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The model of correlation adaptometry and its use
for estimation of obesity treatment efficiency

V. N. RAZZHEVAIKIN∗ and M. I. SHPITONKOV∗

Abstract — Some approaches to mathematical modelling of mechanisms forming the base for
methods of correlation adaptometry widely used in biology and medicine are presented. The con-
struction is based on schemes lying in the base of the description of structured biological systems. An
example of using the method in estimation of the efficiency of the obesity treatment is given.

1. Statement of the problem

The change in correlations between the physiological parameters of organisms un-
der an external load on the population can be considered nowadays as a sufficiently
established empirical fact [5]. The first attempts to construct an approach for expla-
nation of this effect were undertaken in paper [1] of A. N. Gorban’ with coauthors.
These attempts were based on the usage of the evolution optimality and adaptation
principles in polyfactorial conditions, where, along with pure theoretical results,
some methods of correlation analysis of particular data were presented with exam-
ples. Consideration is based on adaptation models and their analysis with the help
of the Haldane extreme principle. The approach we propose here is focused pre-
cisely on the mathematical modelling of the variations in correlation characteristics
of physiological parameters of the population under a change of external factors,
and not any other processes allowing one to give conceptual explanations of such
variations. The base of such approach is the concept of a population as a set of in-
dividuals distributed in some domain in the space of parameters with appropriate
redistribution laws. Thus, the model population is not an integral indivisible object,
otherwise it would eliminate the possibility to use a correlation description for it.
The population fills some domain in the space of parameters (domain of popula-
tion homeostasis) so that in the absence of external factors there are no correlation
dependences between the individuals (this is a naively obvious conjecture). In the
presence of external factors, the individuals are shifted toward their resultant, it is
clear that such shift increases the correlation.
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In [4], we constructed and justified the diffusion model of correlation adaptom-
etry of the form

∂tu = a∆u− (b,∇u) (1.1)

where u = u(x, t), x = (x1, . . . ,xn)∈Ω⊂ Rn, t ∈ R+, ∇ = (∂x1 , . . . ,∂xn), ∂xi = ∂/∂xi,
∆ = (∇,∇) is the Laplace operator with respect to x, (·, ·) is the scalar product in Rn,
b 6= 0 is an n-dimensional vector.

It is assumed that the bounded domain Ω has a sufficiently smooth boundary
containing a single point s(b) ∈ ∂Ω such that the vector of the outer normal to the
boundary at that point coincides with the vector b both in its direction and the sign
and the whole domain lies on one side of s(b) in the direction b.

Without loss of generality, assume that the orthogonal system of coordinates is
chosen in Rn so that s(b) is at the origin and −xn coincides with the direction of the
vector b, so that b =−ben, where b > 0 and en is the unit vector in the direction xn.

Given the impermeability conditions

(a∇u−bu,ν)|∂Ω = 0 (1.2)

where ν is the normal to ∂Ω, there exists a unique (up to the multiplication by a
constant) stationary solution to problem (1.1) of the form

u(x) = v(xn) = v0e−bxn/a. (1.3)

The fact that (1.3) is the solution is checked by its direct substitution into (1.1),
(1.2), and the uniqueness follows from the constancy of the sign, which ensures
its location in the proper subspace corresponding to the maximal eigenvalue of the
operator L determined by the right-hand side of equation (1.1) with boundary con-
ditions (1.2). This operator is self-adjoint and unbounded in the Hilbert space L2(Ω)
with the scalar product 〈u,v〉=

∫
Ω

e−b/axnu(x)v(x)dx. Its maximal eigenvalue is sim-
ple and the corresponding eigenfunction has a constant sign, because it provides the
maximum of the form 〈Lu,u〉/〈u,u〉. The necessity of the sign change in eigenfunc-
tions corresponding to other eigenvalues follows from the orthogonality properties
(with respect to the indicated scalar product) of eigenfunctions corresponding to
different eigenvalues.

