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M athematical model of the motion of asymmetric
erythrocytes along narrow capillaries

A. V. KOPYLTSOV*

Abstract — A mathematical model of the motion of 3-dimensional ergtiytes along fragments of
capillary networks consisting of a small number of narropiltaries is constructed. The model takes
into account the lengths and inner diameters of capillatfesform and position of an erythrocyte in
a capillary, the viscosity of the plasm and the contents afrgthrocyte, the volume and surface area
of an erythrocyte, the elastic characteristics of an eogiyte, the membrane rolling of an erythrocyte,
and the intervals between the entries of erythrocytes heaapillary network. The formulas for the
dependence of pressure differential causing the blood fidiragments of capillary networks on the
parameters of the model are obtained. The dependencesldbtiteflow rate through a capillary tee
on the lengths of capillaries forming the tee, on the presdifferential at the ends of the tee, and on
the intervals between the entries of erythrocytes intodbeare obtained.

Experimental and theoretical studies of hemodynamics ifceotirculation system
allows us to describe quantitatively the interrelated orotf the viscous plasm
and elastic cells (erythrocytes) along capillaries. Ineortb describe the motion
of the plasm, we may use the basic hydrodynamic equationsm{egs of motion
and continuity), and the form of erythrocytes is charaztatiby equations of the
mechanics of a deformed solid body. The simultaneous solutf those equations
subject to the corresponding boundary conditions detersrine spatial distribution
of the pressure in the plasm, the velocity of the plasm anthesgytes, and the
energy consumption for the blood motion in capillaries. €Risting models using
these relations simulate the complicated character ofaaten of blood cells in
microvessels only in the first approximation [2, 4, 5, 7-12, 16, 19, 21, 25, 26].
Thus, the rheological properties of blood were considenef®6], the erythrocyte
membrane rolling in wide capillaries (with the diametereading the diameter of
the erythrocyte) was considered in [16]. An asymmetric fofran erythrocyte in a
wide vessel was considered in [8], the motion of an erythtimbyaving a symmetric
parachute shape was considered in [15], in papers [4, 12]regytes had the shape
of elastic balls and in [5] were shaped as cylinders. A 2-disienal model with a
rolling membrane was constructed in [19]. However, suchartgmt characteristics
as the volume and surface area of erythrocytes were not tateaccount in those
models. The amount of oxygen transported by an erythroapernts on its volume
and the rate of oxygen release from an erythrocyte is detedrby its surface area.
A three-dimensional model of the motion of an erythrocytengl a capillary was
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constructed in [9, 10], this model takes into account theiva and surface area
of the erythrocyte whose membrane rolls. Based on this madelmotion of a
set of erythrocytes along separate capillaries and fratgrafrcapillary networks
was considered. The formulas describing the dependende giressure gradient
causing the blood flow through fragments of capillary neksarn the parameters
of the model were obtained. The dependences of the rate ofi flow through
a capillary tee on the lengths of the capillaries forming the, on the pressure
differential at the ends of the tee, and on the intervals betwthe moments of
entrance of erythrocytes into the tee are obtained. Sinaetipally any capillary
network can be constructed from various tees, the modelshendesults obtained
here can be easily generalized to capillary networks of &gtire.

1. DESCRIPTION OF THE MODEL

1.1. Motion of an erythrocyte along a capillary

Constructing the model, we assume that a capillary is a dstial pipe with the
inner diameteD, along which an erythrocyte is moving uniformly. The plasn i
a viscous incompressible Newtonian fluid filling the spacevben erythrocytes
and forming a thin layer between the surface of an erytheoayid the wall of the
capillary. There is no flow through the walls of the capillanyd the membrane of
the erythrocyte. An erythrocyte is an elastic body with tlwiivg modulus 6000—
8000 N/nf and the Poisson coefficient 0.5 [3]. The surface area andnelaf
an erythrocyte are assumed to be constant under deformétitime motion of an
erythrocyte along a capillary, its membrane rolls (the omtiesembles that of a
tractor or tank tracks) with some constant frequehg¢¥8].

In very narrow cylindrical capillaries, an erythrocytedithe space of the cap-
illary almost completely and its shape is close to cylinakid@ herefore, the middle
part of the erythrocyte was approximated by a cylinder. Thatfpart of the ery-
throcyte (relative to the motion direction) was approxietaby a half-ellipsoid of
rotation due to the following arguments. First, doing so wkieve the smoothness
of junction between the cylinder and the half-ellipsoide(tangents at the points of
the junction coincide), which is important for the plasm flasund the erythrocyte.
Second, the form of the half-ellipsoid is determined by @n&xes. Varying these
semiaxes, we can get various forms of the front (relativehtorhotion direction)
part of the erythrocyte. Therefore, the surface of the eogiyte was approximated
by a truncated cylinder (with the minimal and maximal getrazes|, andl,, re-
spectively) bounded from one side by the half of the elligsafi rotation with the
semiaxes, b, b (Fig. 1).

