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Mathematical model of the motion of asymmetric
erythrocytes along narrow capillaries

A. V. KOPYLTSOV∗

Abstract — A mathematical model of the motion of 3-dimensional erythrocytes along fragments of
capillary networks consisting of a small number of narrow capillaries is constructed. The model takes
into account the lengths and inner diameters of capillaries, the form and position of an erythrocyte in
a capillary, the viscosity of the plasm and the contents of anerythrocyte, the volume and surface area
of an erythrocyte, the elastic characteristics of an erythrocyte, the membrane rolling of an erythrocyte,
and the intervals between the entries of erythrocytes into the capillary network. The formulas for the
dependence of pressure differential causing the blood flow in fragments of capillary networks on the
parameters of the model are obtained. The dependences of theblood flow rate through a capillary tee
on the lengths of capillaries forming the tee, on the pressure differential at the ends of the tee, and on
the intervals between the entries of erythrocytes into the tee are obtained.

Experimental and theoretical studies of hemodynamics in a microcirculation system
allows us to describe quantitatively the interrelated motion of the viscous plasm
and elastic cells (erythrocytes) along capillaries. In order to describe the motion
of the plasm, we may use the basic hydrodynamic equations (equations of motion
and continuity), and the form of erythrocytes is characterized by equations of the
mechanics of a deformed solid body. The simultaneous solution of those equations
subject to the corresponding boundary conditions determines the spatial distribution
of the pressure in the plasm, the velocity of the plasm and erythrocytes, and the
energy consumption for the blood motion in capillaries. Theexisting models using
these relations simulate the complicated character of interaction of blood cells in
microvessels only in the first approximation [2, 4, 5, 7–12, 15, 16, 19, 21, 25, 26].
Thus, the rheological properties of blood were considered in [26], the erythrocyte
membrane rolling in wide capillaries (with the diameter exceeding the diameter of
the erythrocyte) was considered in [16]. An asymmetric formof an erythrocyte in a
wide vessel was considered in [8], the motion of an erythrocyte having a symmetric
parachute shape was considered in [15], in papers [4, 12] erythrocytes had the shape
of elastic balls and in [5] were shaped as cylinders. A 2-dimensional model with a
rolling membrane was constructed in [19]. However, such important characteristics
as the volume and surface area of erythrocytes were not takeninto account in those
models. The amount of oxygen transported by an erythrocyte depends on its volume
and the rate of oxygen release from an erythrocyte is determined by its surface area.
A three-dimensional model of the motion of an erythrocyte along a capillary was
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constructed in [9, 10], this model takes into account the volume and surface area
of the erythrocyte whose membrane rolls. Based on this model, the motion of a
set of erythrocytes along separate capillaries and fragments of capillary networks
was considered. The formulas describing the dependence of the pressure gradient
causing the blood flow through fragments of capillary networks on the parameters
of the model were obtained. The dependences of the rate of blood flow through
a capillary tee on the lengths of the capillaries forming thetee, on the pressure
differential at the ends of the tee, and on the intervals between the moments of
entrance of erythrocytes into the tee are obtained. Since practically any capillary
network can be constructed from various tees, the models andthe results obtained
here can be easily generalized to capillary networks of any structure.

1. DESCRIPTION OF THE MODEL

1.1. Motion of an erythrocyte along a capillary

Constructing the model, we assume that a capillary is a cylindrical pipe with the
inner diameterD, along which an erythrocyte is moving uniformly. The plasm is
a viscous incompressible Newtonian fluid filling the space between erythrocytes
and forming a thin layer between the surface of an erythrocyte and the wall of the
capillary. There is no flow through the walls of the capillaryand the membrane of
the erythrocyte. An erythrocyte is an elastic body with the Young modulus 6000–
8000 N/m2 and the Poisson coefficient 0.5 [3]. The surface area and volume of
an erythrocyte are assumed to be constant under deformation. In the motion of an
erythrocyte along a capillary, its membrane rolls (the motion resembles that of a
tractor or tank tracks) with some constant frequencyf [18].

In very narrow cylindrical capillaries, an erythrocyte fills the space of the cap-
illary almost completely and its shape is close to cylindrical. Therefore, the middle
part of the erythrocyte was approximated by a cylinder. The front part of the ery-
throcyte (relative to the motion direction) was approximated by a half-ellipsoid of
rotation due to the following arguments. First, doing so we achieve the smoothness
of junction between the cylinder and the half-ellipsoid (the tangents at the points of
the junction coincide), which is important for the plasm flowaround the erythrocyte.
Second, the form of the half-ellipsoid is determined by its semiaxes. Varying these
semiaxes, we can get various forms of the front (relative to the motion direction)
part of the erythrocyte. Therefore, the surface of the erythrocyte was approximated
by a truncated cylinder (with the minimal and maximal generatrices l1 and l2, re-
spectively) bounded from one side by the half of the ellipsoid of rotation with the
semiaxesa, b, b (Fig. 1).

