pp. 1-16 (2011)

An optimal strategy for leukemia therapy:
a multi-objective approach

Y. TODOROVY E.FIMMEL* A.S. BRATUSj,L Y. S. SEMENO\Z
and F. NUERNBERG

Abstract — In this work we introduce a multi-objective optimizatioroplem using the example of
a leukemia treatment model. We believe that treatmenttafieat only leukemia cells, but also the
healthy cells. The treatment effect is modelled as a thef@pgtion. The optimization problem con-
sists of two objective functions that are in conflict: on thedand, minimizing the leukemia cells
and on the other hand, maximizing the number of healthy.célésreduce this multi-objective prob-
lem by using thee-constraint method. With the aid of Pontryagin’s MaximuninBiple we give an
analytical solution to this reduced problem. In order tavedhe problem using the epsilon-constraint-
method, the restriction of a threshold value for the numib&ealthy cells is separately considered as
an optimization problem with a new extended objective fiamctFor the most relevant parameters the
maximum dose of chemotherapeutics should be administeretg as the predetermined restrictions
are not violated. Furthermore, the case in which singulatrobmay occur during the therapy process
is analysed. In this case, the optimal control is also deterth

1. Statement of the problem

Numerous mathematical studies pay tribute to the impogtarfccancer research
([28, 6]), in particular, to the research of leukemia. Weebasir work on the
model of Afenya and Calderén [2],which describes the dyearof normalN and
leukemicL cells under the assumption that both cell types follow then@ertzian
growth and develop this model further introducing theraffgats. The model of
Afenya and Calderon is a further development of earlier risodg Clarkson [5],
Rubinow and Lebowitz [27], and Djulbegovic and Svetina [B8ilaés defined as fol-
lows:

dL(t) A
i nL(t)In (W) —yiL(t) 1.1)
dN(t) A

— = =faN(n (W) —VaN(t) — eN(D) L (1)

wherer;,r, Vi, ,C,A LA, € R,.. The constants; andr, represent the replication
rate of leukemic and normal cells, respectivgly y, denote the mortality rates of
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both cell typesrespectively, and is the mutation rate, which presents the strength
of interaction between leukemic and normal cefs.and A, are the asymptotic
bounds of both cell populations.

In [1], model (1.1) is extended and takes into account the therapy effect on
both cell types. The therapy effect was modelled by subirgéii(t) from the first
andlu(t) from the second differential equation @f.1), wherek, | € R, are the
strengths of the therapeutic agerit) on the leukemic and normal cells, respec-
tively. Paper [20] proposes a strategy, in which an adaptigdel predictive control
is used to personalize chemotherapeutic dosing for theried of acute childhood
lymphoblastic leukemia.

Papers [3, 24] consider the synthesis of optimal controlirggnto minimize
the number of virulent cells growing according to logistitdaGompertzian laws.
They take into consideration monotonic and non-monotdmécapy functions for
only one type of tumor cell. Paper [10] deals with four mod#ichemotherapy
regarding the optimal control. A problem of optimal theragmntrol presented in
[4] considers tumor cells sensitive and non-sensitive tadtherapeutic agents. In
[12] dynamical analysis of a cancer model during radiotpyeria considered with
the aim of investigating whether a cancer cell-free steddie £xists. Paper [21]
presents an optimal control problem of tumor treatment lgiagenic inhibitors in
combination with chemotherapeutic agents.

There are many approaches in the area of multi-objectivenggtion. Com-
pared to the traditional optimization methods, multi-atije optimization provides
a set of optimal solutions, i.e., Pareto optimal solutiohicl is a subset of the set of
all possible (feasible) solutions [16]. The Pareto optis@ltions are not necessar-
ily better than all feasible solutions, but no better feles@wlutions exist. The ideal
point is usually infeasible, especially when the objecfinactions are in conflict.
For this reason, one or more decision makers are necessaryave to choose one
control quantity from the Pareto optimal set at each poitinoét;, i = {0,1,...,n},
tn = T. In these approaches, it is not possible to pass fyahrought;; without
a decision maker. The aggregation approaches in mulériibptimization, which
transform multiple objectives into a single one, are thegiveid-sum-method, the
g-constraint method, and the goal-programming method J&dlitionally there are
more modern interactive methods, where the decision madksram overall picture
of the problem and its development when arriving at a cedagision [15]. Another
approach is based on genetic (evolutionary) algorithms [7]

Papers [9] and [26] present multicriteria optimization lgeans for planning
radiation therapy. In [13] a multi-criteria optimizatiotrategy based on the lex-
icographic method has been implemented and evaluated twmnglinical cases
for IMRT (Intensity-Modulated Radiation Therapy) plangirPapers [22] and [23]
use genetic algorithms to find the optimal chemotherapétgatment as a multi-
objective problem. In [11] a multi-objective optimizatigmoblem for cancer ther-
apy is presented. There, the multi-objective structureaissformed into a single-
objective format through goal programming.

