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Continuous mathematical model of platelet thrombus
formation in blood flow

A. TOKAREV∗, I. SIRAKOV†, G. PANASENKO†, V. VOLPERT‡, E. SHNOL§,

A. BUTYLIN∗¶, and F. ATAULLAKHANOV∗¶‖

Abstract — An injury of a blood vessel requires quick repairing of the wound in order to prevent a
loss of blood. This is done by the hemostatic system. The key point of its work is the formation of an
aggregate from special blood elements, namely, platelets. The construction of a mathematical model
of the formation of a thrombocyte aggregate with an adequate representation of its physical, chemical,
and biological processes is an extremely complicated problem. A large size of platelets compared
to that of molecules, strong inhomogeneity of their distribution across the blood flow, high shear
velocities, the moving boundary of the aggregate, the interdependence of its growth and the blood flux
hamper the construction of closed mathematical models convenient for biologists. We propose a new
PDE-based model of a thrombocyte aggregate formation. In this model, the movement of its boundary
due to the adhesion and detachment of platelets is determined by the level set method. The model
takes into account the distribution inhomogeneity of erythrocytes and platelets across the blood flow,
the invertible adhesion of platelets, their activation, secretion, and aggregation. The calculation results
are in accordance with the experimental data concerning the kinetics of the ADP-evoked growth of a
thrombus in vivo for different flow velocities. The model constructed here can be easily extended to
the case of other hemostatic mechanisms and can be integrated into different continuous blood flow
models.

The hemostasis is an evolutionary developed protection system minimizing blood
loss in a rupture of the vascular system, i.e., in an injury of the wall of some blood
vessel of an organism [12]. The central participants of the hemostasis system are
platelets, which are the smallest form elements of the blood having the size about
1 µm. These elements are comparatively few in number, but possess unique prop-
erties. Platelets are instantly activated near the injured vascular wall and become
capable of strong adhesion to the wall and to each other [31, 45, 52]. Due to this
fact, the injured place quickly becomes pasted up with an aggregate of activated
platelets, which prevents the loss of blood. The activated platelets produce solu-
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ble agents, which are activators of platelets brought with the flow. The plasmatic
coagulation system works in the gaps between the aggregated platelets where it is
protected from the oncoming blood flow. This system governs the formation of the
fibrin net fastening the platelets. The hemostatic plug obtained in this process pre-
vents the blood from flowing out of the vessel during the total time of recovery of
the injured vascular wall. Since the spatial growth of the thrombocyte aggregate is
the key point in the work of the hemostasis system, the main purpose of this pa-
per is the development of a simple continuous mathematical model describing this
growth. This model has to be simple in implementation and applied both for the
study of the hemostasis regulation and for integration into complex models of blood
flow in vessels and vascular networks.

The adhesion of platelets to the injured vascular wall or to the surface of a
growing aggregate is a principally nonlocal process, a platelet adheres to the sur-
face only if the distance from its center to the point of fixation is smaller or equal
to its size. Therefore, the adhesion rate at a given spatial point is determined by
the content of the active surface in some finite neighbourhood of this point. This
nonlocal problem can be reduced to integro-differential equations, whose solution
is, however, very resource-intensive. Within the framework of the Euler approach,
the problem of nonlocality can be solved by introducing a new variable ‘sensitive’
to the state of the neighbourhood, i.e., the concentration of ‘elastic links’ between
the platelets [19] or the concentration of the virtual short-living substance produced
by them and diffusing over a small distance [33]. There is a more general method
of tracing the domains interface boundary motion, this is the level set approach
(LSA) [2, 38]. It allows one to determine the distance to the boundary by using one
additional differential equation (Hamilton–Jacobi equation) describing the bound-
ary movement and joined to other differential equations of the problem. This gives
us the ability to distribute the surface processes over the transition zone of a finite
length. However, the LSA has not been applied yet to the simulation of the bound-
ary motion occurring due to the adhesion of particles to it. In this paper we use the
LSA to determine the motion of the boundary of a thrombocyte aggregate under
invertible adhesion of platelets to it.

Another important aspect of hemostasis is the near-wall blood layer concentra-
tion with platelets. Platelets are displaced from the core of the blood flow by ery-
throcytes migrating from the walls to the axis of the flow [1]. Erythrocytes whose
mean volume concentration is about 40–45% continuously push each other in the
shear blood flow, which results in their regular random movement across the flow,
i.e., shear-caused dispersion. The dispersion of platelets causes the dispersion of
the surrounding plasma and the platelets contained in it [15, 24, 57]. The disper-
sive motion is described by the same equations as molecular diffusion. However,
the ordinary diffusion equation (the first Fick’s law) is unable to describe the spa-
tial distribution inhomogeneity of particles (platelets across the flow in our case) in
principle, because it leads to an equalizing of the concentrations. The phenomeno-
logical solution to this problem has been obtained by introducing an additional term
into this equation. This term is the passive flow oriented towards to wall caused by
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the gradient of the ‘rheological potential’ [16, 17, 56]. Unfortunately, this approach
leaves the mechanism of displacement beyond consideration, but the determination
of the form of the ‘rheological potential’ requires a priori knowledge of the answer,
i.e., the form of the stationary platelets distribution under the given conditions. Nat-
urally, this is impossible in the case of a growing thrombus, which regularly changes
the geometry of the flow. Recent theoretical studies show that the concentration of
the wall layer is generally determined by the inability of the platelets to take place
between the erythrocytes, and the ‘rheological potential’ may be directly related to
the volume fraction physically accessible for platelets in the space between the ery-
throcytes [13, 50]. In this paper we extend this result to the general case of a flow
with a nonuniform transversal distribution of platelets flowing around a growing
thrombocyte aggregate.

Thus, in this paper we present the new mathematical model of the growth of a
thrombocyte aggregate (thrombus). Its advantages are the equation-based method
of determination of the boundary motion (by the level set approach) and the con-
sideration of a nonuniform distribution of platelets and erythrocytes across the flow
streamlining the thrombus (by calculation of the distribution of the volume accessi-
ble for platelets). Our model consists of a system of linked PDE and can be easily
implemented and integrated into other PDE-based models.

1. Mathematical model

We describe all basic processes occurring to a platelet in the blood flow and in the
activation zone:

• the transport of platelets along and across the flow;

• the capture of a platelet by the injured vascular wall or by the surface of a
thrombocyte aggregate;

• the activation of a platelet by the action of ADP and shear tension;

• release of ADP by an activated platelet;

• detachment of a captured platelet by the flow.