Then, according to [1], the volume of the erythrocyte is

V = πb2
(2a

3
+

l1 + l2
2

)

(1.1)



Mathematical model of the motion 3

Figure 1. Model of an erythrocyte in a capillary in the Cartesian coordinatesOX1X2X3. The surface of
the erythrocyte is approximated by the truncated cylinder (with the minimal and maximal generatrices
l1, l2, respectively) bounded from one side by the half of the ellipsoid of rotation with the semiaxesa,
b, b; β is the angle between the axes of the capillary and the cylinder (erythrocyte),l is the distance
from the pointO to the axis of the capillary.

the surface area of the erythrocyte is

S = A +2πb l1 + πb (l2− l1)+ πb (4b2 +(l2− l1)
2)1/2

A = πb
(

b+
aarcsinε

ε

)

, ε =
(a2−b2)1/2

a
, a > b

A = π b2, a = b (1.2)

A = πb
(

b+
a2

2 b ε
ln
(1+ ε

1− ε

))

, ε =
(b2−a2)1/2

b
, a < b.

Solving these equations with respect tol1 and l2, one can expressl1 and l2
through a, b, V , S. Therefore, the form of the erythrocyte is determined either
througha, b, l1, l2, or througha, b, V , S.

The position of the erythrocyte in the capillary is determined by the distancel
from the pointO positioned on the axis of the cylinder (erythrocyte) to the axis of
the capillary and by the angleβ between the axes of the cylinder (erythrocyte) and
the capillary (Fig. 1).

In order to describe the motion of the erythrocyte in a capillary, we use the sys-
tem of equations describing the hydrodynamics of plasm subject to the form and
position of the erythrocyte in the capillary. The pressure in the thin gap between the
erythrocyte and the wall of the capillary varies in the axialand azimuthal directions,
whereas in the radial direction it remains practically constant. The plasm flow in
the capillary is assumed to be laminar. The forces of inertiaare negligibly small.
Taking into account these assumptions, we can assume that the motion of the plasm
is described by the Poiseuille law in the intervals between erythrocytes and by the
system of Reynolds equations for the lubricating layer in the gap between the ery-
throcyte and the wall of the capillary; in the cylindrical system of coordinates (X1,
r, ϕ) the latter system has the form [9, 12, 14]:

∂P
∂X1

=
µ
r

∂
∂ r

(

r
∂u
∂ r

)

(1.3)



4 A. V. Kopyltsov

∂P
∂ϕ

=
µ
r

∂
∂ r

(

r
∂w
∂ r

)

(1.4)

∂P
∂ r

= 0 (1.5)

∂w
∂ϕ

+
∂ (ru)

∂X1
+

∂ (rv)
∂ r

= 0 (1.6)

whereµ is the viscosity of the plasm,u,w,v are the axial, azimuthal, and radial com-
ponents of the plasm velocity, respectively,P(X1,ϕ) is the pressure of the plasm,P,
u, v, andw are functions 2π-periodic with respect toϕ .

The cylindrical system of coordinates (X1, r, ϕ) is related to the Cartesian sys-
tem of coordinates(X1,X2,X3) in the following way (Fig. 1):

X1 = X1, X2 = rcosϕ , X3 = rsinϕ , r2 = X2
2 + X2

3 .

The system of Reynolds equations was solved in the system of coordinates (X1,
r, ϕ) (Fig. 1). The boundary conditions for hydrodynamic equations include kine-
matic conditions posed on the velocity and dynamic conditions posed on forces. The
latter conditions involve the tangent stresses and the pressure.

The boundary conditions posed on the velocity (nonslippingconditions) have
the form:u = W1, w = 0 for r = R on the surface of the erythrocyte;u = U1, w = 0
for r = R + h on the wall of the capillary, whereU1 andW1 are the projections
of U (velocity of the wall) andW (velocity of the membrane) onto the axisX1,
r = r(X1,ϕ) is the distance from the axisX1 to the membrane of the erythrocyte,
h = h(X1,ϕ) is the width of the gap between the erythrocyte and the wall ofthe
capillary.

In addition, the following conditions are posed on the surface of the erythrocyte
and the wall of the capillary. These conditions ensure the nonpermeability of the
erythrocyte’s membrane and the wall of the capillary for a liquid, subject to the
continuity equation and the nonslipping condition [9, 14, 22]:

v =
w
r

∂ r
∂ϕ

+ u
∂ r

∂X1
= W1

∂ r
∂X1

, r = R

v =
w
r

∂ r
∂ϕ

+ u
∂ r

∂X1
= U1

∂ r
∂X1

, r = R + h.

These conditions can be rewritten in the form

v = W1
∂ r

∂X1
, r = R

v = U1
∂ r

∂X1
, r = R + h
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or

v
W1

=
∂ r

∂X1
, r = R

v
U1

=
∂ r

∂X1
, r = R + h.

This means that at a point lying on the membrane of the erythrocyte (or on the
wall of the capillary) the ratio of the velocities (in the radial direction and in the
direction along the axisX1) is equal to the ratio of the increments (in the radial
direction and in the direction along the axisX1). This is natural considering the
fact that the first one is determined by the form and position of the erythrocyte
in the capillary, and the second one is determined by the motion of the wall of the
erythrocyte and the surface of the capillary with respect tothe system of coordinates
OX1X2X3, and also due to the assumption on non-slipping and nonpermeability of
the erythrocyte’s membrane and the wall of the capillary fora liquid.

