pressure pi j at the nodes of the model of the strained vessel.
In order to proceed from discrete values to the continuous function P(θ ,z)N , we
assume that

P(θ ,z)N = pi j, θ ∈ [θi, j−1/2,θi, j+1/2], z ∈ [zi−1/2, j,zi+1/2, j]

where θi, j+1/2 is the θ -component of the vector Xi, j+1/2 = (Xi, j+1−Xi, j)/2 and
zi+1/2, j is the z-component of the vector Xi+1/2, j = (Xi+1, j −Xi, j)/2. Then the
L2-norm of the difference between the analytic solution P and the numerical one
P(θ ,z)N has the form

||P−P(θ ,z)N ||L2 =

(
Nz,Nθ

∑
i, j

∫
θi, j+1/2

θi, j−1/2

∫ zi+1/2, j

zi−1/2, j

(P(θ ,z)− pi, j)
2dθdz

)1/2

.

Due to the fact that the considered strain is axisymmetric, i.e., does not depend
on θ , the number of computational nodes Nθ on the fiber does not influence numer-
ical properties of the model. We study the approximative properties of the model
depending on the number of fibers Nz. Table 1 presents the values of the L2-norm
of the error compared to the norm of the analytic function for the pressure. The grid
fiber model provides the first-order convergence to the continuous solution of the
problem for the shell model.

In the equilibrium problem of a blood vessel under internal pressure, the re-
quired displacements determine the form of the strained vessel. For axisymmetric
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Table 2.
The number of evaluations of nevF depending on different parame-
ters of the computational grid and internal pressure.

Nz×Nθ a0 = 6 kPa a0 = 0 kPa a0 = 6 kPa
a1 = 0 kPa/cm a1 = 6 kPa/cm a1 = 6 kPa/cm

16×32 3 7 7
32×32 3 7 7
32×64 3 7 7
64×64 3 7 9
64×128 3 13 13

128×128 3 13 14
128×256 3 24 25
256×256 3 48 61

types of strain we can assume that displacement occurs in the radial direction only,
then equilibrium condition (2.7) of the vessel under internal pressure has the form

f(R+u(z)) ·n(R+u(z))h− p = 0 (2.10)

where R and h are the median radius and thickness of the shell, respectively, u(z) is
the radial displacement of shell points. Consider the case when the internal pressure
has the form p = a0 + a1z and external pressure equals zero. Equation (2.10) is
nonlinear with respect to the radial displacements of the points and is solved by
INB solution methods for nonlinear equations described above in Section 1.3. The
stop criterion for iterations is the following: the Euclidean norm of the residual
vector is less than 10−6. Table 2 presents the number of evaluations nevF depending
on the parameters a0 and a1, as well as Nz and Nθ , where Nz and Nθ is the number of
circular fibers and the number of points in those fibers, respectively. The coefficients
of the model are taken the same as in the previous case. The arithmetic complexity
of the solution of the system depends on the computational grid and on the form of
the function p(z).

2.1.2. Atherosclerotic blood vessel. In spite of the existence of different view-
points relative to the pathogenesis of atherosclerosis [15,19], the following concep-
tion of atherosclerotic formation is commonly accepted. According to this concep-
tion, a lipid core is formed in the vessel wall and is separated from the lumen of the
vessel by a fibrous cap.

Thus, we consider an atherosclerotic vessel as a three-layered cylindrical shell
under internal pressure. The inner and outer layers of the shell are the fibrous cap
and the artery wall, respectively. The strain of the fibrous cap and the vessel wall
are modelled with the help of the fiber representation described above.

In order to calculate the strains and elastic forces arising in the lipid core under
pressure from the pulsating blood flow, it is assumed that its response is equivalent
to the response of a set of ‘springs’ uniformly distributed over its length. We assume
that the influence of tangent stresses is small and the oscillations of such ‘strings’



Modelling blood flow 9

are possible in the radial direction only. For the physiologically admissible range
of internal and external pressures, the determination of ‘springs’ stiffness can be
performed by solving analytically the problem of an isotropic elastic cylinder (a 6
r 6 b) under the external pb and internal pa pressures in the context of the linear
theory of elasticity. This solution has the form

pa− pb =
2(b2−a2)Ecr

3a2b2 u(r) (2.11)

where Ec is the modulus of elasticity of the cylinder, u(r) is the radial displacement
of the cylinder points.