The description of these processes requires simultaneous taking into account of
the following factors:

• the transport of platelets in the flow;

• the growth of the aggregate in the flow;

• the obstacle for the blood flow caused by the aggregate.
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Figure 1. Kinetic scheme of activation and adhesion of platelets. Nonactivated platelets are denoted
by RP1 and RP2, activated ones — by AP1 and AP2. Platelets release ADP in their activation (curved
arrows), which activates other platelets (double arrows) and is hydrolyzed with generation of AMP
(dotted line). Platelets captured by the surface of the thrombus are also activated by shear tension.

The general kinetic scheme of the described processes is presented in Fig. 1, the
differential equations of the model are presented in Appendix A, the values of all
the parameters are given in Table 1 below. Depending on their state, platelets are
denoted by RP1, AP1 (resting and activated platelets in the flow) and RP2, AP2 (fixed
resting and activated platelets). The volume fraction of erythrocytes is denoted by
ΦRBC, the flow velocity is ū= (u,v), the pressure is p. Below we explain the meaning
of all terms of these equations.

1.1. Adhesion and activation of platelets

1.1.1. Adhesion of platelets. The capture of platelets from the blood flow occurs
onto the injured part of the vascular wall and onto platelets that have becomes a part
of the aggregate but are lying for a while on its surface [31, 45, 52]. The dimension
of the boundaries is always less by one than the dimension of the space. Using the
LSA, we replace the boundary of the thrombocyte aggregate by a narrow transition
zone of the half-thickness s, where the platelets carried by the flow are captured at
the rate

W adh
RP = αJwallRP χ

Θ

s

W adh
AP = αJwallAP χ

Θ

s

(1.1)

Here α is the capture efficiency, JwallRP and JwallAP are the platelets flows toward the
wall. The function Θ is the surface indicator: Θ > 0 in the narrow transition zone
where the adhesion occurs and is equal to zero outside of it. We construct Θ so
that the ratio Θ(r)/s tends to the δ -function δ (r) for s > 0 in the direction r per-
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Table 1.

Parameters of the model: (a) Typical diameter of arterioles and venules is 20÷70 µm [27, 43]; venule

diameter in experiment [3] is 40÷70 µm. (b) Found by integration of (1.37). (c) The ADP inflow rate

in [3] was 2 ·10−14 mole/s; the coefficient 1024 converts mole/µm3 to nm. (d) At normal extracellular

concentration of Ca2+-ions a platelet releases approximately only 6% of ADP in response to shear

tension [35] and to ADP [32].

Parameter Notation Value Notes and
references

Sizes of the calculation domain:

length of the vessel L1 +L2 150 µm

width of the vessel L3 50 µm (a)

width of the additional domain L4 10 µm

initial height of the aggregate h0 0

radius of ADP inflow section on
the vessel wall

b 5 µm

Concentrations:

mean concentration of platelets
in blood

P0 429 ·10−4/µm3 [3]

mean volume portion of ery-
throcytes in blood

ΦD 0.4 [9, 24]

mean cross-section portion
of the volume accessible for
platelets

Φ̄a 0.396 (b)

ADP flow through the wall in
the activation zone

JADP 2 ·10−14 ·1024/πb2
mole·s/µm2

(c)

Activation of platelets:

in response to ADP TADP
[ADP]1/2
nADP

3 s
2000 nm
2

[21]

in response to shear tension Tτ
τ1/2
nτ

25 s
90 dyne/cm2

4

[10]

quantity of ADP contained in a
platelet

λmax 3.3 ·107nm/(pl/µm3) [47]

quantity of ADP released from a
platelet in its activation

λADP 0.06 ·λmax (d)

hydrolysis of ADP by nucleoti-
dases in blood

V
hydr,ADP
m

K
hydr,ADP
m

80 nm/s
21700 nm

[11]

coefficient of diffusion of ADP DADP 257 µm2/s [20, 25, 48]

Adhesion of platelets:
collision parameter K 1 µm estimated from [49]

detachment velocity constant δ 4 ·10−6 estimated from [25]
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Table 1.

(continuation) Parameters of the model: (e) Estimated from the mean volume of a platelet VRP=8

µm3 by the formula aRP = (3VRP/4π)1/3.

Parameter Notation Value Notes and
references

Blood flow:

blood density ρ 1.056 ·10−6ug/µm3 [37]
density of blood and plasma η , ηP 4.5 cP, 1.2 cP [9, 24]

initial near-wall shear velocity γ̇w,0 0÷1000 s−1 see figure legends

Growth of the aggregate:
platelet equivalent radius aRP 1.24 µm (e)

concentration of platelets in the
aggregate

Pm 1/(60µm3) estimated from [5–7]

width of the transition zone s 2.5 µm
stabilization of the equation for
the level function

λ
β
w0

2 µm2/s
20 s−1

1 µm/s

coefficient of permeability of
the aggregate

KD 0.61 µm2 see (1.28)

pendicular to the surface of the aggregate (r = 0 on the surface of the aggregate,
see equation (1.15) below). The function χ in equation (1.1) indicates the ability of
the surface of the aggregate or a vascular wall to fix a platelet. It is assumed that
platelets can be captured from the flow either by activated platelets of the growing
aggregate (AP2), or by the injured part of the vascular wall (the domain where Θ> 0
for t = 0):

χ = max

[

AP2

RP2+AP2
,Θt=0

]

(p2 < 1) . (1.2)

Here p2 is the total concentration of aggregated platelets normalized by its maximal
possible value:

p2 =
RP2+AP2

Pm
. (1.3)

The flow of platelets onto the wall generally occurs due to their near-wall colli-
sions with erythrocytes, the frequency of those collisions is proportional to the prod-
uct of the shear rate magnitude γ̇ and the volume fraction of erythrocytes ΦRBC [49]:

JwallRP = Kγ̇ΦRBCRP1

JwallAP = Kγ̇ΦRBCAP1.
(1.4)

By the definition, for a flow developing in the x-direction we have γ̇ = |∂u/∂y| ≡
∣

∣u′y
∣

∣. The magnitude of the rate-of-strain tensor can be used for the calculation of
the particle collision frequency in the general case of a curvilinear flow [28]. In the
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two-dimensional case it is calculated from the second invariant of the rate-of-strain
tensor by the formula

γ̇ =

√

2u′x
2 +

(

u′y + v′x
)2

+2v′y
2. (1.5)

1.1.2. Detachment of platelets from the thrombus. Nonactivated platelets form
only a temporary contact with the active surface [25,36,55]. The rate of their detach-
ment from the surface, i.e., from the layer with the thickness equal to the diameter
2aRP of a platelet is proportional to the shear velocity

W̃ det
RP = δ γ̇ RP2 Θ̃. (1.6)

Here Θ̃ is the function similar to Θ and equal to 1 on the exact boundary of the
aggregate, but with the half-width 2aRP. Proceeding from Θ̃ to Θ and keeping the
total detachment rate with respect to the cross-section of the transition zone (i.e.,
the flow from the wall), we get

W det
RP = δ γ̇ RP2Θ

2aRP

s
. (1.7)

Thus, both adhesion and detachment of nonactivated platelets occur in the transition
zone determined by the function Θ.