Due to the fact that plasm is a viscous fluid, tangent stresses(axial σm and
azimuthalσβ ) act on the surface of the erythrocyte in addition to normal stresses
(plasm pressure) [9, 10, 14, 22]:

σm = µ
∂u
∂ r

σβ = µ
(∂w

∂ r
−

w
r

)

.

Integrating equations (1.3), (1.4) with respect to the width of the gaph and
taking into account the boundary conditions, we get

u =
1

4µ
∂P
∂X1

(

r2
−R2

−
ln(r/R)(h2 +2Rh)

ln(1+ h/R)

)

+W1 +(U1−W1)
ln(r/R)

ln(1+ h/R)

w =
1
µ

∂P
∂ϕ

(

r−R−h
ln(r/R)

ln(1+ h/R)

)

.

Integrating equation (1.6) with respect to the width of the gaph and substituting the
expressions foru andw into it, we get the elliptic differential equation

A1
∂ 2P

∂X2
1

+ A2
∂P
∂X1

+ A3
∂ 2P
∂ϕ2 + A4

∂P
∂ϕ

+ A5 = 0 (1.7)

whose coefficients are functions ofR, h, µ , X1, ϕ , U1, W1 and have the form

A1 =

(

−2R2
−2Rh−h2+

2Rh+ h2

ln(1+ h/R)

)

2Rh+ h2

16µ
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A2 =
∂A1

∂X1

A3 =

(

−h2
−2Rh+

2h2

ln(1+ h/R)

)

1
2 µ

A4 =
∂A3

∂φ

A5 =
∂

∂X1

(

(U1−W1)

(

(R + h)2

2
−

2Rh+ h2

ln(1+ h/R)

)

+W1

(2Rh+ h2

2

)

)

+(R + h) U1
∂h
∂X1

.

Thus, if we knowD, µ , U , f , a, b, V , S, l, β , we can determineW , R, h, U1, W1
and hence the coefficientsA1, A2, A3, A4, A5 of the equation.

In the construction of the model we assume thatU , µ , D, V , S are known. The
parametersf , a, b, l, β are determined from additional conditions. Consider those
conditions. According to experimental data, in a uniform motion of an erythrocyte
along a capillary its membrane rolls with some constant frequency f [18]. The rela-
tion between the membrane rolling frequencyf and the velocityW of a point of the
erythrocyte is determined in the following way [18, 20]:

W = n×∇( f F(X1)) (1.8)

wheren is the unit normal to the surface of the erythrocyte,F is the function satis-
fying the relation

F ′(X3) = T (X3)

whereT (X3) are the lengths of closed guidelines along which the points of the mem-
brane move (the prime symbol denotes the derivative with respect toX3) (Fig. 1).

In the rolling of the membrane of the erythrocyte (this resembles the tank-
treading motion), the points positioned on the surface of the erythrocyte move along
closed lines [18, 20]. In the uniform motion of an erythrocyte in a capillary of a
constant diameter with fixed other parameters of the model, these closed lines retain
their length, and these lengths can be calculated. The motion of the points lying on
the membrane of the erythrocyte is realized in planes parallel to the plane(X1,X2)
[20]. Thus, the line along which some fixed point of the membrane of the erythro-
cyte moves is the intersection of the surface of the erythrocyte and a plane parallel
to the plane(X1,X2). If we know the form of the erythrocyte, we can calculate the
length of the closed line easily. The number of these lines isinfinite. However , the
calculations were performed at the nodes of the grid (X1, ϕ) with certain mesh sizes
in X1 andϕ . Therefore, we calculated a finite number of lines. We determined the
number of these closed lines in the following way. Any point on the surface of the
erythrocyte is determined by its coordinates (X1, ϕ). The mesh size inϕ was taken
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from 0.01 to 0.1 radians. Therefore, the lower bound for the number of different
lines was estimated (due to the arguments of symmetry) by theexpressionπ / 2 /
0.1≈ 3.14 / 2 / 0.1≈ 15, and the upper one byπ / 2 / 0.01≈ 3.14 / 2 / 0.01≈ 157.
Therefore, the number of lines in calculations was taken from 14 to 160. The choice
of the number of lines was determined by the fact that the meshsizes inϕ andX1
should be close in magnitude.

Averaging the external forces acting on the erythrocyte, wegetG1, which is the
external force (per unit area) acting upon the end surface ofthe erythrocyte (along
the axisX1), andG2, which is the external force (per unit area) acting on the lateral
surface of the erythrocyte. Therefore, we assume that the elastic properties of the
erythrocyte are approximately described by the generalized Hooke law

P1−P2 = E△c/c (1.9)

where△c is the absolute elongation (contraction) of the length of the erythrocyte

l = a+(l1 + l2)/2 (1.10)

measured along the axisX1, E is the Young modulus of the erythrocyte,△G1
and△G2 are the increments ofG1 andG2, P1 = −△G1 andP2 = −△G2 are the
stresses [22].

The condition of the uniform motion (rolling) of the membrane of the erythro-
cyte means that the sum of the forces acting on the membrane ofthe erythrocyte
from the outside(F1,F2) and from the inside(F3) is equal to zero, i.e.,

F2 = F1 + F3 (1.11)

whereF1 andF2 are the external forces acting on the membrane:F1 represents the
forces acting forX2 > 0 andF2 represents the forces acting forX2 < 0 (Fig. 1).