Let a 6 r 6 b determine the middle lipid layer of the three-layered shell. By
ua(θ ,z) and ub(θ ,z) we denote the displacements of the points of the fibrous cap
and artery wall, respectively; pa and pb are the magnitudes of the contact pressure
on the boundaries r = a and r = b, respectively. Then, according to formula (2.7),
the equilibrium conditions for the outer (vessel wall) and inner (fibrous cap) layers
can be represented in the form

pa = p0−hcapf cap ·ncap (2.12)

pb = hartf art ·nart (2.13)

where f art = f(b +ub(θ ,z),θ ,z), nart = nart(b +ub(θ ,z),θ ,z), hart and f cap = f(a +
ua(θ ,z),θ ,z, ncap = ncap(a + ua(θ ,z),θ ,z, hcap are the elastic force, normal to the
surface, layer thickness of the artery wall and fibrous cap, respectively; f is the den-
sity of the elastic force determined by formula (2.2); p0 is the value of the internal
pressure.

According to (2.11)–(2.13), for r = a and r = b we can get a system of nonlinear
equations for ua(θ ,z) and ub(θ ,z).

In order to compose a numerical model for an atherosclerotic vessel, we repre-
sent the three-layered shell with the help of Nz pairs of concentric circular fibers
linked by radial ‘springs’ described above. Concentric fibers are uniformly dis-
tributed along the length of the vessel and lie in the corresponding section z = zi,
i = 1, . . . ,Nz. Let each circular fiber be discretized by the same number of points
uniformly distributed over the fiber with the angular coordinate θk, k = 1, . . . ,Nθ .
Then with respect to ua(θ ,z), ub(θ ,z) the discretized system has the form{

hart
ik fart

ik ·nart
ik +hcap

ik fcap
ik ·n

cap
ik −ua

ik2(b2−a2)Eca/(3ab2)− p0 = 0

hart
ik fart

ik ·nart
ik +hcap

ik fcap
ik ·n

cap
ik −ub

ik2(b2−a2)Ecb/(3a2b)− p0 = 0
(2.14)

where

fcap
ik = f(a+ua

ik,θk,zi), fart
ik = f(b+ub

ik,θk,zi)

ncap
ik = n(a+ua

ik,θk,zi), nart
ik = n(b+ub

ik,θk,zi).
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Table 3.
The number of evaluations nevF for different parameters of the
computational grid and the vessel lumen blocking.

Nz×Nθ 50% 70% 90%

16×32 23 21 21
32×32 23 21 22
32×64 43 41 42
64×64 43 41 42
64×128 77 79 86

128×128 79 81 86

System (2.14) contains 2NzNθ nonlinear equations with respect to 2NzNθ unknowns
ua

ik, ub
ik and is solved by the INB method described in Algorithm 1.2. Table 3 presents

the number of evaluations nevF (the vector function F of system (2.14)) depending
on Nz, Nθ with different values of the vessel lumen blocking. The coefficients of the
model are Ec = 1 kPa, p0 = 10 kPa, a = 0.45 cm, b = a

√
1− pr cm, hcap = hart =

0.07 cm, pr = 0.5,0.7,0.9 is the rate of the vessel lumen blocking. The arithmetic
complexity of the solution of equilibrium system (2.14) is proportional to Nθ and
actually does not depend on Nz.

The approach described above can be applied to the calculation of state equa-
tion, i.e., determination of the dependence of transmural pressure on the cross-
section area. In this case we can consider either a healthy vessel, or a vessel with
different pathologies or implants whose influence can be simulated by additional
functions of the internal pressure.