1.1.3. Activation of platelets under the effect of ADP. The activation of a
platelet by different activators occurs in a trigger manner according to the rule ‘all
or nothing’: low concentrations practically do not influence a platelet, but high ones
cause the complete activation in a finite time determined by the nature of its in-
ner signal systems [21, 22, 26, 47, 53]. Therefore, we assume that the activation rate
depends on the concentration of ADP according to Hill:

W chem
1 =

(ADP/ADP1/2)
nADP

1+(ADP/ADP1/2)
nADP

· RP1

TADP

W chem
2 =

(ADP/ADP1/2)
nADP

1+(ADP/ADP1/2)
nADP

· RP2

TADP

(1.8)

Here nADP and ADP1/2 are parameters, TADP is the typical activation time for a

platelet for the saturating concentration of ADP.

1.1.4. Surface activation of platelets by shear tension. Along with activation
by soluble agonists, platelets captured from the flow by the surface can be also
activated by the action of shear tension [45]. This response also has a threshold
character [10, 27]. Assuming that nonactivated platelets lying in the surface layer
with the thickness equal to the diametrical size of a platelet 2aRP are subject to
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shear tension activation, we write its rate in the form

W̃ stress
2 =

(τ/τ1/2)
nτ

1+(τ/τ1/2)nτ
RP2

Tτ
Θ̃ (1.9)

Passing from Θ̃ to Θ preserving the total activation rate relative to the cross-section
of the transition zone, we get

W stress
2 =

(τ/τ1/2)
nτ

1+(τ/τ1/2)nτ
· RP2
Tτ

Θ
2aRP

s
. (1.10)

Thus, shear activation is ‘spread’ over the width of the whole transition zone. In
equations (1.9), (1.10), τ is a scalar quantity equal to the magnitude of the stress
tensor:

τ = 0.01η γ̇ . (1.11)

The factor 0.01 is introduced because the viscosity is measured in centipoises.

1.1.5. Generation of the activator by platelets. Platelets release ADP from their
dense granules in their activation. We use the principle of the description of this
process proposed previously in [48]. According to this principle, the rate of ADP
production is proportional to the rate of platelets activation:

W rel
1 =W chem

1 λADP

W rel
2 =

(

W chem
2 +W stress

2

)

λADP.
(1.12)

Here λADP is the quantity of ADP released from a single platelet. The ADP hydrol-
ysis rate in the blood is equal to

W
hydr
ADP =

V
hydr, ADP
m ADP

K
hydr, ADP
m +ADP

. (1.13)

1.2. Growth of a thrombocyte aggregate

In this paper we consider a quasi-two-dimensional formulation of the problem (see
Fig. 2A), but the model can be directly extended to the three-dimensional case. The
flow domain in our study was the rectangle [−L1 6 x 6 L2]× [0 6 y 6 L3]. The
pressure value p0 at the input was chosen so that at the initial time moment (in the
absence of the thrombocyte aggregate) the near-wall shear rate was equal to the
given value γ̇w,0:

p0 = 2γ̇w,0η
L1+L2

L3
(1.14)

where η is the viscosity of blood. In order to trace the motion of the aggregate’s
boundary, the level set approach (LSA) has been used. In this method, the sharp
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Figure 2. Calculation domain (A) and computational grid (B). All variables except for ϕ are deter-
mined in the upper rectangle [−L1 6 x 6 L2]× [06 y 6 L3]. The position x = −L1 corresponds to the
inlet, x = L2 corresponds to the outlet, the values y = 0 and y = L3 correspond to the walls imperme-
able to the flow. The function ϕ was defined in both rectangles −L4 6 y 6 L3. The curve lines on the
panel A are zero-level lines of the function ϕ and indicate the exact boundary of the thrombus at the
beginning and at the end of a typical calculation.

boundary of the domain, where a jump of the physical properties of the medium
occurs, is replaced by the transition zone of their continuous variation. The width
s of this zone must be greater than the mesh size and much less than the typical
size of the adjacent domains. In our case the mesh size in the thrombus zone was
1÷2 µm, the width of the flow was 50 µm, the diametrical size of the aggregate
was 10÷40 µm. Therefore, the admissible width of the transition zone was about
2÷5 µm. Since the aggregate actually grows by capturing separate platelets whose
diametrical size is of the order 2aP = 2.4µm and this growth is inhomogeneous
over its surface, the boundary of the thrombus principally has a thickness not less
that several micrometers. In the calculations the width s of the transition zone was
taken equal to 2.5 µm. Below we describe the implementation of LSA in the model
of platelets aggregation.

In order to identify the spatial domains forming the aggregate and the blood
flow zone, we used the indicator function ϕ ; its negative value means that a point
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Figure 3. Structure of the transition zone. The distribution of adhesion, detachment, and shear activa-
tion processes is done according to the zone −s < ϕ < s (where Θ(ϕ) > 0). The aggregate resists the
flow in the zone ϕ < −s (where R(ϕ) > 0). This spatial distribution allows us to calculate correctly
the shear rate in the zone of adhesion, i.e., in the zone −s < ϕ < s.

belongs to the aggregate, and a positive value corresponds to the blood flow. The
line of zero level of ϕ (where ϕ = 0) is called the exact boundary of the aggregate.
The value |ϕ | indicates the distance from a given point of the surface, because in
the process of calculation we try to keep |∇ϕ | close to 1 in the transition zone and
in its neighbourhood. This allows us to obtain easily the function Θ identifying the
transition zone as the domain where Θ(ϕ) > 0:

Θ(ϕ) = H
(

ϕ +
s

2
,
s

2

)

·H
(

−ϕ +
s

2
,
s

2

)

. (1.15)

Here the smoothed Heaviside function H(r,r0) serves as the trigger function H

smoothly varying from 0 to 1 in the interval −r0 < r < r0. Therefore, Θ(ϕ) = 0
for |ϕ | > s and it is smoothly increased up to Θ(0) = 1 when ϕ approaches 0
(see Fig. 3). For |∇ϕ | = 1 the dependence of Θ on the coordinate in the direction
transversal to the surface, Θ(r), has a peak form with the width of the base equal to
2s, the half-width (width at the half-height) equal to s, and the area s. For s→ 0 we
have Θ(r)/s→ δ (r).