In this work we suggest, as announced above, a model basétIgrfor the
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population dynamics of norm&l and leukemic cell& under the influence of a ther-
apeutic agent, assuming the growth process of normal and leukemic cdltsife
the Gompertzian law:

dLT(t) — L)l (LL(;‘)) —yiL(t) = fi(hL()
dNT(t) —raN(t)In N“;%) — N (1) — N L(t) - fa(N(D) (1.2)
%(t) =—wh(t)+u(t), 0<t<T

with L(0) = Lo, N(0) = Np, h(0) =0, wherelL g, Na, 11, rn, V1, ¥h, @ndc are constants,
La andN, denote the limit of the number of leukemic and normal ceispectively,
in the equation abovey, and y, represent the mortality rates of both cell types.
The impact of leukemic cells on the growth and evolution ofnmal cells is also
included in the model by the tereN(t)L(t). The constant has to be interpreted
as a mutation rate. The last equation(Inl) represents the dynamics of the thera-
peutic agent with dissipation rajg and the amount of the administered therapeutic
agentu(t) € L,[0,T] at the timet that we hereinafter call the control function. The
influence of the therapeutic agent on normal and leukemis lak been considered
in the model with the therapy functiorfs(h) and f,(h), assuming that the therapy
affects the leukemic cells more strongly than normal célishis work two types of
therapy functions are considered, as indicated later.

Furthermore, we introduce the following constraints fa thaximal quantity of
the chemotherapeutic at each momteand a limitation of the cumulative quantity
of the chemotherapeutic during the overall-therapy praices

O<u(t) <R

T
| hwd <Q
0

with the constant parametedRsQ € R, .
We describe a multi-objective optimization problem asdat:

minimize the functiond (t) and — N(t) subject t¢1.2). (1.4)

In this article we use the-constraint method, which reduces problem (1.3) as
follows

minimizeL(t) subject to(1.2) andN(t) > & = Nin,  Nmin € R™° (1.5)

The g-constraint method simplifies the optimization problemwinich we set
a restriction for the state variabM(t). This restriction describes the fact that the
number of healthy cells during the therapy process is notvaitl to fall below a
minimal limit Np,in, Which is necessary for the patient’s vitality.

Now we have to deal with only one objective function. For tb&uson of the
problem we use Pontryagin’s maximum principle [25], whidheg an analytical
solution of the optimal control problem.

(1.3)
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2. General case of optimal control

In order to simplify the system, we substitute
N
a (2.1)

wherelL, andN;, are the maximal possible amounts of leukemic and normad,cell

respectively.
Thereafter, the system has the form:

di(t) =—nl{t)+yi+ fi(h)

dt
dnt) i)
—d r?(tt) ran(t) + Yo+ Ca€ " + fn(h) 22
—— = —Wh(t) +u(t)
dt L N
1(0) =1In L—z, n(0) =In N—Z, h(0) =0

Solving differential equations (2.2), we obtain the timspense of the system

r|t +/ —r(t—s) fl )d
't

n(t) = npe” rnt 'Yn(l e—rnt _|_/ e (=9 ¢ n(h( ))dS+Ca/ e (t=9-1(s)4g
n 0

h(t):/ote W=9)y(s)ds
(2.3)

1(t) = log " +

with c; = cL,.
The objective function and the constraints with the newaldés have the fol-
lowing form:
B(1(T)) = Lae™!(T)

Na

n(t) <In N
O<ut) <R (24)
/ "ht)et < Q.