Note that the stationary property of solution (1.3), which also means that the
maximal eigenvalues of the operator L equal zero, also implies the stability of this
solution up to proportional measurements. In what follows, without loss of general-
ity, we assume v0 = 1. The mathematical model of values measured in problems of
correlation adaptometry consists of sets of linear functions

ϕ =
n

∑
i=1

ϕixi, ψ =
n

∑
i=1

ψixi (1.4)

with a nonzero set of n components, and the model determining the valuable prop-
erties of adaptation of statistical characteristics is formed by their correlation coef-
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ficients with respect to distribution (1.3):

K(ϕ,ψ) =
M[(ϕ−Mϕ)(ψ−Mψ)]

(M[(ϕ−Mϕ)2]M[(ψ−Mψ)2])1/2 (1.5)

where

M(ϕ) =

∫
Ω

ϕ(x)u(x)dx∫
Ω

u(x)dx
(1.6)

is the mean value of the function ϕ(x) with respect to the distribution of u(x) in the
domain Ω

The aim of this paper is the study of the dependence of expression (1.5) on the
parameters of equation (1.1) subject to (1.4).

2. Estimation in the parabolic domain

In the case of the general position in the neighbourhood of the point s(b) the bound-
ary of the domain Ω can be represented in the form ∂Ω ={x : xn = ∑

n−1
i=1 aix2

i +o(x2)},
where ai > 0, i = 1, . . . ,n−1.

The parabolic approximation of the domain Ω at the point s(b) is said to be the
parabolic domain of the form:

Ωp =
{

x : xn >
n−1

∑
i=1

aix2
i

}
. (2.1)

The calculation of correlation coefficients (1.5) for distribution (1.3) is per-
formed for domain (2.1); therefore, in this section the integration in (1.6) is per-
formed over the domain Ωp instead of Ω.

We associate each function ϕ from (1.4) with the vector ϕϕϕ = (ϕ1/
√

a1,. . . ,
ϕn−1/

√
an−1,0). The angle between the vectors ϕϕϕ and ψψψ is denoted by ∠ϕϕϕψψψ .

The following result is valid for parabolic domain (2.1) and functions from (1.4).

Theorem 2.1. (1) For b→ ∞, ϕϕϕ 6= 0, ψψψ 6= 0 we have K(ϕ,ψ)→ cos(∠ϕϕϕψψψ);
(2) for b→ 0 and ϕnψn 6= 0 we have K(ϕ,ψ)→ sign(ϕnψn).

Proof. Denote N =
∫

Ωp
u(x)dx and Mk,l = M(xl1

1 xl2
2 . . .xln−1

n−1xk
n), where l = (l1,

. . . ,ln−1). If some li is odd, then we evidently have Mk,l = 0. Therefore, only Mk,2l
can be of some interest. In particular, assume Mk = Mk,0, M0 = 1. For them we have
(here and further γ = b/a)

NMk =
∫

Ωp

xk
ne−γxn dx =

∞∫
0

xk
ne−γxnS(xn)dxn
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where S(xn) is the (n−1)-dimensional volume of the cross-section of the domain Ωp
by the hyperplane xn = const. If Vn−1 is the volume of the unit (n−1)-dimensional
ball, then S(xn) = Vn−1/Pxn−1/2

n , where P = (∏n−1
i=1 ai)1/2.

Since for ν > 0, µ > 0 we always have
∫

∞

0 xν−1e−γx dx = Γ(ν)/γν , then

NMk =
Γ(ν)Vn−1

γνP
, ν = k +

n+1
2

. (2.2)

Denote also M0i = M0,2li , where li = (0, . . . ,0,1,0, . . . ,0) (1 stands at the ith
place), so that

NM0i =
∞∫

0

e−γxn

(xn/ai)1/2∫
−(xn/ai)1/2

x2
i S(xn,xi)dxi dxn (2.3)

where S(xn,xi) is the (n−2)-dimensional volume of the cross-section of the domain
Ωp by the pair of hyperplanes xn = const, xi = const. Thus,

S(xn,xi) =
Vn−2(xn−aix2

i )
(n−2)/2a1/2

i
P

. (2.4)

From (2.3) and (2.4) we get

NM0i = µi

∞∫
0

e−γxn

qi∫
0

x2(q2
i − x2)m dxi dxn (2.5)

where qi =
√

xn/ai, m = n−2/2, µi = (2am+1/2
i Vn−2)/P.