The adhesion of each platelet changes the position of the boundary by the dis-
tance equal to the size of a platelet. The consideration of the balance of the number
of platelets in the boundary layer easily implies that the velocity of the boundary is
equal to

w =
(

W adh
RP −W det

RP +W adh
AP

) s

Pm
. (1.16)

The motion of the boundary occurs in the normal direction to it, which is determined
in LSA as

n̄ =
∇ϕ

|∇ϕ | . (1.17)

The boundary velocity vector equals

w̄ = wn̄. (1.18)
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In accordance with the LSA, in order to provide the motion of the boundary
at this velocity, we have to solve the following convection equation, which is the
Hamilton–Jacobi equation:

∂ϕ

∂ t
+ w̄∇ϕ = 0. (1.19)

Taking into account equations (1.17) and (1.18), we have

∂ϕ

∂ t
+w |∇ϕ |= 0. (1.20)

The diffusion and source terms are added to the right-hand side of (1.20) to
stabilize the numerical solution of this equation and keep |∇ϕ | close to 1:

∂ϕ

∂ t
+w |∇ϕ |= (λ∆ϕ +β S(ϕ) (1−|∇ϕ |)) 〈w〉

w0

(1.21)

where S(ϕ) is a continuous analogue of the function sign(ϕ):

S(ϕ) =
ϕ

√

ϕ2+(4s)2
. (1.22)

The whole right-hand side of equation (1.21) is proportional to the mean velocity
〈w〉 of the boundary motion in order not to outweigh the convective term at the
left-hand side of the equation. The parameters β and λ are chosen the minimum
possible. The value λ should be of the order of the product of the boundary motion
velocity and the mesh size. Since the thrombus growth rate in an arteriole is of order
1 µm/s and the mesh size is 2–4 µm, the base value of λ was 2 µm2/s. The value of
β was taken minimal, so that the value of |∇ϕ | be close to 1 in the whole transition
zone during the total calculation time.

For all boundaries of the computational domain of blood flow except for the
lower one (y = 0), the boundary condition for ϕ was specified in the form

n̄ ·∇ϕ = 0. (1.23)

The conditions on the boundaries positioned far from the transition zone (−s< ϕ <
s) have a weak effect on the motion of the line ϕ = 0. However, this is not so for the
boundary y = 0, because the line ϕ = 0 always crosses it. Therefore, the domain of
definition of the function ϕ (x,y) is extended to the additional rectangular domain
having the width L4 and adjacent to the lower boundary (see Fig. 2). The boundary
y = 0 becomes internal for equation (1.21) and does not now require any boundary
condition. The conditions on the outer boundaries of the additional domain had form
(1.23). The transfer velocity of the level function in the additional domain (y < 0)
was equal to the value calculated on the boundary y = 0 for the same coordinate x.
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In order to take into account the resistance of the aggregate to the flow, we
added into the right-had side of the Navier–Stokes equations the term of the volume
density of the force acting on the plasma filtered through it:

F̄ = −ηP

KD

ūR. (1.24)

The domain of resistance of the aggregate to the flow was determined by the func-
tion R equal to 0 outside the aggregate and to 1 inside of it (see Fig. 3):

R(x,y) = H(−ϕ−1.5s,0.5s). (1.25)

The coefficient of permeability in the sense of Darsy KD was estimated under the
assumption that the plasma is filtered trough the aggregate via cylindrical channels
(viscosities ηP) and the profile of its velocity in each channel is parabolic. If the
concentration of platelets in the aggregate is Pm, then a single platelet occupies ap-
proximately l = 1/ 3

√
Pm of the channel’s length. The resistance force to the fluid

flow on a part of a channel of the length l and the diameter d is equal to

F̄1 = −τ̄w (u,d) πd l = −8π ηPūl (1.26)

where τw (u,d) is the near-wall shear velocity in the channel, u is the mean plasma
velocity in the channel equal to the macroscopic filtration rate. Therefore, inside the
aggregate we have

F̄ ≈ F̄1Pm = −8πηPūP
2/3
m (1.27)

which gives

KD ≈ 1

8πP
2/3
m

. (1.28)

The growth kinetics of the aggregate is characterized in the model by the two
following parameters: the total number of platelets in the aggregate (per unit thick-
ness in the direction perpendicular to the plane xy), platelet/µm,

P2(t) =

∫∫

(RP2+AP2)dxdy (1.29)

and the area of its cross-section by the plane xy (‘two-dimensional volume’, i.e., the
equivalent of the volume of a three-dimensional object), µm2,

A(t) =

∫∫

(ϕ < 0)dxdy. (1.30)

The integration was performed over the whole blood flow domain (y > 0). We got
A(t) ≈ P2(t)/Pm in all the calculations.



Thrombus formation model 203

1.3. Transport of erythrocytes and platelets

The blood was considered as a one-phase fluid with the constant density and vis-
cosity (we neglected the difference in the densities of erythrocytes and the plasma
because it is ∼ 7% [34], and also the non-Newton properties of blood, because

they become evident only for shear velocities ∼ 50 s−1 and lower [9, 24], whereas

the typical shear velocities in microcirculation vessels are (1÷ 2)× 103 s−1 [27]).
Therefore, the rate of convection of free erythrocytes and free platelets was assumed
to be equal to the velocity of the medium. The platelets fixed in the aggregate were
assumed to be motionless.

The shear-induced diffusion coefficients of erythrocytes and platelets moving in
the flow are close or equal to each other (see [23, 57]). They were calculated from
an analytical approximation of the results of a series of experimental measurements
[57] as

DZC = kR2
RBC

γ̇w,0

2
Φ0 (1−Φ0)

n . (1.31)

Here RRBC is the main radius of an erythrocyte, γ̇w,0/2 is the mean shear velocity,
Φ0 is the volume fraction of erythrocytes at the inflow (inflow hematocrit/100%),
kR2

RBC = 2.646µm2, n = 0.8.
The distribution of erythrocytes across the blood flow is inhomogeneous: their

volume portion is almost zero near the wall and is maximal on the axis of the flow.
In a rectilinear flow this distribution has the form [50, 51]

ΦRBC,0 (y) = ΦRBC,m

[

1− exp(a−bΦRBC,m)+ exp

(

a−bΦRBC,m
4y(L3− y)

L23

)]−1

(1.32)
ΦRBC,m =

1.45Φ0

0.5+Φ0

where ΦRBC,m is the volume portion on the axis of the flow, a = 3.5 and b = 9 are
constants. This formula was used for the determination of the initial and input dis-
tributions of erythrocytes. In order to support this inhomogeneity of the distribution
and impermeability of erythrocytes into the thrombocyte aggregate, their dispersive
flow was specified in the form

J̄DRBC = −D∇ΦRBC +(1−Θ)DΦRBC∇ lnΦRBC
a (1.33)

where
ΦRBC

a = ΦRBC,0(y) exp [−4R(ϕ)] .