0

In order to find the optimal control, the Hamiltonian [14] bktsystem (2.2) is

considered:

H=i(—nl+yi+ fi) + go(—ran+vh+Cae™ + fn) + Ya(—yh+u).  (2.5)
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According to Pontryagin's Maximum Principle, the co-staté the system are
defined as follows

dll—’(;t(t) - l/—’l(t) + l/—’z(t)cae_l(t)
dLlezt(t) = Inyh(t) (28)
dw;(t) — ) d‘lg(‘t(;)) _ wz(t)%?g)) + ¥ s(t)

with the terminal conditions:
(T)=Lae' ™, n(T)=0, s(T)=0. (27)

Solving differential equation$2.6), we obtain the time response of the co-
states:

Pa(t) = Paoe™ (2.8)

Using the Pontryagin’s Maximum Principle we choose for efiold timet €
[0,T), u* to be the value ofi that maximizes the Hamiltoniad = H (u). SinceH
is linear inu, it follows that the maximum occurs in the casejaf# 0 at one of the
endpointsu = 0 oru = R. More precisely,

R, lll3(t) >0
u(t) = { 0, Ys(t) <0 (2.9)
unknown Ys(t) =0.

For the case of3(t) = 0 we have a singular control law.
In order to determine the optimal control law, we should gselthe zeroes of
Ys.

Lemma2.1. It holds g (t) = 0 and @y (t) = Pio€' with Yyo > 0 for all t €
[0, T].

Proof. Fromy(T) = 0 we obtaing,(T) = e’ = 0. Thereforeyo=0and
yr(t) =0 fort € [0, T] holds, respectively. Furthermore, from the first equatibn o
(2.8) we obtain; (t) = Wio€t. Due togoe' T = Lae ' (M) > 0, we obtaingo > 0.
Thus, i (t) is a strictly increasing function ifo, T].
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Remark 2.1. It immediately follows from the third equation of (2.3) arbtlast
constraint of (2.4) that the paramet&ss, T, Q are not arbitrary and so they satisfy
the following inequality:

B(Twﬁ—e“’” -1)<Q.

Ve
It shows that the maximal therapy tirmiedepends on the model parameters in a
plausible manner.
2.1. Thecase of amonotonic therapy function

Let us consider a monotonic therapy function, i&h) > 0 for all h > 0. For ex-
ample, it could be the following monotonic therapy function

Ah
W =hi1

which describes an interaction according to Michaelis—{dehaw or:
f(hy=Ah, A eR>°
which describes models of the Lotka—\Volterra type.
Theorem 2.1. Function (3(t) has only one zero point on [0,T] (at T) in the

case of a monotonic therapy function f; and the optimal control function is given by
u(t) = Rfor all t € [0, T].

Proof. Due to the terminal conditiog3(T) = 0 and Lemma 1, we get the fol-
lowing result:

- O L

Note that because of &° > 0, g (s) > 0, and dj(h(s))/dh(s) > 0 for alls€ [0, T],
it implies Y30 > 0. Now we can rewrite the equation fgi(t) as follows:

[T s dfi(h(s))
_ /t (=9 gy (s) g

Due to the strict positivity of the function under the integrwe obtain the
proposition: (s has only one root of0, T| (att = T).
The propositioru(t) = Rfor all t € [0, T] immediately follows from (2.9).




An optimal strategy 7

2.2. Thecase of anon-monatonic therapy function

Let us consider a non-monotonic therapy function that hdwseshold effect. The
therapy effect grows till a certain moment of time at whigft) = hy, and then
decreases fdn > hy,. Thus, the maximum value of the therapy function is reached
ath(t) = hy. The value ohy, can be interpreted as the maximal acceptable amount
of medicine for patients without doing harm to their heaRhecisely, letf (h) be a
differentiable function with a continuous derivative with(h) > 0 for h € [0, hy,),
f'(hm) =0, andf’(h) < 0 forh > hy, e.g.,

f(h)=ahe™ abeR>°

with o
d(ahe™") _bh 1
/ = = —_ = —
f'(h) = ah ae M(1-bh), hy b
Sinceyro = 0, we can rewrite the equation fgg(t) as follows:
ot dfi(h(s)
_ Wt _ yh(t—S) hall ANV
l.IJg(t) l.IJgoe /0 e l.IJ]_(S) dh(S) ds.