2.2. Reconstruction of the coefficients of the fiber model

In order to get an adequate description of the elastic strain in a blood vessel, it is
necessary to define the stiffness constant of the fibers correctly. In this section we
demonstrate the technique of determination of the unknown model parameters from
its input data; those unknowns are the state equations for various types of vessels
obtained from experiments. The solution to this problem makes it possible to cal-
ibrate the model of the elastic vessel wall for a particular patient and also for the
case of various vascular pathologies. The degree of concordance of the parameters
obtained from fiber representations means here the closeness in the L2-norm of the
state equation reconstructed by the model and the continuous piecewise-linear func-
tion interpolating the experimental data.

The adjustment of the fiber stiffness constant is performed using the known
state equation by the following hierarchical algorithm. Let Ek, k = 1, . . . ,N, be
the unknown model parameters, for each parameter the range of admissible val-
ues D0

k = [a0
k ,b

0
k ] and the number q of divisions of the intervals D0

k are given. We
assume that {E j

k = a0
k + j|b0

k−a0
k |/q, j = 0, . . . ,q}, determine the set of all possible

values for each Ek. Take a set {Es1
1 , . . . ,EsN

N } from all possible sets of parameters
{E j1

1 , . . . ,E jN
N }, j1, . . . , jN = 1, . . . ,q, so that the target function (in our case this is
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the state equation) calculated on this set deviates minimally from the given state
equation. Taking into account the obtained set of parameters, we refine the domain
of possible values, namely, at the next step for each Ek, k = 1, . . . ,N, we take the
interval D1

k = [Esk
k − (bk

0−ak
0)/(2q), Esk

k +(bk
0−ak

0)/(2q)] as the new range of vari-
ation of Ek. The whole procedure is iterated as described above until we get the
required accuracy.

Thus, the optimal parameter E∗k is obtained in the interval D0
k with the accuracy

δk = |D0
k |/qW in W steps of the algorithm. Note that the complexity of the algorithm

grows as an exponential function of the number N of parameters, which restricts its
efficient use to problems with a small number of parameters.

Let us apply the approach described here for the determination of the fiber stiff-
ness in the case of an atherosclerotic vessel (Section 2.1.2) and for the fiber model
of a vein. In both cases we assumed that the state equation p = p(S) was given by
some analytic function.

We take the solution of the linear elasticity problem for a three-layered cylinder
loaded by internal pressure as the known state equation for an atherosclerotic vessel.
Each layer is one particular component of the diseased vessel, namely, the fibrous
cap, the lipid core, or the artery wall, and is characterized by the corresponding
modulus of elasticity. The state equation has the following form in this case:

p = C(
√

S− r f )

C =
(ra +ha)2(r2

a(r
2
l − r2

f )E f + r2
f (r

2
a− r2

l )El)+ r2
f r

2
l ha(2ra +ha)Ea

2(ra +ha)r2
ar2

l r f
(2.15)

where E f ,Ea,El,r f ,rl,ra are the Young moduli and inner radii of the fibrous cap,
the lipid core, or the artery wall, respectively; ha is the thickness of the artery wall.

In order to solve the inverse problem, we take the Young moduli for the circular
fibers responsible for the behaviour of the fibrous cap of the plaque and the artery
wall as two unknowns of the model. The stiffness of the lipid layer is supposed to
be known (1 kPa), because the variation of this parameter within a reasonable range
produces no essential influence on the state equation reconstructed by this model.

The algorithm determining the unknown fiber stiffnesses was tested on some
sets {E(i)

f ,E(i)
a } of Young moduli of the fibrous cap and the artery wall. As was said

above, according to [3], we always assumed Ea = 1 kPa. The thickness of the artery
wall was ha = 0.07 cm. The range of both unknown elasticity moduli ranges from
1 kPa to 200 kPa, the number of partitions is q = 4, the number of steps is W = 4.
Figure 1a shows the graph of the reconstructed state equation of the model for an
atherosclerotic vessel (red line) and the input data (green marker), where S0 is the
cross-section area of the healthy artery under zero transmural pressure for the first
set E(1)

a = 100 kPa, E(1)
f = 100 kPa. For other sets of constants (E(2)

a = 100 kPa,

E(2)
f = 50 kPa; E(3)

a = 100 kPa, E(3)
f = 10 kPa; E(4)

a = 10 kPa, E(4)
f = 100 kPa) the

graphs of the reconstructed equations have a form similar to that of Fig. 1a. In all
cases the error of the reconstructed equation does not exceed 2%.
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(a)

