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An optimal strategy for leukemia therapy:
a multi-objective approach

Y. TODOROV∗, E. FIMMEL∗, A. S. BRATUS†, Y. S. SEMENOV†,
and F. NUERNBERG∗

Abstract — In this work we introduce a multi-objective optimization problem using the example of
a leukemia treatment model. We believe that treatment affects not only leukemia cells, but also the
healthy cells. The treatment effect is modelled as a therapyfunction. The optimization problem con-
sists of two objective functions that are in conflict: on the one hand, minimizing the leukemia cells
and on the other hand, maximizing the number of healthy cells. We reduce this multi-objective prob-
lem by using theε-constraint method. With the aid of Pontryagin’s Maximum Principle we give an
analytical solution to this reduced problem. In order to solve the problem using the epsilon-constraint-
method, the restriction of a threshold value for the number of healthy cells is separately considered as
an optimization problem with a new extended objective function. For the most relevant parameters the
maximum dose of chemotherapeutics should be administered as long as the predetermined restrictions
are not violated. Furthermore, the case in which singular control may occur during the therapy process
is analysed. In this case, the optimal control is also determined.

1. Statement of the problem

Numerous mathematical studies pay tribute to the importance of cancer research
([28, 6]), in particular, to the research of leukemia. We base our work on the
model of Afenya and Calderón [2],which describes the dynamics of normalN and
leukemicL cells under the assumption that both cell types follow the Gompertzian
growth and develop this model further introducing therapy effects. The model of
Afenya and Calderón is a further development of earlier models by Clarkson [5],
Rubinow and Lebowitz [27], and Djulbegovic and Svetina [8] and is defined as fol-
lows:

dL(t)
dt

= rlL(t) ln
( Al

L(t)

)

− γ lL(t)
(1.1)

dN(t)
dt

= rnN(t) ln
( An

N(t)

)

− γnN(t)− cN(t)L(t)

whererl ,rn,γ l,γn,c,Al ,An ∈ R+. The constantsrl andrn represent the replication
rate of leukemic and normal cells, respectivelyγ l, γn denote the mortality rates of
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both cell types, respectively, andc is the mutation rate, which presents the strength
of interaction between leukemic and normal cells.Al and An are the asymptotic
bounds of both cell populations.

In [1], model (1.1) is extended and takes into account the therapy effect on
both cell types. The therapy effect was modelled by subtracting ku(t) from the first
and lu(t) from the second differential equation of(1.1), wherek, l ∈ R+ are the
strengths of the therapeutic agentu(t) on the leukemic and normal cells, respec-
tively. Paper [20] proposes a strategy, in which an adaptivemodel predictive control
is used to personalize chemotherapeutic dosing for the treatment of acute childhood
lymphoblastic leukemia.

Papers [3, 24] consider the synthesis of optimal control aiming to minimize
the number of virulent cells growing according to logistic and Gompertzian laws.
They take into consideration monotonic and non-monotonic therapy functions for
only one type of tumor cell. Paper [10] deals with four modelsof chemotherapy
regarding the optimal control. A problem of optimal therapycontrol presented in
[4] considers tumor cells sensitive and non-sensitive to chemotherapeutic agents. In
[12] dynamical analysis of a cancer model during radiotherapy is considered with
the aim of investigating whether a cancer cell-free steady state exists. Paper [21]
presents an optimal control problem of tumor treatment by angiogenic inhibitors in
combination with chemotherapeutic agents.

There are many approaches in the area of multi-objective optimization. Com-
pared to the traditional optimization methods, multi-objective optimization provides
a set of optimal solutions, i.e., Pareto optimal solution, which is a subset of the set of
all possible (feasible) solutions [16]. The Pareto optimalsolutions are not necessar-
ily better than all feasible solutions, but no better feasible solutions exist. The ideal
point is usually infeasible, especially when the objectivefunctions are in conflict.
For this reason, one or more decision makers are necessary, who have to choose one
control quantity from the Pareto optimal set at each point oftimeti, i = {0,1, . . . ,n},
tn = T . In these approaches, it is not possible to pass fromti throughti+1 without
a decision maker. The aggregation approaches in multi-criteria optimization, which
transform multiple objectives into a single one, are the weighted-sum-method, the
ε-constraint method, and the goal-programming method [19].Additionally there are
more modern interactive methods, where the decision maker gets an overall picture
of the problem and its development when arriving at a certaindecision [15]. Another
approach is based on genetic (evolutionary) algorithms [7].