Then, according to [1], the volume of the erythrocyte is

2a |1—|—|2)

= nb2<§ +45 (1.1)
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Figurel. Model of an erythrocyte in a capillary in the Cartesian camaitbsOX; X2 X3. The surface of
the erythrocyte is approximated by the truncated cylindéh(the minimal and maximal generatrices
11,15, respectively) bounded from one side by the half of the sdlig of rotation with the semiaxes

b, b; B is the angle between the axes of the capillary and the cylietgthrocyte)/ is the distance
from the pointO to the axis of the capillary.

the surface area of the erythrocyte is

S=At2mbly+ b (Ip—1y) + 1b (402 + (I, — 11)2) Y2

; 2 h2\1/2
A:nb(b+aar03|ns), s:(a b<) Casb
a
A=mb? a=b (1.2)
B a_2 14 ¢ B (bZ_aZ)l/Z
A= (b+opein(iz;)) e g — a<b

Solving these equations with respectlioandl,, one can expresk andl;
througha, b, V, S Therefore, the form of the erythrocyte is determined eithe
througha, b, I4, I, or througha, b, V, S.

The position of the erythrocyte in the capillary is deteretirby the distance
from the pointO positioned on the axis of the cylinder (erythrocyte) to tkis &f
the capillary and by the ange between the axes of the cylinder (erythrocyte) and
the capillary (Fig. 1).

In order to describe the motion of the erythrocyte in a capillwe use the sys-
tem of equations describing the hydrodynamics of plasmesuitip the form and
position of the erythrocyte in the capillary. The pressuarthe thin gap between the
erythrocyte and the wall of the capillary varies in the agiadl azimuthal directions,
whereas in the radial direction it remains practically ¢cans The plasm flow in
the capillary is assumed to be laminar. The forces of inemt@éanegligibly small.
Taking into account these assumptions, we can assume ¢haidtion of the plasm
is described by the Poiseuille law in the intervals betwegtheocytes and by the
system of Reynolds equations for the lubricating layer enghap between the ery-
throcyte and the wall of the capillary; in the cylindricalssgm of coordinatesXq,

r, ¢) the latter system has the form [9, 12, 14]:

oP ui(r0u>

o _rar\ar (1.3)
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oP  uad s ow
a9 rar (r 0r) (1.4)
oP

ow d(ru) O(rv)
%-F % 5 =0 (1.6)

wherep is the viscosity of the plasnu, w, v are the axial, azimuthal, and radial com-
ponents of the plasm velocity, respectivé¥X;, ¢ ) is the pressure of the plasi,
u, v, andw are functions 2r-periodic with respect tg.

The cylindrical system of coordinateXy( r, ¢) is related to the Cartesian sys-
tem of coordinate$X;, X2, X3) in the following way (Fig. 1):

Xp=X;, Xo=rcosp, Xsg=rsing, r2=X2+X2

The system of Reynolds equations was solved in the systewoodinates X,

r, ¢) (Fig. 1). The boundary conditions for hydrodynamic ecurdiinclude kine-
matic conditions posed on the velocity and dynamic conalitiposed on forces. The
latter conditions involve the tangent stresses and thespres

The boundary conditions posed on the velocity (nonslipmiogditions) have
the form:u =Wy, w= 0 forr = Ron the surface of the erythrocyte=U;, w=10
for r = R+ h on the wall of the capillary, whergd; andW; are the projections
of U (velocity of the wall) andWV (velocity of the membrane) onto the axs,

r =r (X1, ¢) is the distance from the axi$; to the membrane of the erythrocyte,
h = h(Xy,¢) is the width of the gap between the erythrocyte and the walhef
capillary.

In addition, the following conditions are posed on the stefaf the erythrocyte
and the wall of the capillary. These conditions ensure thgpaomeability of the
erythrocyte’s membrane and the wall of the capillary forauilil, subject to the
continuity equation and the nonslipping condition [9, 12]:2

w or or or
V—?%—{—Ua—)(]-—w:]_a—)(l, r=R
_Wor L9 0,2 _Rrin

T r a9 Xy toxy
These conditions can be rewritten in the form

or
v=W,—, r=R
laxl7

or
v=U;— r=R+h
1axl> +
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or
\% or
—=—, r=R
W, 90Xy
Y or
— =—  r=R+h.
T +

This means that at a point lying on the membrane of the ergyieqor on the
wall of the capillary) the ratio of the velocities (in the falddirection and in the
direction along the axi%,) is equal to the ratio of the increments (in the radial
direction and in the direction along the ax{g). This is natural considering the
fact that the first one is determined by the form and positibthe erythrocyte
in the capillary, and the second one is determined by theamati the wall of the
erythrocyte and the surface of the capillary with respetiiésystem of coordinates
OX1X2X3, and also due to the assumption on non-slipping and nonpduititg of
the erythrocyte’s membrane and the wall of the capillaryaftiquid.