Equation (1.33) gives ΦRBC(x,y) ∼ ΦRBC
a (x,y) in the stationary mode. In order

to balance the concentration of erythrocytes across the transition zone, the factor
(1−Θ) was added into equation (1.33) and an artificial flow was added into trans-
port equation (A6), which was directed perpendicular to the transition zone and was
nonzero only in that zone:

J̄ΘRBC = Θ · (−100D∇ΦRBC, n̄) · n̄. (1.34)
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The boundary condition on the walls of the vessel and at the outflow has the form
n̄bound

(

J̄DRBC + J̄ΘRBC
)

= 0.
The distribution of platelets across the flow is also inhomogeneous, they are

displaced by erythrocytes from the centre of the flow to the walls. The local portion
of the volume available for platelets is generally determined by the volume portion
of erythrocytes [13,50]. It is approximately equal to exp [−2ΦRBC (1+2ΦRBC)] [50].
In order to prevent the penetration of platelets carried by the blood flow into the
thrombus deeper than the transition zone, this expression was multiplied by the
following function quickly decreasing for ϕ < −s:

ΦP
a = exp [−2ΦRBC (1+2ΦRBC)]exp [−4R(ϕ)] . (1.35)

The flows of platelets had the form

J̄DRP1 = −D∇RP1+(1−Θ)D ·RP1 ·∇ lnΦP
a

J̄DAP1 = −D∇AP1+(1−Θ)D ·AP1 ·∇ lnΦP
a .

(1.36)

The initial and input distribution of nonactivated platelets were specified pro-
portional to the initial profile of Φa [50]:

RP1(y)t=0 = P0
ΦP

a (ΦRBC,0(y))

Φ̄P
a

(1.37)

where P0 is the mean concentration of platelets in the blood, Φ̄P
a is the mean volume

portion accessible for platelets in the cross-section of the vessel. In order to balance
the concentration of platelets across the transition zone, we introduced the factor
(1−Θ) into the right-hand side of equation (1.36) and add the following artificial
flows into transport equations (A1)–(A4):

J̄ΘRP1 = (−(100D+100Dadh)∇RP1, n̄) n̄Θ

J̄ΘAP1 = (−(100D+100Dadh)∇AP1, n̄) n̄Θ
(1.38)

The coefficients 100D and 100Dadh are taken to balance the gradients created by
flows (1.36) and the adhesion of platelets, respectively, over the transition zone.

Here Dadh = (2s)2/(2tadh), tadh ∼ (αKγ̇ΦRBC/s)−1
is the typical adhesion time (see

equations (1.1), (1.4)). The boundary conditions for platelets on the walls of the
vessel and at the outflow had the form n̄bound

(

J̄DP + J̄ΘP
)

= 0.

1.4. Numerical methods

The equations of the model (see Appendix A) was solved by the package COM-
SOL Multiphysics 3.4 using the finite element method with second-order Lagrange
elements for the function ϕ and concentrations of platelets and ADP. Solving the
Navier–Stokes equations, we used second-order elements for the velocities and lin-
ear ones for the pressure. The computation grid is shown in Fig. 2B. The accuracy
of calculations was 1%.
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2. Results

2.1. General pattern of the growth of a thrombus in a blood flow

For the sake of simplicity, in this paper we take into account only the basic soluble
activator of platelets, ADP, because the other activators (thrombin and thromboxane
A2) are considered similarly [20, 29, 48]. Therefore, we have used the results of [3]
for a direct comparison with the experiment. In this paper, the growth of a thrombus
was activated by an injection of ADP into the wall of a venule of the cheek pouch
of a hamster. The typical results of the calculations simulating these experiments
are presented in Fig. 4B (Fig. 4A corresponds to t = 0). The gradations of grey
indicate the total concentration of aggregated platelets. It is seen that the thrombus
is formed locally near the activation place. In the course of time, its growth spreads
in all directions with the increasing downstream tendency due to the drift of the
activator caused by the flow. This character of the growth is in accordance with the
experimental data in vivo both in the statement of [3] (panel C) and in the laser
model of the thrombosis of mice [18] (panel D).

The lines in Figs. 4A and 4B indicate the ‘blurred’ (distributed) boundary of
the aggregate, the levels −s, 0, and s of the function ϕ . The width of the transition
zone remained constant and close to 2s in the whole process of calculation. The
velocity field is shown by the arrows. The flow goes around the growing aggregate,
and only slow plasma filtration occurs in the zone ϕ < −s. These results show that
we have succeeded in the solution of the fluid-structure interaction problem under
a continuous variation of the size and form of the body resisting the flow, and also
indicate that the proposed variant of LSA is well applicable to problems of this kind.

2.2. Dependence of the thrombus growth rate on the near-wall shear velocity

The near-wall shear velocity is the main parameter determining the influence of the
flow on the thrombocyte components of hemostasis, because it controls the delivery
rate of platelets to the point of adhesion and their detachment by the flow and also
the velocity of the convective drift of thrombocyte activators. Therefore, we have
studied the influence of shear velocity on the thrombus growth rate in our model.
Figure 5A shows the kinetics of accumulation of aggregated platelets for different
shear velocities. The increase in the shear velocity causes a proportional increase
in the accumulation rate. Beginning with the time moment ∼ 20 s, the curves take
an exponential form and are straightened in the semilogarithmic coordinates (see
Fig. 5B). We had calculated the efficient ‘thrombus growth rate constant’ from the
incline of the linear parts of these curves in the same way as this was done in exper-
imental study [3]. It occurs that the dependence of the efficient growth rate constant
on the shear velocity has a sharp maximum positioned in the shear velocity range
50÷100 s−1 (see Fig. 5C). These shear velocities correspond to the mean flow ve-
locities 400÷800µm/s. A similar dependence was obtained in the experiment (see
Fig. 5D) with the only difference that its form was more sharp and the maximum
was localized near 300µm/s.
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Figure 4. Typical pattern of the growth of a thrombocyte thrombus in a blood flow in the model (A,B)
and in vivo (C,D). (A,B) The total concentration of platelets in the aggregate p2 (grey), the isolines
ϕ = −s,0,s (curves), and the flow velocity field (arrows) are shown for the time moments t = 0 (A)