F3 = Cµ+ f S

whereµ+ is the viscosity of the content of the erythrocyte, which is approximately
5 times lower than the viscosity of the plasm [27],f is the rolling frequency of the
membrane of the erythrocyte,S is the surface area of the erythrocyte,C is the coef-
ficient characterizing the interaction (cohesion) of the membrane and the contents
of the erythrocyte.

The condition of the rectilinear uniform motion of the erythrocyte along the
capillary means that the sum of the forces(Fi) acting on the erythrocyte (as a solid
body) and the sum of their momenta(Mi) are equal to zero (summation with respect
to i), i.e.,

∑Fi = 0 (1.12)

∑Mi = 0. (1.13)

As the result, we obtain system of equations (1.7)–(1.9), (1.11)–(1.13) with the
unknownsP(X1,ϕ), a, b, l, β , f . For each of the unknowns we define the range of
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possible values in the following way: 06 P < 1000N/m2, 0 < a < 2D, 0 < b <
D/2, 06 l < D/2, 06 β 6 π/2, 06 f < 100 r/s. The system of equations was
solved by the finite difference method [17]. For the boundarycondition we used the
assumption that pressure equals zero in the neighbourhood of the front (relative to
the motion direction) part of the erythrocyte:P, u, v, andw are 2π-periodic functions
of ϕ . The estimation of the accuracy of the solution was carried out according to
the Runge principle [17]. The mesh size was taken depending on the sizes of the
capillary and the erythrocyte, inX1 it varied from 0.01 to 0.1µ and in ϕ from
0.01 to 0.1 radians, which allows us to determine the pressure distribution in the
neighbourhood of the erythrocyte with the accuracy up to 0.01–0.1 N/m2.

The calculations were performed for different values of capillary diameters
(D = 3–7µ), of the velocities of erythrocytes in the capillary (U = 0.1–10.0 mm/s),
of plasm viscosity (µ =1–2 cP), of the volume of the erythrocyte (V = 80–110µ3),
of the surface area of the erythrocyte (S = 120–150µ2), of the Young modulus of
the erythrocyte (E = 6000–8000 N/m2), of the Poisson coefficient of the erythro-
cyte (ν =0.5), of the coefficient of cohesion of the membrane and the contents of
the erythrocyte (C = 0–1000) typical for a microcirculatory channel [6, 23, 24].

The calculations performed for the medium-size model (D = 4 µ , µ = 1.2 cP,
U = 1 mm/s,V = 94 µ3, S = 135 µ2, C = 100, E = 7000 N/m2, ν = 0.5) showed
that the erythrocyte has a form characterized by the parametersa = 0.20µ , b = 1.97
µ , the position isl = 0.004µ , β = 0.0000009 radians (the axes of the cylinder (ery-
throcyte) and the capillary practically coincide and hence, taking into account the
accuracy of the calculations, we can assume thatl = 0 andβ = 0), its membrane
performs 16 rotations per second, the pressure differential at its ends is 24.22 N/m2,
which is approximately 1.3 times greater than the pressure required for the transla-
tion at the same velocity of a plasm column equal in size to theerythrocyte [9].

The dependence of the pressure differential△P at the ends of the erythrocyte
on the parameters of the model was approximated by the expression [9, 10]:

△P =
32 µ U

D

( 1
Dα

+
V 2

S3

δ E
µ f + γ

)

(1.14)

whereD is the diameter of the capillary,µ is the viscosity of the plasm,U is the
velocity of the erythrocyte,V is the volume of the erythrocyte,S is the surface area
of the erythrocyte,E is the Young modulus of the erythrocyte,l is the length of
the erythrocyte measured along the axisX1, f is the erythrocyte membrane rolling
frequency,α is the ratio of the velocities of the erythrocyte and plasm,δ = 0.00029
andγ = 0.0042 are constants.

The first term at the right-hand side of the expression gives the hydrodynamic
resistance according to the Poiseuille formula, the secondterm gives the additional
hydrodynamic resistance caused by the erythrocyte.

In order to calculate the pressure differential△P at the ends of the erythrocyte,
we have to knowµ , U , D, α , E, l, V , S, f . If the values ofa, b, l1, l2 are known,
thenl, V , andS can be determined by formulas (1.1), (1.2), (1.10) presented above.
According to experimental data [13, 24] for conditions typical for a microcirculatory



Mathematical model of the motion 9

Figure 2. Dependence of rolling frequencyf (rotations per second) of the membrane of the erythro-
cyte on its velocityU (µ/s) for different values of diameterD of the capillary (µ). The volume of
erythrocyte isV = 94 µ3, its surface area isS = 135 µ2, the Young modulus isE = 7000 N/m2, the
Poisson coefficient isν = 0.5, the plasm viscosity isµ = 1.2 cP.

channel we haveα ∈ (1.0− 1.3). Therefore, we can assumea ≈ 1.15 in narrow
capillaries. If the diameterD of the vessel and the velocityU of the erythrocytes
are known, then for the estimation of the frequencyf of the erythrocyte membrane
rolling we can use the results of the calculations presented, e.g., in Fig. 2.

Therefore, if the numeric values ofµ , U , D, α , E, l, V , S, f are known, we
can estimate the pressure differential△P at the ends of the erythrocyte causing its
motion along the capillary.