Due to the fact that plasm is a viscous fluid, tangent streésdal g, and
azimuthalag) act on the surface of the erythrocyte in addition to norni@sses
(plasm pressure) [9, 10, 14, 22]:

Jdu
om=Har

ow w
o =H(5r 1)

Integrating equations (1.3), (1.4) with respect to the widf the gaph and
taking into account the boundary conditions, we get

In(r/R)
In(1+h/R)

1 aP< o2 In(r/R)(h*+2RN)

= 9% LR ) W (Ug —Wa)

1 oP (r/R)

Lo (r-R- hln 1+ h/R))
Integrating equation (1.6) with respect to the width of taglyand substituting the
expressions fon andw into it, we get the elliptic differential equation

9°P dP 9°P

oP
0)(2 —|-A2a +A3—+As—+A5=0 (1.7)

092" 494

whose coefficients are functionsBf h, u, X1, ¢, U1, Wy and have the form

2 2
A (—2R2—2Rh—h2+ 2Rh+h ) 2Rh+h

Al——

In(1+h/R) | 16p
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oA
A= 9%
As = —h2—2Rh+27hZ =
3 In(1+h/R) | 2u
_ 9A
A4—a—(p
0 (R+h)2  2Rh+h? 2Rh+h?
A5_<9_><1<(U1_W1)< 2 In(1+h/R) +W1< 2 )
oh
R+h)Up—.
+(R+ )Ula)<1

Thus, if we knowD, u,U, f,a,b,V, S|, B, we can determin&/, R, h, U;, W,
and hence the coefficienks, A, Az, A4, As of the equation.

In the construction of the model we assume thay, D, V, Sare known. The
parameterd, a, b, I, B are determined from additional conditions. Consider those
conditions. According to experimental data, in a uniformtiom of an erythrocyte
along a capillary its membrane rolls with some constantufeagy f [18]. The rela-
tion between the membrane rolling frequerfcgind the velocityV of a point of the
erythrocyte is determined in the following way [18, 20]:

W =nx O(f F(Xy)) (1.8)

wheren is the unit normal to the surface of the erythrocygds the function satis-
fying the relation
F'(Xs) = T(Xs)

whereT (X3) are the lengths of closed guidelines along which the poifrttssomem-
brane move (the prime symbol denotes the derivative witha&tstoXs) (Fig. 1).

In the rolling of the membrane of the erythrocyte (this reBSks the tank-
treading motion), the points positioned on the surface @&ttythrocyte move along
closed lines [18, 20]. In the uniform motion of an erythracyn a capillary of a
constant diameter with fixed other parameters of the mduesa closed lines retain
their length, and these lengths can be calculated. The mofithe points lying on
the membrane of the erythrocyte is realized in planes matalithe plangX, X2)
[20]. Thus, the line along which some fixed point of the membraf the erythro-
cyte moves is the intersection of the surface of the erytheoand a plane parallel
to the plangX1, X2). If we know the form of the erythrocyte, we can calculate the
length of the closed line easily. The number of these lin@sfisite. However , the
calculations were performed at the nodes of the gfid ¢) with certain mesh sizes
in X; and¢. Therefore, we calculated a finite number of lines. We deteththe
number of these closed lines in the following way. Any pointtbe surface of the
erythrocyte is determined by its coordinat&s,(¢). The mesh size i was taken
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from 0.01 to 0.1 radians. Therefore, the lower bound for thmlper of different
lines was estimated (due to the arguments of symmetry) betpeessiorvt/ 2 /
0.1~ 3.14/2/0.1= 15, and the upper one by/ 2/0.01~ 3.14 / 2/ 0.01~ 157.
Therefore, the number of lines in calculations was takemftd to 160. The choice
of the number of lines was determined by the fact that the mizgs ing andX;
should be close in magnitude.

Averaging the external forces acting on the erythrocytegetés,, which is the
external force (per unit area) acting upon the end surfatckeoérythrocyte (along
the axisX;), andGy,, which is the external force (per unit area) acting on therédt
surface of the erythrocyte. Therefore, we assume that detielproperties of the
erythrocyte are approximately described by the genedalifmoke law

PL—P,=EAc/c (1.9)
where/\c is the absolute elongation (contraction) of the length efehythrocyte
| =a+(l1+12)/2 (1.10)

measured along the axd;, E is the Young modulus of the erythrocyté,G;
and AG; are the increments d&; andG,, P = —AG; andP, = —AG; are the
stresses [22].

The condition of the uniform motion (rolling) of the membeaaf the erythro-
cyte means that the sum of the forces acting on the membratie @frythrocyte
from the outsidgFy, F,) and from the insidéFs) is equal to zero, i.e.,

F=F+FK (1.11)

whereF; andF, are the external forces acting on the membr&heepresents the
forces acting foX, > 0 andF, represents the forces acting % < 0 (Fig. 1).

Fs=Cu; fS

wherey, is the viscosity of the content of the erythrocyte, whichppraximately

5 times lower than the viscosity of the plasm [27]is the rolling frequency of the
membrane of the erythrocyt8,is the surface area of the erythrocy@is the coef-
ficient characterizing the interaction (cohesion) of themheane and the contents
of the erythrocyte.