Papers [9] and [26] present multicriteria optimization problems for planning
radiation therapy. In [13] a multi-criteria optimization strategy based on the lex-
icographic method has been implemented and evaluated usingtwo clinical cases
for IMRT (Intensity-Modulated Radiation Therapy) planning. Papers [22] and [23]
use genetic algorithms to find the optimal chemotherapeutictreatment as a multi-
objective problem. In [11] a multi-objective optimizationproblem for cancer ther-
apy is presented. There, the multi-objective structure is transformed into a single-
objective format through goal programming.

In this work we suggest, as announced above, a model based on(1.1) for the
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population dynamics of normalN and leukemic cellsL under the influence of a ther-
apeutic agenth, assuming the growth process of normal and leukemic cells follows
the Gompertzian law:

dL(t)
dt

= rlL(t) ln
( La

L(t)

)

− γ lL(t)− fl(h)L(t)

dN(t)
dt

= rnN(t) ln
( Na

N(t)

)

− γnN(t)− cN(t)L(t)− fn(h)N(t)

dh(t)
dt

= −γhh(t)+ u(t), 0 < t 6 T

(1.2)

with L(0) = L0, N(0) = N0, h(0) = 0, whereLa, Na, rl, rn, γ l, γn, andc are constants,
La andNa denote the limit of the number of leukemic and normal cells, respectively,
in the equation above.γ l and γn represent the mortality rates of both cell types.
The impact of leukemic cells on the growth and evolution of normal cells is also
included in the model by the termcN(t)L(t). The constantc has to be interpreted
as a mutation rate. The last equation in(1.1) represents the dynamics of the thera-
peutic agent with dissipation rateγh and the amount of the administered therapeutic
agentu(t) ∈ L∞[0,T ] at the timet that we hereinafter call the control function. The
influence of the therapeutic agent on normal and leukemic cells has been considered
in the model with the therapy functionsfl(h) and fn(h), assuming that the therapy
affects the leukemic cells more strongly than normal cells.In this work two types of
therapy functions are considered, as indicated later.

Furthermore, we introduce the following constraints for the maximal quantity of
the chemotherapeutic at each momentt and a limitation of the cumulative quantity
of the chemotherapeutic during the overall-therapy process:

0 6 u(t) 6 R
∫ T

0
h(t)dt 6 Q

(1.3)

with the constant parametersR,Q ∈ R+.
We describe a multi-objective optimization problem as follows:

minimize the functionsL(t) and−N(t) subject to(1.2). (1.4)

In this article we use theε-constraint method, which reduces problem (1.3) as
follows

minimizeL(t) subject to(1.2) andN(t) > ε = Nmin, Nmin ∈ R
>0 (1.5)

The ε-constraint method simplifies the optimization problem, inwhich we set
a restriction for the state variableN(t). This restriction describes the fact that the
number of healthy cells during the therapy process is not allowed to fall below a
minimal limit Nmin, which is necessary for the patient’s vitality.

Now we have to deal with only one objective function. For the solution of the
problem we use Pontryagin’s maximum principle [25], which gives an analytical
solution of the optimal control problem.
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2. General case of optimal control

In order to simplify the system, we substitute

l(t) = ln
La

L(t)
, n(t) = ln

Na

N(t)
(2.1)

whereLa andNa are the maximal possible amounts of leukemic and normal cells,
respectively.

Thereafter, the system has the form:

dl(t)
dt

= −rll(t)+ γ l + fl(h)

dn(t)
dt

= −rnn(t)+ γn + cae−l(t) + fn(h)

dh(t)
dt

= −γhh(t)+ u(t)

l(0) = ln
La

L0
, n(0) = ln

Na

N0
, h(0) = 0.