(b)

Figure 1. Reconstructed state equation of the model for (a) atherosclerotic vessel (solid line) and
input data (cross marker) for E(1)

a = 100 kPa, E(1)
f = 100 kPa), (b) venous wall (solid line) and input

data (cross marker)

Due to the hemodynamic peculiarities of a vein [2], we introduced a special set
of fibers with the additional parameter Rc characterizing the rate of response delay
to a fiber strain; in the case of a linear material it is taken into account according to
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the formulas

σ

(∣∣∣∣∂X
∂ s

∣∣∣∣)= Ec

(∣∣∣∣∂X
∂ s

∣∣∣∣−Rc

)
,

∣∣∣∣∂X
∂ s

∣∣∣∣> Rc (2.16)

σ

(∣∣∣∣∂X
∂ s

∣∣∣∣)= 0,

∣∣∣∣∂X
∂ s

∣∣∣∣6 Rc. (2.17)

The solution of the inverse problem for the venous wall is reduced to the determina-
tion of the following three parameters: Ee is the Young modulus of the set of circular
fibers responsible for the behaviour of elastic and smooth muscle fibers, Ec and Rc
are the Young modulus and the delay rate for the set of circular fibers simulating the
behaviour of the collagen. Figure 1b shows the reconstructed state equation of the
model obtained from the solution of the inverse problem where the nonlinear form
of the vein state equation reflects the behaviour under negative transmural pressures
and S0 is the vein cross-section area before deformation under zero transmural pres-
sure. The error of the reconstructed state equation does not exceed 2% in this case.
It is worth noting that under the decreasing transmural pressure the form of the
initially circular cross-section now becomes elliptic, and for negative values of the
transmural pressure the cross-section has a dumb-bell form, i.e., it corresponds to
two almost circular small channels separated by a flattened part of the vein [2].

3. Closed model of blood circulation

3.1. Assumptions and equations of the model

In this paper we consider the global blood circulation model [22] including the de-
scription of the blood flow in a network of elastic pipes simulating arteries and veins
of systemic and pulmonary circulations. This network model is closed by a dynamic
model of a four-chamber heart. The blood is assumed to be a viscous incompress-
ible fluid flowing via the network of elastic pipes due to the pulse generated by the
compression of the heart ventricle.

It is supposed that for most blood vessels the ratio of their diameter to their
length is sufficiently small and hence the mathematical description is constructed in
terms of the linear blood flow velocity and pressure averaged over cross-sections.
Then the mass and momentum balance equations can be written for each vessel in
the form

∂S
∂ t

+
∂ (Su)

∂x
= 0 (3.1)

∂u
∂ t

+
∂

(
u2

2 + p
ρ

)
∂x

=−16µuη
(
Ŝ
)

(3.2)

where t is the time, x is the coordinate along the vessel, ρ is the blood density, S(t,x)
is the vessel cross-section area, u(t,x) is the linear blood flow velocity averaged
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over the cross-section, p is the pressure (relative to the atmospheric one), Ŝ = S/S̄,
S̄ is the cross-section area of the vessel for zero blood flow and zero transmural
pressure p(S)− p∗, p∗ is the pressure in the tissues surrounding the vessel; µ is the
coefficient of friction;

η
(
Ŝ
)

=

{
2Ŝ−1, Ŝ > 1
1+ Ŝ−2, Ŝ < 1.

(3.3)

The elastic properties of vessel walls are given by the state equation. This equa-
tion may have the analytic form

p(S)− p∗ = ρc2
0 f (S) (3.4)

where c0 is the spread velocity of small perturbations in the vessel wall, or may
be determined by solution of static equilibrium problem for the vessel wall (see
Section 2).