The condition of the rectilinear uniform motion of the emgbyte along the
capillary means that the sum of the for¢€g) acting on the erythrocyte (as a solid
body) and the sum of their momerttlél;) are equal to zero (summation with respect
toi), i.e.,

z F=0 (1.12)

Y Mi =0, (1.13)

As the result, we obtain system of equations (1.7)—(1.91,1)3(1.13) with the
unknownsP(X1,¢), a b, I, B, f. For each of the unknowns we define the range of
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possible values in the following way: Q P < 1000N/m2, O<a<?2D,0<b<
D/2,0<1<D/2,0< B <m/2,0< f <100 r/s. The system of equations was
solved by the finite difference method [17]. For the boundamydition we used the
assumption that pressure equals zero in the neighbourHabeé éont (relative to
the motion direction) part of the erythrocyt;u, v, andw are 2t-periodic functions
of ¢. The estimation of the accuracy of the solution was carrigdagcording to
the Runge principle [17]. The mesh size was taken dependindpe sizes of the
capillary and the erythrocyte, iK; it varied from 0.01 to 0.1u and in¢ from
0.01 to 0.1 radians, which allows us to determine the presdistribution in the
neighbourhood of the erythrocyte with the accuracy up ta-8001 N/m?.

The calculations were performed for different values ofilay diameters
(D =3-7 ), of the velocities of erythrocytes in the capillay € 0.1-10.0 mm/s),
of plasm viscosity i =1-2 cP), of the volume of the erythrocyié £ 80-110u3),
of the surface area of the erythrocy®=£ 120-150p2), of the Young modulus of
the erythrocyte E = 6000-8000 Mm?), of the Poisson coefficient of the erythro-
cyte (v =0.5), of the coefficient of cohesion of the membrane and timeecds of
the erythrocyte@ = 0—1000) typical for a microcirculatory channel [6, 23, 24].

The calculations performed for the medium-size mo@e4 u, u =1.2 cP,
U=1mm/s,V =94 3, S=135pu? C =100,E =7000 N/nf, v =0.5) showed
that the erythrocyte has a form characterized by the pams®et 0.20u, b=1.97
U, the position id =0.004u, B = 0.0000009 radians (the axes of the cylinder (ery-
throcyte) and the capillary practically coincide and henaking into account the
accuracy of the calculations, we can assume ltkaD and = 0), its membrane
performs 16 rotations per second, the pressure diffetettits ends is 24.22 Nn?,
which is approximately 1.3 times greater than the pressquaired for the transla-
tion at the same velocity of a plasm column equal in size teetlgthrocyte [9].

The dependence of the pressure differentidt at the ends of the erythrocyte
on the parameters of the model was approximated by the estpn®, 10]:

AP

:32uU(i V2 SE )

D \Da Sufty (1.14)

whereD is the diameter of the capillary is the viscosity of the plasmy is the
velocity of the erythrocytey is the volume of the erythrocyt&is the surface area
of the erythrocyteE is the Young modulus of the erythrocytiejs the length of
the erythrocyte measured along the axis f is the erythrocyte membrane rolling
frequencyg is the ratio of the velocities of the erythrocyte and plasm; 0.00029
andy = 0.0042 are constants.

The first term at the right-hand side of the expression giieshiydrodynamic
resistance according to the Poiseuille formula, the setermd gives the additional
hydrodynamic resistance caused by the erythrocyte.

In order to calculate the pressure differentialP at the ends of the erythrocyte,
we have to knowu, U, D, a , E, I,V, S f. If the values ofa, b, I, |, are known,
thenl, V, andScan be determined by formulas (1.1), (1.2), (1.10) presealb@ve.
According to experimental data [13, 24] for conditions tgdifor a microcirculatory
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Figure 2. Dependence of rolling frequendy(rotations per second) of the membrane of the erythro-
cyte on its velocity (u/s) for different values of diametdd of the capillary f1). The volume of
erythrocyte isV = 94 3, its surface area iS= 135 p?, the Young modulus i§ = 7000 N/'m?, the
Poisson coefficient ig = 0.5, the plasm viscosity ig = 1.2 cP.

channel we haver € (1.0 —1.3). Therefore, we can assunaex~ 1.15 in narrow
capillaries. If the diametelD of the vessel and the velocity of the erythrocytes
are known, then for the estimation of the frequericyf the erythrocyte membrane
rolling we can use the results of the calculations presemtegd, in Fig. 2.

Therefore, if the numeric values ¢f, U, D, a, E, I, V, S f are known, we
can estimate the pressure differentfalP at the ends of the erythrocyte causing its
motion along the capillary.