(2.2)

Solving differential equations (2.2), we obtain the time response of the system

l(t) = l0e−rlt +
γ l

rl
(1−e−rlt)+

∫ t

0
e−rl(t−s) fl(h(s))ds

n(t) = n0e−rnt +
γn

rn
(1−e−rnt)+

∫ t

0
e−rn(t−s) fn(h(s))ds+ ca

∫ t

0
e−rn(t−s)−l(s)ds

h(t) =

∫ t

0
e−γh(t−s)u(s)ds

(2.3)
with ca = cLa.

The objective function and the constraints with the new variables have the fol-
lowing form:

Φ(l(T )) = Lae−l(T )

n(t) 6 ln
Na

Nmin

0 < u(t) 6 R
∫ T

0
h(t)dt 6 Q.

(2.4)

In order to find the optimal control, the Hamiltonian [14] of the system (2.2) is
considered:

H = ψ1(−rll + γ l + fl)+ ψ2(−rnn+ γn + cae−l + fn)+ ψ3(−γh h+ u). (2.5)
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According to Pontryagin’s Maximum Principle, the co-states of the system are
defined as follows

dψ1(t)
dt

= rl ψ1(t)+ ψ2(t)cae−l(t)

dψ2(t)
dt

= rnψ2(t)

dψ3(t)
dt

= −ψ1(t)
d fl(h(t))

dh(t)
−ψ2(t)

d fn(h(t))
dh(t)

+ γh ψ3(t)

(2.6)

with the terminal conditions:

ψ1(T ) = Lae−l(T ), ψ2(T ) = 0, ψ3(T ) = 0. (2.7)

Solving differential equations(2.6), we obtain the time response of the co-
states:

ψ1(t) = ψ10e
rlt + ca

∫ t

0
erl(t−s)−l(s) ψ2(s)ds

ψ2(t) = ψ20e
rnt

ψ3(t) = ψ30e
γht −

∫ t

0
eγh(t−s)

(

ψ1(s)
d fl(h(s))

dh(s)
+ ψ2(s)

d fn(h(s))
dh(s)

)

ds.

(2.8)

Using the Pontryagin’s Maximum Principle we choose for eachfixed timet ∈
[0,T ), u∗ to be the value ofu that maximizes the HamiltonianH = H(u). SinceH
is linear inu, it follows that the maximum occurs in the case ofψ3 6= 0 at one of the
endpointsu = 0 or u = R. More precisely,

u∗(t) =







R, ψ3(t) > 0
0, ψ3(t) < 0
unknown, ψ3(t) = 0.

(2.9)

For the case ofψ3(t) = 0 we have a singular control law.
In order to determine the optimal control law, we should analyse the zeroes of

ψ3.

Lemma 2.1. It holds ψ2(t) = 0 and ψ1(t) = ψ10erlt with ψ10 > 0 for all t ∈
[0,T ].

Proof. Fromψ2(T ) = 0 we obtainψ2(T ) = ψ20ernT = 0. Therefore,ψ20 = 0 and
ψ2(t) = 0 for t ∈ [0,T ] holds, respectively. Furthermore, from the first equation of
(2.8) we obtainψ1(t) = ψ10erlt . Due toψ10erlT = Lae−l(T ) > 0, we obtainψ10 > 0.
Thus,ψ1(t) is a strictly increasing function in[0,T ].
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Remark 2.1. It immediately follows from the third equation of (2.3) and the last
constraint of (2.4) that the parametersR,γh,T,Q are not arbitrary and so they satisfy
the following inequality:

R

γ2
h

(T γh +e−γhT −1) 6 Q.

It shows that the maximal therapy timeT depends on the model parameters in a
plausible manner.

2.1. The case of a monotonic therapy function

Let us consider a monotonic therapy function, i.e.f ′(h) > 0 for all h > 0. For ex-
ample, it could be the following monotonic therapy function:

f (h) =
λh

h+1

which describes an interaction according to Michaelis–Menten law or:

f (h) = λh, λ ∈ R
>0

which describes models of the Lotka–Volterra type.