The inner integral in (2.5) is standard:

q∫
0

x2(q2− x2)m dx = q2m+s
1∫

0

y2(1− y2)m dy = Imq2m+3

here Im > 0 is found by the change of variables y = sinϕ . This gives

NM0i =
µiIm

am+3/2
i

∞∫
0

e−γxnxm+3/2
n dxn =

2Vn−2Im

Paiγ
ν

(ν) (2.6)

for ν = m+5/2 = (n+3)/2.
Now calculate the correlation function of vectors (1.4). We have

Mϕ = ϕnM1

Mϕ
2 = ϕ

2
n M2 +

n−1

∑
i=1

ϕ
2
i M0i (2.7)

Mϕψ = ϕnψnM2 +
n−1

∑
i=1

ϕiψiM0i
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because

ϕψ = (ϕixi + · · ·+ϕnxn)(ψ1x1 + · · ·+ψnxn) =
n

∑
i=1

ϕiψix2
i + ∑

i6= j
ϕiψ jxix j.

The terms of the second sum vanish in the integration, because they contain an
odd degree of xi, i 6 n−1, and the last summand in the first sum is separated with
respect to representation (2.7).

In order to calculate (1.5), we obtain

M(ϕ−Mϕ)2 = Mϕ
2Mϕ)2

= ϕ
2
n M2 +

n−1

∑
i=1

ϕ
2
i M0i−ϕ

2
n M2

1

= ϕ
2
n (M2−M2

1)+
n−1

∑
i=1

ϕ
2
i M0i

M[(ϕ−Mϕ)(ψ−Mψ)] = M(ϕψ)−MϕMψ

= ϕnψnM2 +
n−1

∑
i=1

ϕiψiM0i−ϕnψnM2
1

= ϕnψn(M2−M2
1)+

n−1

∑
i=1

ϕiψiM0i.

Further, for Γl = Γ(l/2), taking into account M0 = 1 and due to (2.2), we get

N =
Γn+1Vn−1

γ(n+1)/2P
. (2.8)

From (2.2) and (2.8) we get

Mk =
Γ2k+n+1

γ kΓn+1
, k > 0. (2.9)

Relations (2.6) and (2.8) imply

M0i =
2Γn+3Vn−2Im

γ
n+1

2 γPai
=

2Γn+3Vn−2Im

Γn+1Vn−1γai
. (2.10)

From (2.9) we get

M′ = M2−M2
1 =

Γn+5

γ2Γn+1
−

Γ2
n+3

(γΓn+1)2 =
Γn+1Γn+5−Γ2

n+3

γ2Γ2
n+1

> 0. (2.11)
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For K(ϕ,ψ) from (1.5) we obtain

K(ϕ,ψ) =
M′ϕnψn +

n−1

∑
i=1

ϕiψiM0i[(
M′ϕ2

n +
n−1

∑
i=1

ϕ
2
i M0i

)(
M′ψ2

n +
n−1

∑
i=1

ψ
2
i M0i

)]1/2
(2.12)

Taking into account inequalities (2.10) and (2.11), we can define the vectors
ϕϕϕ ′ = (ϕ1/

√
M01, . . . ,ϕn−1/

√
M0,n−1,ϕn/

√
M′) and define ψψψ ′ similarly. Then (2.12)

is rewritten in the form

K(ϕ,ψ) =
(ϕϕϕ ′,ψψψ ′)√

(ϕϕϕ ′,ϕϕϕ ′)(ψψψ ′, ~ψ ′)
= cos(∠ϕϕϕ

′
ψψψ
′). (2.13)

Since M0i/M′ = γCi, where Ci do not depend on γ = b/a, then the first n− 1
components vanish in the vectors ϕϕϕ ′ and ψψψ ′ for b → 0, and for b → ∞ the last
component vanishes. Multiplying the vectors ϕϕϕ ′ and ψψψ ′ by an appropriate positive
constant (calculated from (2.10)), we get the first assertion of the theorem. The
second assertion easily follows from the constructed asymptotics.