It is proposed to define the boundary conditions at the points of junction of the
vessels with each other (anastomosis, vein junction) as the set of conditions formed
by Poiseuille pressure drop conditions, the mass balance, and the compatibility con-
dition for system (3.1)–(3.4):

pk (Sk (t, x̃k))− pl
node (t) = εkRl

kSk (t, x̃k)uk (t, x̃k) , k = k1,k2, . . . ,kM (3.5)

∑
k=k1,k2,...,kM

εkSk (t, x̃k)uk (t, x̃k) = 0 (3.6)

where l is the number of the junction domain (node), k is the number of the vessel,
k1,k2, . . . ,kM, M is the number of vessels meeting at the node, pl

node (t) is the pres-
sure at the node, Rl

k is the hydraulic resistance for the flow from the vessel with the
number k into the vessel with the number l. For the vessels outgoing from the node
we have εk = 1, x̃k = Lk, for the vessels incoming to the node we have εk = −1,
x̃k = 0. In the domains of the junction with the heart the product Sk (t,x)uk (t,x) is
replaced in (3.5), (3.6) by the value of the voluminal blood flow to/from the cor-
responding chamber Qk. A more detailed description of the dynamic four-chamber
heart model used here can be found, e.g., in [22].

3.2. Numerical properties of the model

In the construction of an efficient numerical implementation of problem (3.1), (3.6)
of the blood flow in a vascular network, one should take into account a large num-
ber of structural elements (vessels) and also the essential geometrical distinctions
between those elements (lengths, diameters, elastic properties).

In order to calculate the blood flow in a single vessel, formulas (3.1), (3.6), the
model uses several different schemes including first-order monotone schemes and a
hybrid scheme corresponding to the most accurate first-order monotone scheme and
the less oscillating scheme of the second order of accuracy [12]. The use of explicit
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methods causes the necessity to analyze the stability of the scheme and to choose
the corresponding time step

τn+1 = 0.9smax (3.7)

where smax = maxk,i |λki|/hk, k belongs to the set of the indices of all the vessels of
the considered network, i belongs to the set of all inner point indices of the finite
difference grid of the vessel k, λki is the eigenvalue of the Jacobian of system (3.1)-
(3.4) maximal in its absolute value at the given points of the considered vessel (see
details in [22]).

From the viewpoint of a numerical implementation of this model, the most criti-
cal block is the module calculating the points of the vessel junctions. In the domains
of vessel junction we have to solve the nonlinear system of algebraic equations
obtained after the discretization of boundary conditions (3.5), (3.6) and the compat-
ibility condition for (3.1)–(3.4) along the characteristic leaving the integration do-
main for problem (3.1), (3.6). It should be taken into account that the vessels with
essentially different parameters (lengths, diameters, elastic properties, spatial mesh
sizes) and different flow modes (blood flow velocity and pressure) can be joined at
one point. This essentially complicates the choice of the method convergent for all
sets of parameters from the physiologically reasonable range. An equivalent sys-
tem, whose dimension is half as much was obtained by identical transformations;
this system can be solved by Newton’s method (Algorithm 1.1) with the necessary
restrictions

F(S) = ∆f+RP = 0. (3.8)

Here
f = {εkm (αkmSkm +βkm)Skm}M

m=1, P = {pkm}M
m=1 (3.9)

R = {Ri j}M
i, j=1, Rii =−

M

∑
j=1
j 6=i

M

∏
m=1
m 6=i
m6= j

Rl
km

, Ri j =
M

∏
m=1
m6=i
m6= j

Rl
km

, ∆ = detR =
M

∑
i=1

M

∏
j=1
j 6=i

Rl
k j

(3.10)

where R is the symmetric matrix determining the hydraulic resistance for flows
between the vessels joined at one node, αkm and βkm are the coefficients obtained
after the discretization of the compatibility condition for system (3.1)–(3.4) at the
current time step, M is the number of vessels joined at one node, km is the index
of the mth vessel. The values from the previous time step are used as the initial
guess for the iterative process. Numerical experiments showed that this choice of
the initial guess satisfies all necessary restrictions and provides a fast convergence
of the method.