Theorem 2.1. Function ψ3(t) has only one zero point on [0,T ] (at T) in the
case of a monotonic therapy function fl and the optimal control function is given by
u(t) = R for all t ∈ [0,T ].

Proof. Due to the terminal conditionψ3(T ) = 0 and Lemma 1, we get the fol-
lowing result:

ψ30 = e−γhT
∫ T

0
eγh(T−s) ψ1(s)

d fl(h(s))
dh(s)

ds =

∫ T

0
e−γhs ψ1(s)

d fl(h(s))
dh(s)

ds.

Note that because of e−γhs > 0, ψ1(s) > 0, and dfl(h(s))/dh(s) > 0 for all s ∈ [0,T ],
it implies ψ30 > 0. Now we can rewrite the equation forψ3(t) as follows:

ψ3(t) =

∫ T

0
eγh(t−s) ψ1(s)

d fl(h(s))
dh(s)

ds−
∫ t

0
eγh(t−s) ψ1(s)

d fl(h(s))
dh(s)

ds

=
∫ T

t
eγh(t−s) ψ1(s)

d fl(h(s))
dh(s)

ds.

Due to the strict positivity of the function under the integral, we obtain the
proposition:ψ3 has only one root on[0,T ] (at t = T ).

The propositionu(t) = R for all t ∈ [0,T ] immediately follows from (2.9).
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2.2. The case of a non-monotonic therapy function

Let us consider a non-monotonic therapy function that has a threshold effect. The
therapy effect grows till a certain moment of time at whichh(t) = hm and then
decreases forh > hm. Thus, the maximum value of the therapy function is reached
at h(t) = hm. The value ofhm can be interpreted as the maximal acceptable amount
of medicine for patients without doing harm to their health.Precisely, letf (h) be a
differentiable function with a continuous derivative withf ′(h) > 0 for h ∈ [0,hm),
f ′(hm) = 0, and f ′(h) < 0 for h > hm, e.g.,

f (h) = ahe−bh, a,b ∈ R
>0

with

f ′(h) =
d(ahe−bh)

dh
= ae−bh (1−bh), hm =

1
b
.

Sinceψ20 = 0, we can rewrite the equation forψ3(t) as follows:

ψ3(t) = ψ30e
γht −

∫ t

0
eγh(t−s) ψ1(s)

d fl(h(s))
dh(s)

ds.

We consider the following functioñψ3(t) with ψ̃3(t) = e−γhtψ3(t) which has the
same roots asψ3 and the same sign asψ3 for all t ∈ [0,T ]:

ψ̃3(t) = ψ30−ψ10

∫ t

0
e(rl−γh)s d fl(h(s))

dh(s)
ds.

The first derivative of this function is given by

ψ̃ ′
3(t) = −ψ10e

(rl−γh)t d fl(h(t))
dh(t)

sign(ψ̃ ′
3(t)) = −sign

(d fl(h(t))
dh(t)

)

i.e.ψ̃3(t) is strictly increasing (decreasing, respectively), if andonly if, d fl(h(t))/dh(t)
is strictly decreasing (increasing, respectively).

Lemma 2.2. The inequality ψ3(0) = ψ30 > 0 holds in the case of a non-
monotonic therapy function fl .

Proof. Settx = inf{t ∈ [0,T ]|h(t) = hm}. By default,tx = T if h(t) < hm for all
t ∈ [0,T ]. Note thattx > 0.

Suppose thatψ30 6 0. By definition oftx, we haveh(t)< hm (i.e. dfl(h(t))/dh(t) >
0) for t ∈ [0, tx) and

ψ̃3(t) = ψ30−ψ10

∫ t

0
e(rl−γh)s d fl(h(s))

dh(s)
ds < 0
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and strictly decreasing on(0, tx). It follows thatψ̃3(t) < 0 for t ∈ (0, tx) andu(t) = 0
for all t ∈ [0, tx), respectively (see (2.10)). We obtainh(t) = 0 for all t ∈ [0, tx) due
to h(0) = 0 andh(t) =

∫ t
0 e−γh(t−s)u(s)ds. By continuity,h(tx) = 0. If tx ∈ (0,T ) we

get a contradiction toh(tx) = hm > 0. It follows thattx = T andh ≡ 0 on [0,T ].
It implies thatψ̃3 is negative and strictly decreasing on(0,T ]. This contradicts

the conditionψ̃3(T ) = 0. Therefore, the inequalityψ30 > 0 takes place.