The dependence of the pressure differential causing themmot the erythro-
cyte along the capillary on the microhemodynamic parareetess been used in
analysis of the mechanism of erythrocyte motion in fragmentapillary networks.
Two general elements can be pointed out in the construcfioretaorks, namely,
the capillaries themselves that are pipes of circular esestions and the points of
their junction, branching (bifurcations). Therefore, lgss of microhemodynamics
in capillary networks requires a successive consideraifahe motion of a set of
erythrocytes in separate vessels, through bifurcatiarg oger capillary networks.

1.2. MOTION OF ERYTHROCYTESIN A CAPILLARY

Let a capillary contaim erythrocytes moving at the velocitye typical for a micro-
circulatory channel. Then, according to the previous eacthe pressure differen-
tial at the ends of the erythrocyte is

APy = agUe + by

wherea; andb; are constants.
It is assumed that the distances between the erythrocytdge déngthAlg in
the capillary are such that the flow between them satisfieB digeuille law
8uU, Al
APy=—"—_—L—-F
°" (D)2
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whereU,, is the velocity andAl, is the length of the plasm column in the capillary,
APy is the pressure differential at the ends of the plasm colymis,the viscosity

of the plasmD is the diameter of the capillary.
Then at the ends of the capillary of the lendth containing erythrocytes of the
length Alg the pressure differential is

8uUpAlL
“Fo="o/2p
=Ug(an+c(AL—nAlg))+nb

(AL —nAle) +n(aUe + b)

where
_ _8uUp

~ (D/2)2Ue’
If the capillary containg erythrocytes, them\P can be approximated by the
expression

AP

ZBQLU(AL V2 SEn ) (115)

D \Da  Suf+y
Since hematocrit is related to the numberof erythrocytes in the capillary by

the formula
4nv

H =
nD2AL
then, substituting the expression fointo formula (1.15), we get

AP

2 2
:32UUAL(i Ve OE mD H) (1.16)

D Da S uf+y 4 /)

If the intervals between the entrance of erythrocytes ihtodapillary are the
same and equal tg, the time when the erythrocyte is inside the capillaryl is-
AL/U, the number of erythrocytes in the vessehis- T/{ = AL/(U{), then,
substitutingn, we get

AP

:32uUAL(i V2 SE 1). (117

D Da 'S uftyud

1.3. MOTION OF ERYTHROCYTESTHROUGH CAPILLARY TEES

Knowing the mechanism of translation of erythrocytes alangapillary, we can
proceed to the consideration of the model of a tee, which isnation of three
pipes AO, OB, OC at a point O. Either the blood enters the teritih two vessels
(OB, OC) and flows out through one (AO), or, vise versa, ertersugh one vessel
(AO) and flows out via two others (OB, OC). In the first case thygheocytes come
into a single vessel from both daughter vessels, wheredseirsécond case the
erythrocytes meet an alternative at the bifurcation (p@tto go further through
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one vessel or through the other. The model states that thierecyte enters the
vessel which has the greater voluminal blood flow. In the césgual blood flows
in the vessels OB and OC, the erythrocyte goes into any of thigmthe probability

0.5. In order to determine the direction of the erythrocytiéo(the vessel OB or into
0CQC), we used the generator of pseudorandom numbers unyfalisttibuted in the
interval (0, 1). If the drawn number was less than 0.5, théheogyte was directed
to one vessel (OB), and if it was greater than 0.5, then to ther@ne (OC). If the
number 0.5 was drawn, the next pseudorandom number wasagethestc.

If the number of erythrocytes in the tee capillaries and tresgure at the tee
ends are known, then, taking into account the mass congsrVatv (the quantities
of blood incoming to the bifurcation in unit time&Q¢ for a divergent teeQ?, Q?
for a convergent one) and outgoing from @ Q? for a divergent teeQ?® for a
convergent one) are equal), we can compose a set of relatiashe form

a AR+biVi+c¢ =0, i=123 (1.18)

Q'+Q*=¢Q° (119
whereV, is the blood flow velocity in théth vessel V1, V>, V3 are the blood flow
velocities in the vessels AO, OB, OQ)\R is the pressure differential at the ends of
theith capillary,a;, bj, ¢; are coefficients.

It is assumed that the walls of capillaries are impermeatteafliquid. The
required values are the velocitieg; ( V>, V3) in the capillaries and the pressure
(P) in the bifurcation. Therefore, we have the system of fouratigpns with four
unknowns. Solving this system, we determine the velocitigbe vessels and the
pressure in the branching (bifurcation) for a given disttiitn of erythrocytes over
the tee capillaries. This distribution changes in the cewftime and hence the
velocities in the vessels and the pressure in the branchifigr¢ation) change as
well.