The dependence of the pressure differential causing the motion of the erythro-
cyte along the capillary on the microhemodynamic parameters has been used in
analysis of the mechanism of erythrocyte motion in fragments of capillary networks.
Two general elements can be pointed out in the construction of networks, namely,
the capillaries themselves that are pipes of circular cross-sections and the points of
their junction, branching (bifurcations). Therefore, analysis of microhemodynamics
in capillary networks requires a successive considerationof the motion of a set of
erythrocytes in separate vessels, through bifurcations, and over capillary networks.

1.2. MOTION OF ERYTHROCYTES IN A CAPILLARY

Let a capillary containn erythrocytes moving at the velocityUe typical for a micro-
circulatory channel. Then, according to the previous section, the pressure differen-
tial at the ends of the erythrocyte is

△Pe = a1Ue + b1

wherea1 andb1 are constants.
It is assumed that the distances between the erythrocytes ofthe length△le in

the capillary are such that the flow between them satisfies thePoiseuille law

△Pp =
8 µ Up △ lp

(D/2)2
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whereUp is the velocity and△lp is the length of the plasm column in the capillary,
△Pp is the pressure differential at the ends of the plasm column,µ is the viscosity
of the plasm,D is the diameter of the capillary.

Then at the ends of the capillary of the length△L containing erythrocytes of the
length△le the pressure differential is

△Pp =
8µUp△ lp

(D/2)2 (△L−n△ le)+ n(aUe + b)

= Ue(an+ c(△L−n△ le))+ nb

where

c =
8µUp

(D/2)2Ue
.

If the capillary containsn erythrocytes, then△P can be approximated by the
expression

△P =
32µU

D

(

△L
Dα

+
V 2

S3

δEn
µ f + γ

)

. (1.15)

Since hematocritH is related to the numbern of erythrocytes in the capillary by
the formula

H =
4nV

πD2△L

then, substituting the expression forn into formula (1.15), we get

△P =
32µU△L

D

( 1
Dα

+
V 2

S3

δE
µ f + γ

π D2 H
4

)

. (1.16)

If the intervals between the entrance of erythrocytes into the capillary are the
same and equal toζ , the time when the erythrocyte is inside the capillary isT =
△L/U , the number of erythrocytes in the vessel isn = T/ζ = △L/(Uζ ), then,
substitutingn, we get

△P =
32µU△L

D

( 1
Dα

+
V 2

S3

δE
µ f + γ

1
Uζ

)

. (1.17)

1.3. MOTION OF ERYTHROCYTES THROUGH CAPILLARY TEES

Knowing the mechanism of translation of erythrocytes alonga capillary, we can
proceed to the consideration of the model of a tee, which is a junction of three
pipes AO, OB, OC at a point O. Either the blood enters the tee through two vessels
(OB, OC) and flows out through one (AO), or, vise versa, entersthrough one vessel
(AO) and flows out via two others (OB, OC). In the first case the erythrocytes come
into a single vessel from both daughter vessels, whereas in the second case the
erythrocytes meet an alternative at the bifurcation (pointO): to go further through
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one vessel or through the other. The model states that the erythrocyte enters the
vessel which has the greater voluminal blood flow. In the caseof equal blood flows
in the vessels OB and OC, the erythrocyte goes into any of themwith the probability
0.5. In order to determine the direction of the erythrocyte (into the vessel OB or into
OC), we used the generator of pseudorandom numbers uniformly distributed in the
interval (0, 1). If the drawn number was less than 0.5, the erythrocyte was directed
to one vessel (OB), and if it was greater than 0.5, then to the other one (OC). If the
number 0.5 was drawn, the next pseudorandom number was generated, etc.

If the number of erythrocytes in the tee capillaries and the pressure at the tee
ends are known, then, taking into account the mass conservation law (the quantities
of blood incoming to the bifurcation in unit time (Q3 for a divergent tee,Q1, Q2

for a convergent one) and outgoing from it (Q1, Q2 for a divergent tee,Q3 for a
convergent one) are equal), we can compose a set of relationsof the form

ai △Pi + bi Vi + ci = 0, i = 1, 2, 3 (1.18)

Q1+ Q2 = Q3 (1.19)

whereVi is the blood flow velocity in theith vessel (V1, V2, V3 are the blood flow
velocities in the vessels AO, OB, OC),△Pi is the pressure differential at the ends of
the ith capillary,ai, bi, ci are coefficients.

It is assumed that the walls of capillaries are impermeable for a liquid. The
required values are the velocities (V1, V2, V3) in the capillaries and the pressure
(P) in the bifurcation. Therefore, we have the system of four equations with four
unknowns. Solving this system, we determine the velocitiesin the vessels and the
pressure in the branching (bifurcation) for a given distribution of erythrocytes over
the tee capillaries. This distribution changes in the course of time and hence the
velocities in the vessels and the pressure in the branching (bifurcation) change as
well.