Theorem 2.2. Let fl be a non-monotonic therapy function, hm > 0with f ′l (hm)=
0 and

t0 =











min
{

−
1
γh

ln
(

1−
γhhm

R

)

,T
}

, hm <
R
γh

T, hm >
R
γh

.

Then

(1) ψ3(t) > 0 for all t ∈ [0, t0) and u(t) = R for all t ∈ [0, t0), respectively;
(2) ψ ′

3(t0) = 0, if t0 < T holds, ψ3(t) = 0 and u(t) = γh hm for all t ∈ [t0,T ].

Proof. Sett0 = inf{t ∈ [0,T ]|ψ3(t0) = ψ̃3(t0) = 0}. Sinceψ̃3(0) = ψ30 > 0 (see
Lemma 2.2) thent0 > 0. Suppose thatt0 < T .

Due to Lemma 2.2 and the definition oft0, the inequalityψ̃3(t) > 0 holds for all
t ∈ [0, t0) and

ψ̃ ′
3(t0) 6 0

that is,h(t0) 6 hm.
It follows from (2.10) thatu(t) = R for all t ∈ [0, t0) and consequently

h(t) =
R
γh

(1−e−γht)

is strictly increasing fort ∈ [0, t0).
We haveψ̃3(t0) = ψ̃3(T ) = 0. If ψ̃3(t) is not identically trivial on[t0,T ], then

either
m = min

t∈[t0,T ]
ψ̃3(t) < 0 or M = max

t∈[t0,T ]
ψ̃3(t) > 0.

Case (1). Letm = min
t∈[t0,T ]

ψ̃3(t) < 0 andψ̃3(t1) = m, wheret0 < t1 < T . Then

ψ̃ ′
3(t1) = 0, h(t1) = hm and there exists suchδ > 0 that ψ̃3(t) < 0 in (t1, t1 + δ ).

By (2.10) we haveu(t) = 0 in this interval and, by (2.2), dh/dt = −γhh(t) < 0.
It follows that h(t) decreases on(t1, t1 + δ ) andh(t) < h(t1) = hm in this interval.
Hence dfl(h(t))/dh(t) > 0 on(t1, t1 + δ ) and fort ∈ (t1, t1 + δ ) we have

ψ̃3(t) = ψ30−ψ10

∫ t1

0
e(rl−γh)s d fl(h(s))

dh(s)
ds−ψ10

∫ t

t1
e(rl−γh)s d fl(h(s))

dh(s)
ds

< ψ̃3(t1) = m.
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We get a contradiction with the definition ofm.
Note that case (1) includes the case whenψ̃ ′

3(t0) < 0. Consequently,̃ψ ′
3(t0) = 0,

h(t0) = hm.
Now we can expresst0 from hm = R/γh(1−e−γht0) as follows:

t0 = −
1
γh

ln
(

1−
γhhm

R

)

i.e., in particular,hm −R/γh < 0.
Case (2). LetM = maxt∈[t0,T ] ψ̃3(t) > 0 and ψ̃3(t2) = M, wheret0 < t2 < T .

Then againψ̃ ′
3(t2) = 0, h(t2) = hm, and there exists suchδ > 0 that ψ̃3(t) > 0

in (t2, t2 + δ ). By (2.10) we haveu(t) = R in this interval and by (2.2) dh/dt =
−γhh(t) + R > 0, sinceR > γhhm. It follows that h(t) increases in(t2, t2 + δ ) and
h(t) > h(t2) = hm in this interval. Hence dfl(h(t)/dh(t) < 0 in (t2, t2 + δ ) and for
t ∈ (t2, t2 + δ ), we have

ψ̃3(t) = ψ30−ψ10

∫ t2

0
e(rl−γh)s d fl(h(s))

dh(s)
ds−ψ10

∫ t

t2
e(rl−γh)s d fl(h(s))

dh(s)
ds

> ψ̃3(t2) = M.