We consider the following functiodis(t) with {i3(t) = e %t 3(t) which has the
same roots ag; and the same sign @ for allt € [0, T|:

B5(6) = o~ o | & oL ETS)) "
The first derivative of this function is given by
Ph(t) = — ot dtljﬁlr(]g))
i . dfi(h
sign({5(t)) = _s.gn( (Ijﬁ(t(;)))

i.e.Ji3(t) is strictly increasing (decreasing, respectively), if anty if, df; (h(t)) /dh(t)
is strictly decreasing (increasing, respectively).

Lemma2.2. The inequality y;3(0) = 3o > 0 holds in the case of a non-
monotonic therapy function f;.

Proof. Setty = inf{t € [0, T]|h(t) = hy}. By default,ty =T if h(t) < hy, for all
t € [0, T]. Note thatt, > O.

Suppose thapso < 0. By definition ofty, we haven(t) < hy, (i.e. dfi (h(t)) /dh(t) >
0) fort € [0,ty) and

Js(t) = Yao— l.Ulo/(;t e(r'_”‘)s%r(l(s)s))ds< 0
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and strictly decreasing af,ty). It follows that{J3(t) < 0 fort € (0,tx) andu(t) =0
for all t € [0,ty), respectively (see (2.10)). We obtdift) = 0 for allt € [0,tx) due
to h(0) = 0 andh(t) = JS e *(=Su(s)ds. By continuity,h(ty) = 0. If ty € (0,T) we
get a contradiction tb(tx) = hy, > 0. It follows thatty = T andh=00n|0,T].

It implies that(Js is negative and strictly decreasing M T]. This contradicts
the condition{is(T) = 0. Therefore, the inequalitysp > O takes place.

Theorem 2.2. Let f; beanon-monotonic therapy function, hy, > Owith f/ (hy) =

Oand
min{—%ln(l—%hm)ﬂ}, hn <

T7 hm 2

|
ENIPe= Py

Then

(1) ys(t) >0forallt € [0,tg) and u(t) =R for all t € [0,tp), respectively;
(2) Y5(to) =0,ifto < T holds, Ys(t) =0and u(t) = ynhm for all t € [to, T].

Proof. Setto=inf{t € [0,T]|s(to) = Pa(to) = 0}. Sincedi3(0) = Y3 > O (see
Lemma 2.2) thety > 0. Suppose thap < T.
Due to Lemma 2.2 and the definitiontgf the inequalityfis(t) > 0 holds for all

t € [0,tp) and
P5(to) <O
that is,h(tg) < hnm.
It follows from (2.10) that(t) = Rfor all t € [0,tp) and consequently

ht) = E(l—ew)

is strictly increasing fot € [0,1p).
We have(s(tg) = @3(T) = 0. If Js(t) is not identically trivial on[tp, T], then
either
m= min t) <0 or M= max {is(t) >0.
i, P(t) max Ps(t)
Case (1). Lem:tnpt()ir}] (Ps(t) <0 and@iz3(t1) = m, wherety < t; < T. Then
€ ’

Pi(t1) = 0, h(t1) = hy and there exists such > 0 that Jiz(t) < 0 in (t1,t; + 0).
By (2.10) we haveu(t) = 0 in this interval and, by (2.2),l/ddt = —yh(t) < 0.
It follows thath(t) decreases oft;,t; + d) andh(t) < h(ty) = hy, in this interval.
Hence dj(h(t))/dnh(t) > 0 on(t1,t1 + &) and fort € (t1,t1 + d) we have

dfi (h(s)) dfi (h(s))

dn(s) s

1
J(t) = Yao— l.Ulo/o gli—ws

< J5(t1) =m.

ds— Uno te("l*%)s
t1
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We get a contradiction with the definition of.
Note that case (1) includes the case wifg(ty) < 0. Consequentlyfi;(to) =0,

Now we can express from hy, = R/ (1 — e ) as follows:

1 Vhhm
o= n(1-57)
i.e., in particularhm — R/, < 0.

Case (2). LetM = maxcy, 1) fi5(t) > 0 and Ji5(t2) = M, wherety <t < T.
Then againiz(t2) = 0, h(t2) = hy, and there exists such > 0 that Jiz(t) > 0
in (tz,t2 4+ ). By (2.10) we havau(t) = R in this interval and by (2.2) ljfdt =
—wh(t) + R > 0, sinceR > yhn. It follows thath(t) increases ir(ty,t2 + d) and
h(t) > h(t2) = hy, in this interval. Hence @ (h(t)/dh(t) < 0 in (t2,t; + ) and for
t € (t2,t2+ 9), we have