1.4. MOTION OF ERYTHROCYTES OVER CAPILLARY NETWORKS

Knowing the mechanism of the blood motion in a tee, we can proceed to the con-
sideration of an arbitrary capillary network, which is a setof capillaries joined in
a particular manner. It is assumed that not more than 3 vessels are joined at a par-
ticular point (branching, bifurcation). In the construction of the model we assume
that the geometry of the capillary network, the pressure values at the ends of the
network, and the erythrocyte incoming frequency are known.It is required to de-
termine the mechanism of erythrocyte motion in the network.If the network hasn
capillaries joined atm points (bifurcations), then we can getn relations relating the
pressure gradients△Pi at the ends of theith capillary to the velocityVi of the blood
flow

ai △Pi + bi Vi + ci = 0, i = 1, 2, . . . ,n (1.20)

whereai, bi, ci are coefficients, andm relations obtained from the mass conservation
law.
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Two variants are possible. Either the quantities of blood incoming per unit time
to the jth bifurcation,Q1

j , Q2
j , and outgoing,Q3

j , are equal (for a convergent tee),
or the quantities of blood incoming per unit time to thejth bifurcation,Q3

j , and
outgoing from it,Q1

j , Q2
j , are equal (for a divergent tee). Thus, we have

Q1
j + Q2

j = Q3
j , j = 1,2, . . . ,m. (1.21)

The motion of erythrocytes at subsequent moments of time is characterized by
their coordinates and velocities. Therefore, the unknownsare then blood flow ve-
locities in the capillaries and them pressure values at the bifurcations. Thus, we
have a system ofn+ m equations withn+ m unknowns. Solving this system by the
Gauss method, we determine the blood flow velocities and pressures in the capillary
network under the condition that the distribution of erythrocytes over the capillaries
of the network is known. However, since the cells move along the capillaries, their
distribution changes in the course of time. Thus, if we know the structure of the
capillary network and the incoming frequency of erythrocytes at the entrances of
the network, we can determine the motion of erythrocytes andthe variation of the
blood flow velocities in the capillaries and the pressure at the branchings (bifurca-
tions) of the network in time.

2. RESULTS AND THEIR DISCUSSION

The analysis of the sensitivity of the model of a single erythrocyte motion to small
variations of the parameters showed the following. If we take the medium-size
model as the base (D = 4µ , µ = 1.2 cP,U = 1 mm/s,V = 94 µ3, S = 135 µ2,
C = 100, E = 7000 N/m2, ν = 0.5), the calculations show that under a change in
the parametersU , µ , h, f , β , l, anda by 10% the pressure differential△P is also
changed by some value. The most sensitive parameter is the gap width h. As h
changes by 10%, the pressure differential△P at the ends of the erythrocyte de-
creases by 20.5%. The viscosity of the plasmµ is less sensitive (its increase by
10% results in the increase of△P by 10%). The parameters next sensitive in the
descending order are the velocityU of the erythrocyte (increase by 5.6%) and the
parameters characterizing the position of the erythrocytein the capillaryl and β
(increase by 4.1% and 6.6%, respectively). The least sensitive parameters are the
membrane rolling frequencyf (decrease by 1.4%) and the length of the front (rela-
tive to the motion direction) part of the erythrocytea (increase by 2.3%).

Thus, for small variations of the parameters of the model (upto 10%) the pres-
sure differential at the ends of the erythrocyte causing itsmotion along the capillary
varies insignificantly, i.e., the model is not very sensitive to small (up to 10%) vari-
ations of the parameters.

In the model from [9], under an increasing velocityU , the difference of the nor-
malized (with respect to the plasm pressure in the capillaryPp) pressuresPe/Pp at
the ends of erythrocytes decreases, herePe is the pressure at the ends of the ery-
throcyte,Pp is the pressure at the ends of the plasm column equal in lengthto the
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erythrocyte. Thus, in the capillary with the diameter 5µ for the velocityU = 500µ/s
the difference of normalized pressures at the ends of the erythrocyte is△ = 1.5, for
U = 1000µ/s it is△ = 1.3, and forU = 10000µ/s it is△ = 1.2. That is, under the
increase in the velocityU of the erythrocyte, the relative resistance to the motion of
the erythrocyte along the capillary decreases. In this case, whenU decreases from
1000 to 500µ/s or whenU increases to 10000µ/s, the value△ changes by ap-
proximately the same quantity. This means that under a decrease inU the value△
quickly grows, i.e., under a decrease in the velocity of the erythrocyte the relative re-
sistance offered to the erythrocyte sharply increases. This phenomenon is explained
by the fact that under the decrease in the velocity of the erythrocyte the cell mem-
brane rotation frequency decreases, the gap width between the erythrocyte and the
wall of the capillary sharply decreases due to the elastic properties of the erythro-
cyte and hence the viscous forces acting on the erythrocyte from the plasm increase,
which increases the relative hydrodynamic resistance offered to the erythrocyte.