Numerical experiments were performed for a vascular system represented by
two connected networks of arteries and veins (341 vessels and 335 points of branch-
ing). There were 162 points of connection of the veins and arteries. The system de-
scribed above was solved by Newton’s method at each point. We considered nodes
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differing in the number of incoming/outgoing vessels, their properties, and the blood
flow intensity; these were points of junction of three vessels with identical or similar
diameters (for example, 0.7 cm), but with different peak blood velocities (1–2 cm/s,
30–40 cm/s, 80–90 cm/s), points of junction of three vessels of different diameters
(for example, 1.8, 1.7, and 1 cm), points of junction of four vessels of different di-
ameters (for example, 1.4, 1.4, 0.7, and 0.7 cm). We also studied points of junction
of veins and arteries, i.e., vessels with different elastic properties (c0=700 cm/s and
c0=350 cm/s for the analytic form of state equation (3.4)). The elastic properties of
the vessel wall were described both with the help of the analytic approximation [22],
and with the help of fiber and spring-fiber models representing the response of the
wall either for a healthy vessel, or in the presence of atherosclerotic plaques of dif-
ferent types, or in the presence of the cava filter [23–25]. In all the cases indicated
here, Newton’s method converged in 2–4 iterations for the given accuracy 10−6,
and in 3–4 iterations for the accuracy from 10−8 to 10−12. The velocity in the joined
vessels has the most essential influence on the number of iterations necessary for
attaining the required accuracy. A greater number of iterations is required for the
pulse wave maximum passing through the node. This is explained by the decrease
in the initial guess accuracy due to the increase in the gradients of the calculated val-
ues. The application of this approach is restricted by the magnitude of the maximal
admissible flow through a node. The numerical experiments performed here showed
that this maximum lies beyond the range of physiologically reasonable values.

In numerical simulation of the heart blood flow, the main factor influencing the
choice of the method is the stiffness of the system of differential equations [22]
caused by the parameters from the physiologically reasonable range. The system
was solved by the implicit one-step A- and L-stable method of the third order ap-
proximation from the family of continued schemes.

The advantage of the approach to construction of the numerical implementa-
tion described here is the ability to split problems into independent blocks for the
calculation of the flow in each vessel and at each point of their junction.

4. Conclusion

The mathematical models of the blood flow and the blood vessel wall are described
and their numerical properties are studied. It is proposed to simulate a vessel by the
fiber approach proposed by Ch. Peskin. The first-order approximation of the fiber
representation of the blood vessel wall has been obtained in experiments. The nu-
merical determination of the state equation is based on the solution of the problem
on the form of a vessel under internal pressure. The system of nonlinear equations
appearing here is solved by the inaccurate Newton method where the number of
evaluations of the nonlinear function grows moderately with the growth of the num-
ber of grid nodes. The solution of inverse problems is discussed in the paper, these
problems allow us to determine unknown constants for each set of elastic fibers and
to adjust the fiber model to a particular patient. The iterative algorithm for deter-
mination of the fiber stiffness is proposed, its error appears to be less than 2% in
examples of an atherosclerotic vessel and a vein.
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In the numerical implementation of the hemodynamic model, the greatest chal-
lenge is the calculation of vessel junction points. The system of nonlinear equations
at a nodal point is reduced to the form little sensitive to the values of functional and
geometric parameters of the linked vessels. The number of iterations required for
attaining the accuracy 10−12 is less than 4 for all observed sets of the parameters
from the physiologically reasonable range of values.

The models discussed here were used in [7, 23–25], where the problems of
blood circulation were studied for a vein with an installed cava filter and for vessels
with axisymmetric atherosclerotic plaques. In what follows, we plan to add into the
model of the vessel wall the families of fibers of different configurations, which can
resist compression and tension, as well as bending according to the nonlinear laws
typical for biological tissues.
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