We get a contradiction with the definition ofM. Consequently,ψ̃3(t) ≡ 0 and
ψ3(t) ≡ 0 in [t0,T ].

Sinceψ3(t) = 0 in [t0,T ], then the controlu(t) is singular on this segment. The
last equation of (2.2) implies that

0 = −γh hm + u(t), t ∈ [t0,T ].

Hence, the constant value of singular control is

u(t) = γh hm, t ∈ [t0,T ].

3. Optimal control with phase constraints

Now we additionally consider the limitation of the minimal necessary amount of
normal cells and the cumulated chemotherapeutic agent during the therapy process:

∫ t

0
h(s)ds 6 Q, n(t) 6 ln

Na

Nmin
.

From the equation forn(t) we get the following equivalent restriction:
∫ t

0
erns fn(h(s))ds 6 ernt

(

ln
Na

Nmin
−n0e−rnt −

γn

rn
(1−e−rnt)− ca

∫ t

0
e−rn(t−s)−l(s)ds

)

.

The aim of the task is to expand the system so that the therapy is terminated by
exceeding the cumulative amount of the therapeutic agent orcontinues under the
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minimum number of healthy cells, i.e. the switching function ψ3(t) in these cases is
negative. Different approaches to the penalty function arepresented in [18].

In order to impute the constraints of the system (1.11) in theoptimal control
problem, we introduce the functiong(t) andw(t) with

g(t) =

∫ t

0
h(s)ds

w(t) =

∫ t

0
erns fn(h(s))ds.

Now we have the following system:

dl(t)
dt

= −rll(t)+ γ l + fl(h)

dn(t)
dt

= −rnn(t)+ γn − cae−l(t) + fn(h)

dh(t)
dt

= −γhh(t)+ u(t)

dg(t)
dt

= h(t)

dw(t)
dt

= ernt fn(h(t))

l(0) = ln
La

L0
, n(0) = ln

Na

N0
, h(0) = 0, g(0) = 0, w(0) = 0.

(3.1)

We define the penalty functions:

φ1(g(t)) =

{

0, g(t) 6 Q
λ1g(t), otherwise,

φ2(w(t)) =

{

0, n(t) 6 ln
Na

Nmin
λ2w(t), otherwise

(3.2)
with large positive numbersλ1, λ2.

Thus, the objective function is extended by two additional terms in order to
consider the restrictions.

Φc(T ) = Lae−l(T ) + φ1(g(T ))+ φ2(w(T )). (3.3)

If any of the restrictions is violated, the objective function sharply increases, i.e. its
minimization can only be performed by terminating the therapy.

We construct the Hamiltonian and the corresponding adjointsystem:

H = ψ1(−rll + γ l + fl)+ ψ2(−rnn+ γn + cae−l + fn)

+ψ3(−γh h+ u)+ ψ4h+ ψ5ernt fn(h(t)).



An optimal strategy 11

For the adjoint variables we obtain the following system of differential equations:

dψ1(t)
dt

= rl ψ1(t)+ ψ2(t)cae−l(t)

dψ2(t)
dt

= rnψ2(t)

dψ3(t)
dt

= −ψ1(t) f ′l (h(t))−ψ2(t) f ′n(h(t))+ γh ψ3(t)−ψ4(t)

−ψ5(t)e
rnt f ′n(h(t))

dψ4(t)
dt

= 0

dψ5(t)
dt

= 0

(3.4)

with the terminal conditions:

ψ1(T ) = Lae−l(T ), ψ2(T ) = 0, ψ3(T ) = 0

ψ4(T ) =

{

0, g(T ) 6 Q

−λ1, otherwise,
ψ5(T ) =

{

0, n(T ) 6 ln
Na

Nmin
−λ2, otherwise.

From the two last terminal conditions,ψ4(t) andψ5(t) are determined as fol-
lows:

ψ4(t) =

{

0, g(T ) 6 Q

−λ1, otherwise,
ψ5(t) =

{

0, n(T ) 6 ln
Na

Nmin
−λ2, otherwise.