and 60 s (B). The near-wall shear velocity is 800 s−1, all other parameters are indicated in Table 1. The
black segment on the boundary y= 0 near x= 0 marks the ADP inflow zone. The calculation time was
approximately 280 hours. (C) The growth of a thrombus in a venule of the cheek pouch of a hamster
(d = 40÷70µm) was initialed by the iontophoretic injection of ADP through a micropipette [3]. (D)
The growth of a thrombus in an arteriole of a mouse (d = 40÷ 60µm) was initiated by injuring the
wall by a laser [18]. The arrows in C and D show the direction of the blood flow.
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Figure 5. Kinetics of the growth of a thrombocyte thrombus. (A,B) The dependence of the total
number of platelets in the thrombus on time for different near-wall shear velocities in linear and
semilogarithmic coordinates. (C) The thrombus growth rate constant calculated from the incline of
the curves from panel B on the period t = 20÷ 35 s. The upper axis is obtained from the lower one
by the multiplication by L3/6 and is presented for comparison with panel D. (D) The experimental
thrombus growth rate constant calculated from the kinetics of its volume [3].

3. Conclusion

The aim of this paper was the development of a continuous PDE-based numerical
model of the thrombocyte component of hemostasis taking into account all its basic
processes, such as the transport of platelets along and across the blood flow, their
adhesion to the injured place of a vascular wall and to the surface of a growing
thrombocyte aggregate, the activation, the emission of activators, and the aggrega-
tion of platelets. The main difficulty was in the description of the process of the
thrombocyte aggregate growth into the blood flow occurring due to the adhesion
of platelets carried by the flow. This is caused by the principal nonlocality of the
adhesion (a finite size of platelets) and by the necessity to calculate the rate of this
process on the moving boundary of the aggregate. Along with the description of
all basic processes of the thrombocyte component of the hemostasis, an advantage
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of the model constructed here is its flexibility and its ability to be integrated into
continuous models of blood flow in domains with a complex geometry and with
fixed [4,14,30,42] or moving walls [44,46,54], and also for the whole vascular net-
work. A network of vessels can be described by a multiscale model combining (a)
one-dimensional flows of the Poiseuille type in regular parts with parallel walls and
without obstacles and (b) two-dimensional Navier–Stokes description in the zones
of a more complicated geometry: bifurcations and clot formation areas [8, 39]. In
addition, this model can be easily supplemented with differential equations describ-
ing the action of all the three activators of platelets [20, 29, 48] and the work of the
plasma coagulation system [40,41]. This produces a sufficiently complete quantita-
tive model of hemostasis applicable to the study of its regulation and mechanisms
of transitions from normal functioning to a pathologic behaviour, such as hemor-
rhaging and thrombosis.

This work is a part of the joint French-Russian Programme International de Co-
operation Scientifique (PICS CNRS) ‘Mathematical modelling of blood diseases’. It
was partly supported by the Russian Foundation for Basic Research (09–04–00232,
10–01–91055, and 11–04–00303), by grant 14.740.11.0875 ‘Multiscale problems:
analysis and methods’ of the Ministry of Education and Research of the Russian
Federation and by SFR MOMAD of the University of Saint Etienne and ENISE
(the Ministry of Research and Education of France).

Appendix A. Differential equations of the model

Dimensionality: t: s; x, y: µm; RP1, AP1, RP2,AP2: platelet/µm
3 ;W adh

RP ,W adh
AP ,W det

RP ,

W chem
1 , W chem

2 , W stress
2 : platelet/µm3 · s; JwallRP , JwallAP ,

∣

∣JDRP1

∣

∣,
∣

∣JΘRP1

∣

∣,
∣

∣JDAP1

∣

∣,
∣

∣JΘAP1

∣

∣:

platelet/µm2· s; ADP: nm;W rel
1 ,W rel

2 ,W
hydr
ADP : nm/s; ū: µm/s; γ̇ : 1/s; τ , p: dyne/cm2;

F̄: µg/µm2·s2 = 10−18 N/µm3); P2(t): platelet/µm; A(t) : µm2.

Kinetics and transport of platelets:

∂

∂ t
RP1+(ū∇)RP1 = −∇

(

J̄DRP1+ J̄ΘRP1
)

−
(

W adh
RP −W det

RP +W chem
1

)

(A1)

∂

∂ t
AP1+(ū∇)AP1 = −∇

(

J̄DAP1+ J̄ΘAP1
)

+
(

W chem
1 −W adh

AP

)

(A2)

d

dt
RP2 =

(

W adh
RP −W det

RP

)

−
(

W chem
2 +W stress

2

)

(A3)

d

dt
AP2 =W chem

2 +W stress
2 +W adh

AP (A4)

Kinetics and transport of ADP:
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∂

∂ t
ADP+(ū∇)ADP = DADP∆ADP+W rel

1 +W rel
2 −W hydr. (A5)

Transport of erythrocytes:

∂

∂ t
ΦRBC +(ū∇)ΦRBC = −∇

(

J̄DRBC + J̄ΘRBC
)

. (A6)

Equations of fluid flow (Navier–Stokes equations):

∇ · ū = 0 (A7)

ρ
∂

∂ t
ū+ρ (ū∇) ū = ∇

(

−p ¯̄I+2η ¯̄S
)

+ F̄ (A8)

¯̄S =
1

2

(

∇ū+(∇ū)T
)

. (A9)

Motion of aggregate (thrombus) boundary:

∂ϕ

∂ t
+w |∇ϕ | = (λ∆ϕ +β ·S(ϕ) (1−|∇ϕ |)) 〈w〉 . (A10)

References

1. P. A. Aarts, S. A. van den Broek, G. W. Prins, G. D. Kuiken, J. J. Sixma, and R. M. Heethaar,
Blood platelets are concentrated near the wall and red blood cells, in the center in flowing blood.
Arteriosclerosis (1988) 8, No. 6, 819–824.

2. D. Adalsteinsson and J. A. Sethian, A fast level set method for propagating interfaces. J. Comp.
Phys. (1995) 118, No. 2, 269–277.

3. N. Begent and G. V. Born, Growth rate in vivo of platelet thrombi, produced by iontophoresis of
ADP, as a function of mean blood flow velocity. Nature (1970) 227, No. 5261, 926–930.