14. MOTION OF ERYTHROCYTESOVER CAPILLARY NETWORKS

Knowing the mechanism of the blood motion in a tee, we cangeddo the con-
sideration of an arbitrary capillary network, which is a eétapillaries joined in
a particular manner. It is assumed that not more than 3 \seaseljoined at a par-
ticular point (branching, bifurcation). In the constractiof the model we assume
that the geometry of the capillary network, the pressureesht the ends of the
network, and the erythrocyte incoming frequency are kndwis required to de-
termine the mechanism of erythrocyte motion in the netwbrthe network has
capillaries joined am points (bifurcations), then we can getelations relating the
pressure gradienta R at the ends of thih capillary to the velocity; of the blood
flow

a AR+biVi+¢=0 1i=12,....n (1.20)

wherea;, b, ¢; are coefficients, anghrelations obtained from the mass conservation
law.
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Two variants are possible. Either the quantities of blomdiming per unit time
to the jth bifurcation, Q, f and outgoingQ?, are equal (for a convergent tee),

or the quantities of blood incoming per unit time to tft& bifurcation, Q3, and
outgoing from it,Qt, Q?, are equal (for a divergent tee). Thus, we have

Q+Qf=Q}, j=12...m (1.21)

The motion of erythrocytes at subsequent moments of timkdsacterized by
their coordinates and velocities. Therefore, the unknoamsthen blood flow ve-
locities in the capillaries and thm pressure values at the bifurcations. Thus, we
have a system af+ mequations wittn+ m unknowns. Solving this system by the
Gauss method, we determine the blood flow velocities angpres in the capillary
network under the condition that the distribution of ergttytes over the capillaries
of the network is known. However, since the cells move aldwegdapillaries, their
distribution changes in the course of time. Thus, if we knbe $tructure of the
capillary network and the incoming frequency of erythresyat the entrances of
the network, we can determine the motion of erythrocytesthadrariation of the
blood flow velocities in the capillaries and the pressuréatiranchings (bifurca-
tions) of the network in time.

2. RESULTSAND THEIR DISCUSSION

The analysis of the sensitivity of the model of a single eytiite motion to small
variations of the parameters showed the following. If weetdlke medium-size
model as the baséd(= 4y, u =1.2 cP,U =1 mm/s,V =94 u3, S=135 p?,

C =100,E =7000 N/m?, v =0.5), the calculations show that under a change in
the parameterd, u, h, f, 8, 1, anda by 10% the pressure differentidlP is also
changed by some value. The most sensitive parameter is thevigiéh h. As h
changes by 10%, the pressure differentielP at the ends of the erythrocyte de-
creases by 20.5%. The viscosity of the plagnis less sensitive (its increase by
10% results in the increase afP by 10%). The parameters next sensitive in the
descending order are the velocltyof the erythrocyte (increase by 5.6%) and the
parameters characterizing the position of the erythrooytie capillaryl and 3
(increase by 4.1% and 6.6%, respectively). The least sengitrameters are the
membrane rolling frequency (decrease by 1.4%) and the length of the front (rela-
tive to the motion direction) part of the erythrocygincrease by 2.3%).

Thus, for small variations of the parameters of the modelt¢ui0%) the pres-
sure differential at the ends of the erythrocyte causingittion along the capillary
varies insignificantly, i.e., the model is not very sensitig small (up to 10%) vari-
ations of the parameters.

In the model from [9], under an increasing velodity the difference of the nor-
malized (with respect to the plasm pressure in the capifgypressure®e/Pp at
the ends of erythrocytes decreases, Hrés the pressure at the ends of the ery-
throcyte,Pp is the pressure at the ends of the plasm column equal in leadtie
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erythrocyte. Thus, in the capillary with the diametgrfor the velocityU = 500u /s
the difference of normalized pressures at the ends of thhregyte isA = 1.5, for
U =100Qu/sitisA =1.3, and forld = 1000Qu/s itis A = 1.2. That is, under the
increase in the velocity of the erythrocyte, the relative resistance to the motion of
the erythrocyte along the capillary decreases. In this,casenU decreases from
1000 to 500u/s or whenU increases to 10001/s, the valueA changes by ap-
proximately the same quantity. This means that under a dserneU the valueA
quickly grows, i.e., under a decrease in the velocity of tiygheocyte the relative re-
sistance offered to the erythrocyte sharply increases fdiietnomenon is explained
by the fact that under the decrease in the velocity of thehavgyte the cell mem-
brane rotation frequency decreases, the gap width betvheeerythrocyte and the
wall of the capillary sharply decreases due to the elastipgnties of the erythro-
cyte and hence the viscous forces acting on the erythrooyte the plasm increase,
which increases the relative hydrodynamic resistanceeauffeo the erythrocyte.
Consider the blood flow through the tees. The rate of the bflmvdthrough a
capillary tee depends on the parameters of the model. Thdgruhe variation of
AP at the ends of the tee from 200/ to 400 N/m? (with fixed other parameters
of the model) the blood flow rate increases (Fig. 3). This carexplained in the
following way. Due to the increase dfP at the ends of the tee, on the one hand, we
get the increase in the velocity of erythrocytes positioimgtie capillaries of the tee
and, on the other hand, the number of erythrocytes posidianéhe tee decreases.
The increase in the velocity of erythrocytes increasesdhistance offered to each
erythrocyte. The total influence of these two factors (therekese of the number of
erythrocytes in the tee and the increase of the resistafeedfto each erythrocyte)
leads to the fact that for blood flow velocities typical for &rmcirculatory channel
(=~ 10% — 10°u/s) the dependence of the voluminal blood fl@wof the pressure
differential AP at the ends of the tee can be approximated by the expresstbe of
form

Q=a;AP+b;

wherea; andb; are constant values (Fig. 3).