2 _n-wsdfi(h(s)) t nows dfi(h(s)
t) = _ / e(rl W)Sids_ / e(rl )'ﬁ)sids
Js(t) = Yao— Yo 5 dh(s) Y10 . dn(s)
> (J3(tp) = M.
We get a contradiction with the definition &fl. ConsequentlyJ5(t) = 0 and
l.IJg(t) =0in [t(),T].
Sinceys(t) = 0'in [to, T], then the controli(t) is singular on this segment. The

last equation of (2.2) implies that
0=—whn+u(t), telt,T].

Hence, the constant value of singular control is

u(t) = yhhm, telto,T].

3. Optimal control with phase constraints

Now we additionally consider the limitation of the minimatgessary amount of
normal cells and the cumulated chemotherapeutic agentgitive therapy process:

t N,
/0 h(s)ds < Q, n(t) <In

< .
Nmin

From the equation fon(t) we get the following equivalent restriction:
t t
/ &S (h(s))ds < (In Na noe "t — (1 _ gty _ ca/ e‘r“(t‘s)"(s>ds).
0 Nmin M 0

The aim of the task is to expand the system so that the thesapyminated by
exceeding the cumulative amount of the therapeutic agenbitinues under the
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minimum number of healthy cells, i.e. the switching funntif;(t) in these cases is
negative. Different approaches to the penalty functiorpaesented in [18].

In order to impute the constraints of the system (1.11) indb#&mal control
problem, we introduce the functiagit) andw(t) with

g(t) = /0 "h(s)ds
t
w(t) = /0 &7, (h(s))ds.

Now we have the following system:

DY =1 ++ fih)

dn(t) _ —ran(t) + yh — cae' U + f(h)

i — —wh(t) + u(t)

@ o (3.1)
ot

W _ gty

1(0) = | t—z n(0) = In E—Z h(0)=0, g(0)=0, w(0)=0

We define the penalty functions:

Na
@(9(t)) ={ OISO ) :{ 0 n(t) <In o=

Ag(t), otherwise Aaw(t), otherwise

(3.2)
with large positive number&,, A,.

Thus, the objective function is extended by two additiomaints in order to
consider the restrictions.

Oo(T) = L&'+ @u(9(T)) + @(W(T)). (33)
If any of the restrictions is violated, the objective funtctisharply increases, i.e. its

minimization can only be performed by terminating the tpgra
We construct the Hamiltonian and the corresponding adgyistem:

H=n(—rl+yi+f) + go(—ran+ Vh+cae ' + )

+ Ya(— Y h+u) + Yah+ P o (N(L)).
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For the adjoint variables we obtain the following systemiffedential equations:
dyn(t)
dt
dyh(t)
dt
dyss(t)

=1 ¢u(t) + yo(t)cae ™
= i(t)
)i (

= —r () (h(t)) — Ya(t) F- (M) + v W(t) — Walt) (3.4)
—s(t)E fr(h(t))
=0

S

diy(t)

ot
dys(t)
ot
with the terminal conditions:

Yi(T) =Lae '™, yu(T)=0, ¢3(T)=0

Na
_f0 gM<Q 0 <
Pa(T) —{ — A1, otherwise { —Az, o

otherW|se

From the two last terminal conditiongy,(t) and g5s5(t) are determined as fol-
lows:

Na
w0 ={ %\ S ws<t>={0’A gl @9
’ 25

otherwise otherwise

The optimal control functioru®(t) can still be calculated according to (2.9),
where the restrictions are taken into account.

4. Numerical results

In this section we present some numerical results conagrfia optimal treat-
ment of leukemia for the cases of monotonic and non-monotirapy functions.
All results are obtained for the same model parameters anstreints:r; = 0.25,
rh = 0.38y; = 0.01, y, = 0.01, yy = 0.5, ca = 3.7 x 107>, A| = 4.5, A, = 4.0,
a1 =8.0,a =45,b; =0.7,bp = 0.5, Q=100,L, = 10'°, N, = 10%. The initial
valuesN(0) = 108, L(0) = 5 x 10" andNn = 2 x 10’ are chosen for all numerical
calculations. The maximal amount of the chemotherapeggntR = 1 was cho-
sen for the general control situation aRd-= 2 for the presentation of the singular
control.