Consider the blood flow through the tees. The rate of the bloodflow through a
capillary tee depends on the parameters of the model. Thus, under the variation of
△P at the ends of the tee from 200 N/n2 to 400 N/m2 (with fixed other parameters
of the model) the blood flow rate increases (Fig. 3). This can be explained in the
following way. Due to the increase of△P at the ends of the tee, on the one hand, we
get the increase in the velocity of erythrocytes positionedin the capillaries of the tee
and, on the other hand, the number of erythrocytes positioned in the tee decreases.
The increase in the velocity of erythrocytes increases the resistance offered to each
erythrocyte. The total influence of these two factors (the decrease of the number of
erythrocytes in the tee and the increase of the resistance offered to each erythrocyte)
leads to the fact that for blood flow velocities typical for a microcirculatory channel
(≈ 102 − 103µ/s) the dependence of the voluminal blood flowQ of the pressure
differential△P at the ends of the tee can be approximated by the expression ofthe
form

Q = a1△P+ b1

wherea1 andb1 are constant values (Fig. 3).
Thus, in a tee composed of vessels with the length 100µ and the diameter 4µ

for the intervalζ = 0.05 s between the entrance of erythrocytes into the network,
we have

Q = 31.7 △P−35.9

and increasing the diameter up to 4.5µ and decreasing the interval up to 0.03 s we
have

Q = 50.6 △P+2.5.

Consider the dependence of the blood flow rateQ on the intervalsζ between
the entry of erythrocytes in the divergent tee AOBC. The intervals ζ between the
entry of erythrocytes in the tee are bounded from below, because in the process of
the entrance of erythrocytes into the tee each next erythrocyte can enter the tee only
after the previous erythrocyte has entered the tee. The lower bound of the intervals
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Figure 3. Dependence of blood flow rateQ (µ3/s) (axisY ) through the divergent tee on pressure
differential △P (N/m2) (axis X) at its ends. The diameters of capillaries forming the tee are 4µ,
the lengths of capillaries are 100µ. The pressure values at the points B and C are 0 and 0 N/m2,
respectively. The interval between the entrance of erythrocytes in the tee is 0.05 s.

ζmin between the entrance of erythrocytes into the tee can be estimated as follows:

ζmin =
△le
U

where△le is the length of the erythrocyte at the entrance to the tee,U is the velocity
of its motion at the entrance.

The intervalsζ between the entry of erythrocytes into the tee are bounded from
above because if we assume that the tee at any time moment mustcontain at least
one erythrocyte, the upper bound of the intervalsζmax can be estimated in the fol-
lowing way:

ζmax =
△l1 +△l2

Umin

whereUmin is the minimal velocity of the erythrocyte in its motion in the tee,△l1
is the length of the vessel AO,△l2 is the length of the vessel OB (if the erythrocyte
follows the route A-O-B) or the vessel OC (if the erythrocytefollows the route A-
O-C).

The dependence of the blood flow velocity on the time intervals ζ between the
entries of erythrocytes into a divergent capillary tee is nonlinear. Thus, in the vessel
AO of the tee AOBC forζ = 0.05 s we haveQ = 6304 µ3/s, and forζ = 0.03 s
andζ = 0.07 s the mean value ofQ equals 6276µ3/s and 6313µ3/s, respectively.
Thus, under the increase of the intervalζ between the entrance of erythrocytes into
the tee the blood flow rateQ increases. If we continue to increase the intervalsζ
between the entries of erythrocytes into the tee, we can get the state when in some
time intervals the tee does not contain erythrocytes at all (the tee contains the plasm
only), and in some time intervals the tee contains a single erythrocyte. Under an
essential increase ofζ instead of a single value ofQ we get four values alternating
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Figure 4. Dependence of the blood flow rateQ (µ3/s) through the divergent tee on the size of the
intervalsζ (s) (axis X) between the entries of erythrocytes into the tee. The diameters of the capillaries
forming the tee are 4µ, the lengths of the capillaries are 100µ. The pressure at the points A, B, and C
is 200, 0, and 0 N/m2, respectively.

in some way. Namely, the first value corresponds to the case when the tee contains
no erythrocytes, the second one means that the erythrocyte is in the vessel AO, the
third and fourth ones mean that the erythrocyte is in the vessels OB or OC (the
latter two may coincide). In the case considered for the divergent tee AOBC, the
sequence of the values ofQ for large values ofζ is the following: first (the tee has
no erythrocytes), second (the erythrocyte is in the vessel AO), third (coinciding with
the fourth when the erythrocyte is either in the vessel OB, orin OC), first, second,
etc. If we average these values ofQ, we get a straight line positioned slightly below
the line corresponding to the case when the tee contains no erythrocytes (Q = 6978
µ3/s in the case of absence of erythrocytes in the tee).

Consider the dependence of the blood flow rate in the tee on thelength of the
capillaries forming this tee (Fig. 5). The lengths of the capillaries forming the tee
are bounded from below. As we consider the blood flow in capillaries, each capil-
lary must contain at least one erythrocyte, i.e., the lengthof each capillary must be
greater than the length of the erythrocyte in the capillary.The lengths of the capil-
laries forming the tee are bounded from above, because underan increase of their
lengths for a given pressure differential at the ends of the tee the moment may come
when the blood stops its motion. If the lengths of the capillaries forming the tee
grow (under unchanged other parameters of the model), the number of erythrocytes
in the tee grows, which, according to formula (1.16), leads to the increase of the
resistance to the blood motion in the vessels of the tee and inthe tee as a whole. In
its turn, the latter results in a decrease in the blood velocity and the voluminal blood
flow (under a constant pressure differential at the ends of the tee) (Fig. 5, curve 1).
The comparison with the hyperbolaQ = 697778/l describing the case when the
tee contains no erythrocytes (curve 2) shows that curve 1 lies slightly lower than
curve 2. For example, forl = 100µ the difference between curves 1 and 2 is 545µ3

and forl = 200µ3 it is 322µ3 (Fig. 5).