Thus, in a tee composed of vessels with the lengthil86d the diameter 4
for the interval{ = 0.05 s between the entrance of erythrocytes into the network,
we have

Q=317 AP—359

and increasing the diameter up td#4 and decreasing the interval up to 0.03 s we
have

Q=506 AP+25.

Consider the dependence of the blood flow 1@ten the intervals{ between
the entry of erythrocytes in the divergent tee AOBC. Therirdks { between the
entry of erythrocytes in the tee are bounded from below, iz the process of
the entrance of erythrocytes into the tee each next eryte@an enter the tee only
after the previous erythrocyte has entered the tee. The loawnd of the intervals
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Figure 3. Dependence of blood flow raf@ (u3/s) (axisY) through the divergent tee on pressure
differential AP (N/m?) (axis X) at its ends. The diameters of capillaries forming the tee4ar,
the lengths of capillaries are 100 The pressure values at the points B and C are 0 andri®N
respectively. The interval between the entrance of ergthes in the tee is 0.05 s.

{min between the entrance of erythrocytes into the tee can baatsti as follows:
Al

e
me - U
whereAlg is the length of the erythrocyte at the entrance to theldds the velocity
of its motion at the entrance.

The intervals{ between the entry of erythrocytes into the tee are bounaexd fr
above because if we assume that the tee at any time momentamiain at least
one erythrocyte, the upper bound of the inteniglgx can be estimated in the fol-
lowing way:

whereUnn is the minimal velocity of the erythrocyte in its motion inethee, Al

is the length of the vessel A@\l, is the length of the vessel OB (if the erythrocyte
follows the route A-O-B) or the vessel OC (if the erythrocfadows the route A-
0-C).

The dependence of the blood flow velocity on the time intsrdabetween the
entries of erythrocytes into a divergent capillary tee islimear. Thus, in the vessel
AO of the tee AOBC for{ = 0.05 s we have = 6304 u3/s, and for{ = 0.03 s
and{ = 0.07 s the mean value @f equals 6276:°/s and 6313:3/s, respectively.
Thus, under the increase of the intergdbetween the entrance of erythrocytes into
the tee the blood flow rat® increases. If we continue to increase the intervals
between the entries of erythrocytes into the tee, we carhgeitate when in some
time intervals the tee does not contain erythrocytes atraltee contains the plasm
only), and in some time intervals the tee contains a singtehercyte. Under an
essential increase dfinstead of a single value @ we get four values alternating
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Figure 4. Dependence of the blood flow ra@(u3/s) through the divergent tee on the size of the
intervals( (s) (axis X) between the entries of erythrocytes into theTee diameters of the capillaries
forming the tee are 4, the lengths of the capillaries are J00The pressure at the points A, B, and C
is 200, 0, and O I)dmz, respectively.

in some way. Namely, the first value corresponds to the cass Wie tee contains
no erythrocytes, the second one means that the erythracintdhie vessel AO, the
third and fourth ones mean that the erythrocyte is in theele$9B or OC (the
latter two may coincide). In the case considered for therdmat tee AOBC, the
sequence of the values Qffor large values of is the following: first (the tee has
no erythrocytes), second (the erythrocyte is in the ves&g| third (coinciding with
the fourth when the erythrocyte is either in the vessel OBn@C), first, second,
etc. If we average these values@fwe get a straight line positioned slightly below
the line corresponding to the case when the tee containsytitrecytes Q = 6978
u/s in the case of absence of erythrocytes in the tee).

Consider the dependence of the blood flow rate in the tee oletiggh of the
capillaries forming this tee (Fig. 5). The lengths of theiltapes forming the tee
are bounded from below. As we consider the blood flow in cagpéds, each capil-
lary must contain at least one erythrocyte, i.e., the lenfjgach capillary must be
greater than the length of the erythrocyte in the capill@he lengths of the capil-
laries forming the tee are bounded from above, because amdigicrease of their
lengths for a given pressure differential at the ends ofékd¢hie moment may come
when the blood stops its motion. If the lengths of the cap@iaforming the tee
grow (under unchanged other parameters of the model), tmbauof erythrocytes
in the tee grows, which, according to formula (1.16), lead¢he increase of the
resistance to the blood motion in the vessels of the tee atibitee as a whole. In
its turn, the latter results in a decrease in the blood vl@aid the voluminal blood
flow (under a constant pressure differential at the endseofeh) (Fig. 5, curve 1).
The comparison with the hyperbo@ = 6977781 describing the case when the
tee contains no erythrocytes (curve 2) shows that curveslslightly lower than
curve 2. For example, fdr= 100u the difference between curves 1 and 2 is 545

and forl =200 3 itis 322 u® (Fig. 5).
The rate of the blood flow through the capillary network etiaéiy influences
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Figure 5. The dependence of the blood flow r@e(u3/s) (axisY) in the divergent tee AOBC, the
length of the vessels forming the ted iqu) (all lengths and diameters of the vessels in the tee are the
same). The diameters of the capillaries forming the tee qualdo 4u. The pressure at the points
A, B, and C is equal to 200, 0, and O/Mhz, respectively. The interval§ between the entries of
erythrocytes into the tee are equal to 0.05 s (curve 1). Eogtttes are absent in the tee (curve 2 being
the hyperbold = 6977791).