(3.5)

The optimal control functionu∗(t) can still be calculated according to (2.9),
where the restrictions are taken into account.

4. Numerical results

In this section we present some numerical results concerning the optimal treat-
ment of leukemia for the cases of monotonic and non-monotonic therapy functions.
All results are obtained for the same model parameters and constraints:rl = 0.25,
rn = 0.38,γ l = 0.01, γn = 0.01, γh = 0.5, ca = 3.7× 10−5, λl = 4.5, λn = 4.0,
a1 = 8.0, a2 = 4.5, b1 = 0.7, b2 = 0.5, Q = 100,La = 1010, Na = 1010. The initial
valuesN(0) = 108, L(0) = 5×107 andNmin = 2×107 are chosen for all numerical
calculations. The maximal amount of the chemotherapeutic agentR = 1 was cho-
sen for the general control situation andR = 2 for the presentation of the singular
control.

Figures 1–6 show that the therapy is terminated because ofN(t) = Nmin. The
same behaviour is obtained if

∫ t
0 h(s)ds = Q occurs.

5. Conclusions

The mathematical modelling of leukemia therapy considering the effect of the
chemotherapeutic agent is a complex problem for optimal control. The number of
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Figure 1. Optimal control with phase constraints using the monotonictherapy function. Time re-
sponse ofL(t) andN(t). Calculated terminal states:N(T ∗) = 2×107, L(T ∗) = 2.43×106.
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Figure 2. Optimal control with phase constraints:u∗(t) and optimal trajectories of the monotonic
therapy functionsfl(h(t)) and fn(h(t)). Calculated optimal switching timeT ∗ = 7.8.
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Figure 3. Optimal control with phase constraints using the non-monotonic therapy function. Time
response ofL(t) andN(t). Calculated terminal states:N(T ∗) = 2×107, L(T ∗) = 5.66×105.
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Figure 4. Optimal control with phase constraints:u∗(t) and optimal trajectories of the non-monotonic
therapy functionsfl(h(t)) and fn(h(t)). Calculated optimal switching timeT ∗ = 1.97.
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Figure 5. Singular optimal control with phase constraints using the non-monotonic therapy function.
Time response ofL(t) andN(t). Calculated terminal states:N(T ∗) = 2×107, L(T ∗) = 9.14×105.
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Figure 6. Singular optimal control with phase constraints:u∗(t) and optimal trajectories of the non-
monotonic therapy functionsfl(h(t)) and fn(h(t)). Calculated optimal switching timeT ∗ = 1.7.
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cells and the interaction between the cells and the chemotherapeutic agent are de-
termined by certain non-linear laws. The cumulative amountof a chemotherapeu-
tic agent which can be applied during the therapy, as well as the intensity of this
application, should be restricted by some prescribed values. The corresponding op-
timization problem becomes more complicated as a consequence of the fact that
chemotherapy destroys not only leukemic cells, but normal cells too. Thus, we si-
multaneously have two opposite objectives: to destroy leukemic cells without the
normal cells falling below a minimum acceptable quantity.

The authors have considered two kinds of therapy functions:strictly increasing
therapy functions and non-monotonic therapy functions with a threshold effect. In
the first case the therapy effect grows with the increasing amount of chemothera-
peutic agent. In the second case the therapy effect grows to aspecific moment in
time and then decreases. The second case is more realistic.

The results of this study have shown that in the case of a monotonic ther-
apy function the maximum admissible amount of the chemotherapeutic agent must
be administered until one of the admissible boundary valuesof the constraints is
obtained and then therapy must be immediately stopped. In the case of a non-
monotonic therapy function the optimal control strategy isto give the patient the
maximal admissible quantity of the chemotherapeutic agentup to the moment in
which the maximum therapy effect is reached, then to hold themaximum effect un-
til one of the admissible boundary values of the constraintsis obtained and then to
stop the therapy. The moment of the maximal effect of the therapy can be calculated
based on the model parameters.
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