The rate of the blood flow through the capillary network essentially influences
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Figure 5. The dependence of the blood flow rateQ (µ3/s) (axisY ) in the divergent tee AOBC, the
length of the vessels forming the tee isl (µ) (all lengths and diameters of the vessels in the tee are the
same). The diameters of the capillaries forming the tee are equal to 4µ. The pressure at the points
A, B, and C is equal to 200, 0, and 0 M/m2, respectively. The intervalsζ between the entries of
erythrocytes into the tee are equal to 0.05 s (curve 1). Erythrocytes are absent in the tee (curve 2 being
the hyperbolaQ = 697778/l).

the processes of oxygen transport to tissues and removal of metabolism products.
An important issue is the determination of the dependence ofthe rate of blood flow
through the capillary network on the pressure differentialat the ends of the net-
work. Therefore, we performed a comparison with data from other studies focused
on blood flows in narrow capillaries. The comparison was performed in the follow-
ing way. The data obtained for a single erythrocyte taken from [9, 12, 19] were
substituted into the model of the motion of erythrocytes through a divergent tee
(1.18), (1.19). As the result, we got the dependences of the blood flow rateQ on the
pressure differential△P at the ends of the tee for different models and for blood
flow velocities typical of a microcirculatory channel (Fig.6).

In this case, the higher is the pressure differential at the ends of the tee, the
less essential is the difference between the models. Thus, for the pressure differ-
ential at the ends of the tee△P = 200 N/m2 the blood flow rate is 10118, 9731,
and 9195µ3/s in the models from [9, 12, 19], i.e., the difference is approximately
11%, whereas for△P = 400 N/m2 we have 20260, 19525, and 19181µ3/s and the
difference is about 6% (Fig. 6). These dependences ofQ on△P are close to linear
for a divergent tee and can be approximated by the expression

Q = a1 △P+ b1

wherea1 andb1 are coefficients.
Thus, the comparison of the dependence of blood flow rates on the pressure

differential at the ends of the tee in narrow capillaries hasshown that in [9] this
dependence is slightly stronger, i.e., for the same pressure differential at the end of
the tee, other conditions being equal, the blood flow rateQ is greater by 6–11%
(Fig. 6).

The comparison with experimental data shows the following.It is known that
the mean blood flow velocities in capillaries are about 0.3–1mm/s and pressure
differentials are 5–8 mmHg per 1 mm of capillary length (0.7–1.0 N/m2/µ) [23,
24]). For example, in our model (Fig. 6) for the pressure differential of 200 N/m2 at
the ends of the tee composed of vessels of the length 100µ , diameter 4µ , and the
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Figure 6. The dependence of the blood flow rateQ (µ3/s) (axis Y) in a divergent tee (equations
(1.18), (1.19)) on pressure differential△P (N/m2) (axis X) at the ends of the tee (at the point A the
pressure is△P). The diameters of the capillaries forming the network are 4.5 µ, the lengths of the
capillaries are 100µ, the intervals between the entrance of erythrocytes into the tee are 0.05 s. The
pressure at the points B and C is equal to zero. Models: 1 – [9],2 – [12], 3 – [19].

interval between the entrance of erythrocytes into the network ζ =0.05 s, we have
the following rate of the voluminal blood flow:

Q = 31.7 △P−35.9 = 31.7×200−35.9 = 6304.1 µ3/s

and the velocity in the vessel AO of the divergent tee is

UAO = Q/(π r2) = 6304.1/(3.14×4) = 502µ/s.

Since 0.502 mm/s belongs to the interval 0.3–1.0 mm/s typical for a capillary
channel [23, 24], this means that the results of the calculations are in a good accor-
dance with the experimental data. Thus, the dependence ofQ on △P in different
models are close to each other (Fig. 6) and agree with the experimental data.

However, there are qualitative differences between the models. In contrast to
other models, our model takes into account the Young modulusof the erythrocyte,
the volume of the erythrocyte and its surface area. It is known that the amounts of
oxygen and products of metabolism transported by an erythrocyte are determined
by its volume, and the rate of release (or absorption) of oxygen and products of
metabolism is determined by its surface area. On the other hand, for some diseases
(e.g., for sickle-cell anemia) the stiffness of erythrocytes grows (the Young modu-
lus of the erythrocyte is changed), so that the motion of erythrocytes is essentially
changed and erythrocytes become destroyed in very narrow capillaries. Moreover,
in contrast to other models, we have developed formulas (1.15)–(1.17) allowing
us to estimate the dependence of the pressure differential at the ends of the capil-
lary on such parameters as the diameter of the capillary, thevelocity, volume, and
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surface area of the erythrocyte, the Young modulus of the erythrocyte, hematocrit,
and other parameters. The model constructed for capillary tees (1.18), (1.19) can
be easily generalized to a capillary network of any structure (1.20), (1.21) under
the condition that not more than 3 vessels are joined at one point. All this suggests
that the model can be used for construction of other models capable to calculate the
transport of oxygen and products of metabolism both for normal conditions (in a
healthy organism) and for various diseases (for example, for sickle-cell anemia).
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