the processes of oxygen transport to tissues and removaktatholism products.
An important issue is the determination of the dependentleeofate of blood flow
through the capillary network on the pressure differersiiathe ends of the net-
work. Therefore, we performed a comparison with data froneostudies focused
on blood flows in narrow capillaries. The comparison wasgreréd in the follow-
ing way. The data obtained for a single erythrocyte takemf{e, 12, 19] were
substituted into the model of the motion of erythrocyteotigh a divergent tee
(1.18), (1.19). As the result, we got the dependences ofltwalflow rateQ on the
pressure differentia\P at the ends of the tee for different models and for blood
flow velocities typical of a microcirculatory channel (F&).

In this case, the higher is the pressure differential at tigs eof the tee, the
less essential is the difference between the models. Thushé pressure differ-
ential at the ends of the te&P = 200 N/m2 the blood flow rate is 10118, 9731,
and 9195u3/s in the models from [9, 12, 19], i.e., the difference is appnately
11%, whereas for\P = 400 N/m? we have 20260, 19525, and 19183/s and the
difference is about 6% (Fig. 6). These dependencé&3 o AP are close to linear
for a divergent tee and can be approximated by the expression

Q=a AP+b;

wherea; andb; are coefficients.

Thus, the comparison of the dependence of blood flow rateh@mressure
differential at the ends of the tee in narrow capillaries slaswn that in [9] this
dependence is slightly stronger, i.e., for the same pregtifferential at the end of
the tee, other conditions being equal, the blood flow fatis greater by 6—-11%
(Fig. 6).

The comparison with experimental data shows the followlhigs known that
the mean blood flow velocities in capillaries are about 0.8+t/s and pressure
differentials are 5-8 mmHg per 1 mm of capillary length (@.D-N/m?/pu) [23,
24)). For example, in our model (Fig. 6) for the pressureatiéhtial of 200 Nm? at
the ends of the tee composed of vessels of the lengthul@@ameter 4u, and the
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Figure 6. The dependence of the blood flow ra@e(u3/s) (axis Y) in a divergent tee (equations
(1.18), (1.19)) on pressure differentialP (N/m?) (axis X) at the ends of the tee (at the point A the
pressure iSAP). The diameters of the capillaries forming the network a4 the lengths of the
capillaries are 10Qu, the intervals between the entrance of erythrocytes iredeh are 0.05 s. The
pressure at the points B and C is equal to zero. Models: 1 2[9]12], 3 —[19].

interval between the entrance of erythrocytes into the ot =0.05 s, we have
the following rate of the voluminal blood flow:

Q=317 AP—359=317 x 200— 359 = 63041 u3/s

and the velocity in the vessel AO of the divergent tee is
Uno = Q/(11r?) = 63041/(3.14x 4) =502 /s.

Since 0.502 mm/s belongs to the interval 0.3—-1.0 mm/s typicaa capillary
channel [23, 24], this means that the results of the caloulsitare in a good accor-
dance with the experimental data. Thus, the dependen€earf AP in different
models are close to each other (Fig. 6) and agree with theiexgatal data.

However, there are qualitative differences between theeisodin contrast to
other models, our model takes into account the Young modfltise erythrocyte,
the volume of the erythrocyte and its surface area. It is kntvat the amounts of
oxygen and products of metabolism transported by an emgytecare determined
by its volume, and the rate of release (or absorption) of erygnd products of
metabolism is determined by its surface area. On the othmat, Har some diseases
(e.g., for sickle-cell anemia) the stiffness of erythresygrows (the Young modu-
lus of the erythrocyte is changed), so that the motion ofreoglytes is essentially
changed and erythrocytes become destroyed in very narrpilacgs. Moreover,
in contrast to other models, we have developed formulass)3(1.17) allowing
us to estimate the dependence of the pressure differentiaé @&nds of the capil-
lary on such parameters as the diameter of the capillarydtozity, volume, and
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surface area of the erythrocyte, the Young modulus of ththergyte, hematocrit,
and other parameters. The model constructed for capileyg (1.18), (1.19) can
be easily generalized to a capillary network of any struet{dr.20), (1.21) under
the condition that not more than 3 vessels are joined at ome. gl this suggests
that the model can be used for construction of other modelshia to calculate the
transport of oxygen and products of metabolism both for rroonditions (in a
healthy organism) and for various diseases (for examplesidle-cell anemia).
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