4. D. Bluestein, L. Niu, R. T. Schoephoerster, and M. K. Dewanjee, Steady flow in an aneurysm
model: correlation between fluid dynamics and blood platelet deposition. J. Biomech. Eng.
(1996) 118, No. 3, 280–286.

5. J. P. Bossavy, K. S. Sakariassen, A. Barret, B. Boneu, and Y. Cadroy, A new method for quanti-
fying platelet deposition in flowing native blood in an ex vivo model of human thrombogenesis.
Thromb. Haemost. (1998) 79, No. 1, 162–168.

6. J. P. Bossavy, K. S. Sakariassen, C. Thalamas, B. Boneu, and Y. Cadroy, Antithrombotic efficacy
of the vitamin K antagonist fluindione in a human ex vivo model of arterial thrombosis: effect
of anticoagulation level and combination therapy with aspirin. Arterioscler. Thromb. Vasc. Biol.
(1999) 19, No. 9, 2269–2275.

7. J. P. Bossavy, C. Thalamas, L. Sagnard, A. Barret, K. Sakariassen, B. Boneu, and Y. Cadroy, A
double-blind randomized comparison of combined aspirin and ticlopidine therapy versus aspirin
or ticlopidine alone on experimental arterial thrombogenesis in humans. Blood (1998) 92, No. 5,
1518–1525.



210 A. Tokarev et al.

8. G. Cardone, G. Panasenko, and I. Sirakov, Asymptotic analysis and numerical modelling of mass
transport in tubular structure. arXiv: 0910. 5683v2, (2009).

9. C. G. Caro, T. J. Pedley, R. C. Schroter, and W. A. Seed, The Mechanics of the Circulation.
Cambridge Univ. Press, Cambridge–New York, 2012.

10. T. W. Chow, J. D. Hellums, J. L. Moake, and M. H. Kroll, Shear stress-induced von Willebrand
factor binding to platelet glycoprotein Ib initiates calcium influx associated with aggregation.
Blood (1992) 80, No. 1, 113–120.

11. S. B. Coade and J. D. Pearson, Metabolism of adenine nucleotides in human blood. Circ. Res.
(1989) 65, 531–537.

12. R. W. Colman, A. W. Clowes, S. Z. Goldhaber, V. J. Marder, and J. N. George, Hemostasis and
Thrombosis-Basic Principles and Clinical Practice. Lippincott Williams & Wilkins, 2006.

13. L. Crowl and A. L. Fogelson, Analysis of mechanisms for platelet near-wall excess under arterial
blood flow conditions. J. Fluid Mech., Available on CJO 2006 (2011).

14. B. Das, G. Enden, and A. S. Popel, Stratified multiphase model for blood flow in a venular
bifurcation. Annals Biomed. Eng. (1997) 25, 135–153.

15. T. E. Diller, Comparison of red cell augmented diffusion and platelet transport. J. Biomech. Eng.
(1988) 110, No. 2, 161–163.

16. E. C. Eckstein and F. Belgacem, Model of platelet transport in flowing blood with drift and
diffusion terms. Biophys. J. (1991) 60, No. 1, 53–69.

17. E. C. Eckstein, D. L. Bilsker, C. M. Waters, J. S. Kippenhan, and A. W. Tilles, Transport of
platelets in flowing blood. Ann. N.Y. Acad. Sci. (1987) 516, 442–452.

18. S. Falati, P. Gross, G. Merrill-Skoloff, B. C. Furie, and B. Furie, Real-time in vivo imaging of
platelets, tissue factor and fibrin during arterial thrombus formation in the mouse. Nat. Med.
(2002) 8, No. 10, 1175–1181.

19. A. L. Fogelson and R. D. Guy, Platelet-wall interactions in continuum models of platelet throm-
bosis: formulation and numerical solution. Math. Med. Biol. (2004) 21, No. 4, 293–334.

20. B. J. Folie and L. V. McIntire, Mathematical analysis of mural thrombogenesis. Concentration
profiles of platelet-activating agents and effects of viscous shear flow. Biophys. J. (1989) 56,
No. 6, 1121–1141.

21. M. M. Frojmovic, R. F. Mooney, and T. Wong, Dynamics of platelet glycoprotein IIb-IIIa re-
ceptor expression and fibrinogen binding. I. Quantal activation of platelet subpopulations varies
with adenosine diphosphate concentration. Biophys. J. (1994) 67, No. 5, 2060–2068.

22. M. M. Frojmovic, R. F. Mooney, and T. Wong, Dynamics of platelet glycoprotein IIb-IIIa re-
ceptor expression and fibrinogen binding. II. Quantal activation parallels platelet capture in stir-
associated microaggregation. Biophys. J. (1994) 67, No. 5, 2069–2075.

23. H. L. Goldsmith, Red cell motions and wall interactions in tube flow. Fed. Proc. (1971) 30,
No. 5, 1578–1590.

24. H. L. Goldsmith and V. T. Turitto, Rheological aspects of thrombosis and haemostasis: basic
principles and applications. ICTH-Report–Subcommittee on Rheology of the International Com-
mittee on Thrombosis and Haemostasis. Thromb. Haemost. (1986) 55, No. 3, 415–435.

25. P. D. Goodman, E. T. Barlow, P. M. Crapo, S. F. Mohammad, and K. A. Solen, Computa-
tional model of device-induced thrombosis and thromboembolism. Ann. Biomed. Eng. (2005)
33, No. 6, 780–797.

26. R. R. Hantgan, A study of the kinetics of ADP-triggered platelet shape change. Blood (1984) 64,
No. 4, 896–906.



Thrombus formation model 211

27. J. J. Hathcock, Flow effects on coagulation and thrombosis. Arterioscler. Thromb. Vasc. Biol.
(2006) 26, No. 8, 1729–1737.

28. M. Hofer and K. Perctold, Computer simulation of concentrated fluid-particle suspension flows
in axisymmetric geometries. Biorheology (1997) 54, No. 4/5, 261–279.

29. J. A. Hubbell and L. V. McIntire, Platelet active concentration profiles near growing thrombi. A
mathematical consideration. Biophys. J. (1986) 50, No. 5, 937–945.

30. J. Jung and A. Hassenein, Three-phase CFD analytical modelling of blood flow. Medical Engi-
neering & Physics (2008) 30, 91–103.

31. S. Kulkarni, S. M. Dopheide, C. L. Yap, C. Ravanat, M. Freund, P. Mangin, K. A. Heel, A. Street,
I. S. Harper, F. Lanza, and S. P. Jackson, A revised model of platelet aggregation. J. Clin. Invest.
(2000) 105, No. 6, 783–791.