Corollary 2.1. For n = 2 and b→ ∞ we have K(ϕ,ψ)→ sign(ϕ1ψ1).

3. Asymptotics for an arbitrary domain

In this section we show how the result obtained for the parabolic approximation of
the domain Ω can be extended in the case b→ ∞ (or, equivalently, γ → ∞) to this
domain itself.

Theorem 3.1. For an arbitrary bounded domain Ω ⊂ Rn having a sufficiently
smooth boundary the assertion 1 of Theorem 2.1 is valid.

Proof. Proof is based on the calculation of estimates of the deviations of
K(ϕ,ψ) from (1.5) calculated for the case b→ ∞ from the values of its parabolic
approximation at the point s(b) obtained in Theorem 2.1. Take ε > 0 and consider
the two domains Ωε

1 = Ω∩{x : xn 6 ε} and Ωε
2 = Ω\Ωε

1. The corresponding par-
titioning of the parabolic approximation is denoted by Ωε

1p = Ωp ∩ {x : x 6 ε},
Ωε

2p = Ωp\Ωε
1p. We show that, assuming ε → 0 and choosing from it a suffi-

ciently large value of b, we can achieve an arbitrarily small difference for each
of the summands entering (1.5) calculated over Ω and over Ωp, and the smallness
of (xn,ε) in the neighbourhood of the point s(b) is achieved due to the closeness
of the domains Ωε

1 and Ωε
1p, i.e., due to the smallness of their symmetric difference

Ωε
s = (Ωε

1 ∪Ωε
1p)\(Ωε

1 ∩Ωε
1p).



Model of correlation adaptometry 7

Introduce the notation I(Ω, f ,γ) =
∫

Ω
f (x)e−γxn dx. The fact that all the com-

ponents in the denominator of (2.12) are positive is the determinant factor in our
ability to obtain estimates for γ → ∞ with an appropriate choice of ε → 0.

Integrating the expressions I(Ωε
2,x

k
nx2l

i ,γ), I(Ωε
2p,x

k
nx2l

i ,γ), k, l ∈ I+, and tak-
ing into account the boundedness of the domain Ω and the parabolicity of Ωp, we
can estimate |xi| through x1/2

n and thus obtain upper estimates for them relative to
I(Ωp,xk

nx2l
i ,γ) with the coefficient (γε)νe−γε , ν = k + l, vanishing for γε → ∞.

This follows from the asymptotics of the Gamma function Γ(a,z)∼ za−1e−z for
z→ ∞ (see [3]). Concerning the crossed terms vanishing in the integration over the
parabolic domain and thus not included into (2.12), those of them not equal to zero
can be estimated in their absolute value by combinations of nonzero quadratic terms
varying as members of the corresponding sums. The integrals over the domain Ωε

s
of quadratic terms (and also of crossed ones majorated by them) can be estimated by
the corresponding (see above) linear combinations of quadratic terms with a rough
coefficient o(ε) (specificity of the domain Ωε

s ).
Summarizing all the corrections, we get the final coefficient (1+o(ε)+o((γε)−1)

for each of the sums entering the denominator in (2.12).
A slightly more difficult situation is that of the numerator in (2.12), in which

the presence of summands with different signs is possible. Nevertheless, if this sum
does not vanish, considering that all its terms are equal with respect to γ , it can be
used for estimation (in this case the estimation coefficients depend on the form of
the functions ϕ and ψ) according to the scheme described above for the integrals
of both quadratic and crossed expressions with the same coefficient as above. If this
sum is equal to zero, then under the presence of corrections related to the form of
the domain the expression of the form [o(ε)+o((γε)−1)]Mz stands in its place, here
Mz is one of the sums entering the denominator in (2.12). For ε → 0 and γε → ∞ in
this case we get K(ϕ,ψ)→ 0 exactly as in (2.12).