Figures 1-6 show that the therapy is terminated becaud§tof= Nmin. The
same behaviour is obtained f§h(s)ds = Q occurs.

5. Conclusions

The mathematical modelling of leukemia therapy considetime effect of the
chemotherapeutic agent is a complex problem for optimatrobrirhe number of
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7 Optimal trajectories of leucemic and healthy cells
14 T T T T T T

L

[0} 1 2 3 4 5 6 7 8 9
non—dimentional time

Figure 1. Optimal control with phase constraints using the monotdherapy function. Time re-
sponse of(t) andN(t). Calculated terminal statel(T*) = 2 x 107, L(T*) = 2.43x 10°.

Optimal trajectories of the control and therapy functions

Ji(h(t))

0] 1 2 3 4 5 6 7 8 9
non—dimensional time

Figure 2. Optimal control with phase constraints’(t) and optimal trajectories of the monotonic
therapy functiond (h(t)) and fy(h(t)). Calculated optimal switching timg* = 7.8.
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14X 107 Optimal trajectories of leucemic and healthy cells

12

L(t)
4 - -
2
N7nin \\
0 " " L L
[0} 0.5 1 1.5 2 2.5 3

non—dimentional time

Figure 3. Optimal control with phase constraints using the non-mamicttherapy function. Time
response ok (t) andN(t). Calculated terminal stateli{T*) = 2 x 107, L(T*) = 5.66x 1CP.

Optimal trjaectories of the control and therapy functions

5 T T T T T
4.5 N
4t Ju(h()) ]
3.5 B
£ st e 1
el fn(h(t)) - =~ T~
= 2.5 _ - =~
£ -
— 2k ~ 4
= -
*‘5 P e
1.5F p N
. w* (t)
1 -
/
0.5} / .
/
[0}
(0] 0.5 1 1.5 2 2.5 3

non—dimensional time

Figure4. Optimal control with phase constraints:(t) and optimal trajectories of the non-monotonic
therapy functiond (h(t)) and fy(h(t)). Calculated optimal switching timg* = 1.97.
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12X 107 Optimal trajectories of leucemic and healthy cells

N(t)

10

Nmin

0 . . . .
0] 0.5 1 1.5 2 2.5 3

non—dimentional time

Figure5. Singular optimal control with phase constraints using the-monotonic therapy function.
Time response df(t) andN(t). Calculated terminal state(T*) = 2 x 107, L(T*) = 9.14x 10°.

Optimal trjaectories of the control and therapy functions
5 T T T ‘ ‘

e J1(h(?))

0] 0.5 1 1.5 2 2.5 3
non—dimensional time

Figure 6. Singular optimal control with phase constrainis(t) and optimal trajectories of the non-
monotonic therapy function§ (h(t)) and fn(h(t)). Calculated optimal switching timig* = 1.7.
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cells and the interaction between the cells and the chemagtbatic agent are de-
termined by certain non-linear laws. The cumulative amaira chemotherapeu-
tic agent which can be applied during the therapy, as welhadrtensity of this

application, should be restricted by some prescribed walliee corresponding op-
timization problem becomes more complicated as a consequeithe fact that

chemotherapy destroys not only leukemic cells, but norralié ¢oo. Thus, we si-

multaneously have two opposite objectives: to destroydmik cells without the

normal cells falling below a minimum acceptable quantity.

The authors have considered two kinds of therapy functisingtly increasing
therapy functions and non-monotonic therapy function$aithreshold effect. In
the first case the therapy effect grows with the increasinguariof chemothera-
peutic agent. In the second case the therapy effect growspeefic moment in
time and then decreases. The second case is more realistic.

The results of this study have shown that in the case of a rooiwther-
apy function the maximum admissible amount of the chemaffeutic agent must
be administered until one of the admissible boundary vahidbe constraints is
obtained and then therapy must be immediately stopped.drcéise of a non-
monotonic therapy function the optimal control strategyoigjive the patient the
maximal admissible quantity of the chemotherapeutic agento the moment in
which the maximum therapy effect is reached, then to holdrtagimum effect un-
til one of the admissible boundary values of the constramtbtained and then to
stop the therapy. The moment of the maximal effect of theaiyecan be calculated
based on the model parameters.
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