32. N. Lantz, B. Hechler, C. Ravanat, J. P. Cazenave, and C. Gachet, A high concentration of ADP
induces weak platelet granule secretion independently of aggregation and thromboxane A2 pro-
duction. Thromb. Haemost. (2007) 98, No. 5, 1145–1147.

33. K. Leiderman and A. L. Fogelson, Grow with the flow: a spatial-temporal model of platelet
deposition and blood coagulation under flow.Math. Med. Biol. (2010) 28, No. 1, 47–84.

34. V. A. Levtov, S. A. Regirer, and N. Ch. Shadrina, Blood Rheology. Medicine, Moscow, 1982 (in
Russian).

35. J. L. Moake, N. A. Turner, N. A. Stathopoulos, L. Nolasco, and J. D. Hellums, Shear-induced
platelet aggregation can be mediated by vWF released from platelets, as well as by exogenous
large or unusually large vWF multimers, requires adenosine diphosphate, and is resistant to
aspirin. Blood (1988) 71, No. 5, 1366–1374.

36. N. A. Mody, O. Lomakin, T. A. Doggett, T. G. Diacovo, and M. R. King, Mechanics of transient
platelet adhesion to von Willebrand factor under flow. Biophys. J. (2005) 88, No. 2, 1432–1443.

37. P. Neofytou, Comparison of blood rheological models for physiological flow simulation. Biorhe-
ology (2004) 41, No. 6, 693–714.

38. S. Osher and J. A. Sethian, Fronts propagating with curvature-dependent speed. J. Comp. Phys.
(1988) 79, 12–49.

39. G. P. Panasenko, Asymptotic expansion of the solution of Navier-Stokes equation in tube struc-
ture and partial asymptotic decomposition of the domain. Applic. Anal. Int. J. (2000) 76, No.
3–4, 363–381.

40. M. A. Panteleev, A. N. Balandina, E. N. Lipets, M. V. Ovanesov, and F. I. Ataullakhanov, Task-
oriented modular decomposition of biological networks: trigger mechanism in blood coagula-
tion. Biophys. J. (2010) 98, No. 9, 1751–1761.

41. M. A. Panteleev, M. V. Ovanesov, D. A. Kireev, A. M. Shibeko, E. I. Sinauridze, N. M.
Ananyeva, A. A. Butylin, E. L. Saenko, and F. I. Ataullakhanov, Spatial propagation and lo-
calization of blood coagulation are regulated by intrinsic and protein C pathways, respectively.
Biophys. J. (2006) 90, No. 5, 1489–1500.

42. K. Perktold, M. Hofer, G. Rappitsch, M. Loew, B. D. Kuban, and M. H. Friedman, Validated
computation of physiologic flow in a realistic coronary artery branch. J. Biomech. (1998) 31,
No. 3, 217–228.

43. A. S. Popel and P. C. Johnson, Microcirculation and hemorheology. Annu. Rev. Fluid Mech.
(2005) 37, 43–69.

44. A. M. Quarteroni, M. Tuveri, and A. Veneziani, Computational vascular fluid dynamics: prob-
lems, models and methods. Computing and Visualization in Science (2000) 2, 163–197.



212 A. Tokarev et al.

45. Z. M. Ruggeri and G. L. Mendolicchio, Adhesion mechanisms in platelet function. Circ. Res.
(2007) 100, No. 12, 1673–1685.

46. C. M. Scotti, J. Jimenez, S. C. Muluk, and E. A. Finol, Wall stress and flow dynamics in ab-
dominal aortic aneurysms: finite element analysis vs. fluid-structure interaction. Comp. Methods
Biomech. Biomed. Eng. (2008) 11, No. 3, 301–322.

47. R. D. Smyth and W. G. Owen, Platelet responses to compound interactions with thrombin. Bio-
chemistry (1999) 38, 8936–8947.

48. E. N. Sorensen, G. W. Burgreen, W. R. Wagner, and J. F. Antaki, Computational simulation
of platelet deposition and activation: I. Model development and properties. Ann. Biomed. Eng.
(1999) 27, No. 4, 436–448.

49. A. A. Tokarev, A. A. Butylin, and F. I. Ataullakhanov, Platelet adhesion from shear blood flow
is controlled by near-wall rebounding collisions with erythrocytes. Biophys. J. (2011) 100, No.
4, 799-808.

50. A. A. Tokarev, A. A. Butylin, E. A. Ermakova, E. E. Shnol, G. P. Panasenko, and F. I.
Ataullakhanov, ‘Excluded and available volumes’ effect causes a strong non-uniform distribu-
tion of platelets across blood flow. Biophys. J. (2011) 101, No. 8, 1835–1843.

51. A. Tokarev, G. Panasenko, and F. Ataullakhanov, Segregation of flowing blood: mathematical
description. Math. Modelling Natur. Phenom. (2011) 6, 281–319.

52. D. Varga-Szabo, I. Pleines, and B. Nieswandt, Cell adhesion mechanisms in platelets. Arte-
rioscler. Thromb. Vasc. Biol. (2008) 28, No. 3, 403–412.

53. J. L. N. Wolfs, P. Comfurius, J. T. Rasmussen, J. F. W. Keuren, T. Lindhout, R. F. A. Zwaal, and
E. M. Bevers, Activated scramblase and inhibited aminophospholipid translocase cause phos-
phatidylserine exposure in a distinct platelet fraction. Cell. Mol. Life Sci. (2005) 62, 1514–1525.

54. B. J. B. M. Wolters, M. C. M. Rutten, G. W. H. Schurink, U. Kose, J. D. Hart, and F. N. V. D.
Vosse, A patient-specific computational model of fluid-structure interaction in abdominal aortic
aneurysms. Med. Eng. & Phys. (2005) 27, 871–883.

55. Y. P. Wu, P. G. de Groot, and J. J. Sixma, Shear-stress-induced detachment of blood platelets
from various surfaces. Arterioscler. Thromb. Vasc. Biol. (1997) 17, No. 11, 3202–3207.

56. C. Yeh, A. C. Calvez, and E. C. Eckstein, An estimated shape function for drift in a platelet-
transport model. Biophys. J. (1994) 67, No. 3, 1252–1259.

57. A. L. Zydney and C. K. Colton, Augmented solute transport in the shear flow of a concentrated
suspension. PCH PhysicoChem. Hydrodynam. (1988) 10, No. 1, 77–96.