Note that in all previous arguments we have considered only the sums entering
(2.12), but not the expression containing M′ as a multiplier. Concerning the latter,
first, all above arguments can be applied to them taking into account that M′ > 0 (in
the simpler case without crossed terms), and second, these expressions themselves
become not interesting (for γ → ∞, due to a higher asymptotics with respect to γ−1

compared to the considered sums (see (2.10), (2.11)).
In the end of the proof, note that assuming, for example, ε = γ−1/2, we can get

the correction coefficient (1 + o(γ−1)) for the expression in (2.12) that is valid for
the domain Ω itself.

4. Obesity treatment

Generally, the criterion of the intensity of the population adaptation to an external
exposure is calculated by introducing the correlation estimate for the analyzed pa-
rameters by the weight of the correlation graph G = ∑|ri, j|>1/2 |ri, j|. Here ri, j are pair-
wise correlation coefficients between the measured parameters. It was shown in [6]
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Table 1.
The weights of the correlation graphs for the three groups of
obesity patients.

Patient group before treatment after treatment

group 1 7.29 6.63
group 2 9.93 7.49
group 3 12.99 10.03

that the method of correlation adaptometry gives satisfactory results in estimation
of the efficiency of the Vilyui encephalomyelitis treatment by various medicines,
where one can judge the efficiency by the weight decrease of the correlation graph
after treatment.

We studied treatment efficiency by the method of correlation adaptometry for
patients with different degrees of obesity. The study involved 70 patients at the age
from 18 to 60 years suffering from obesity of the 1st–3rd degrees. All the patients
were divided into 3 groups depending on the degree of obesity and on the character
of concominant pathologies. The first group mainly included patients with the first
degree of obesity and also the second degree without concominant pathologies. The
second group was formed by patients suffering from obesity of the 2nd–3rd degrees
with functional abnormalies of various organs and systems of the organism (dyski-
netic disorders of the digestive system, hypertension of the 1st degree, asthenic syn-
drome, etc.). The third group included patients with organic diseases caused by obe-
sity of the 2nd and 3rd degrees (ulcer, hypertension of the 3rd degree, post-infarction
and post-insult states, etc.). All patients got the traditional treatment course for 30
days intended for decreasing the body weight and correcting metabolic and organic
disorders, including dietotherapy, individual treatment procedures, physio- and hy-
droprocedures, and symptomatic and pathogenetic pharmacotherapy adequate to the
existing pathology. The diets used in the course had a reduced calorie content (1200–
1500 kcal) and contained 60–70 g of protein, 60–70 g of fat, 120–150 g of carbo-
hydrates with exclusion of monosaccharides, and restriction of cholesterol, purine
bases, and table salt. The treatment of the patients from the 1st group included only
dietotherapy, for the 2nd group it additionally prescribed symptomatic medicines,
for the 3rd group it included pathogenetic medicamental therapy.

The following characteristics of patients were monitored: body weight, fat mass,
meager mass, total water content, and also the content of the urea, creatinine, choles-
terol, and triglycerides in the blood. Then the weights of the correlation graphs were
calculated G = ∑|ri, j|>1/2 |ri, j| for the three groups of obesity patients before and af-
ter the treatment. The obtained results are presented in Table 1.

The analysis of data from the table shows that the weight of the correlation graph
G monotonically increases from group 1 to group 3, i.e., from less ill to seriously
ill patients. A similar pattern is observed for patients before and after treatment.
With dietotherapy carried out, the weight of the correlation graph G is lower after
the treatment than before the treatment, and this is observed for all three groups of
patients. In this case the differences between the groups are slightly less evident.
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The results obtained here show that the weight of the correlation graph is a suffi-
ciently sensitive indicator in the groups of patients with different degrees of obesity.
The estimation of the weights of the correlation graphs gives us ability to perform a
simple comparison of different methods of dietotherapeutic treatment and to choose
the most efficient ones.
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