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This lecture is dedicated to the memory of Dmitry Sergeyevich

Chernavsky, who passed away in Moscow on June 19, 2016, at the

age of 90.

Dmitry Sergeyevich Chernavsky, 24/02/1926− 19/06/2016.
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As early as in 1976 Professor Chernavsky was my first mentor in

biomathematics. We have spent together three months in Utrecht,

where he was invited by Theo Ruijgrook, and I was a visiting

research felow invited by Martinus Veltman.

DIFFERENTIAL STOCHASTIC APPROACH TO HOMEOSTASIS



Dedication Introduction Lotka-Volterra Immunity Homeostasis

The book on Mathematical Modelling in Biophysics,

by Yu.M. Romanovsky, N.V. Stepanova and D.S. Chernavsky,

with Dmitry Sergeyevich’s dedication, 1976.
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I Dmitry Sergeyevich Chernavski was not only an outstanding

scientist, but also an exceptional man of wisdom and heart.

He is duly regarded as one of the founding fathers of Russian

school of mathematical biology and of entirely new domain of

synergetics, with many successful followers and collaborators.

I But he also extended his hand to fellow scientists whenever

they needed help; he served as messenger to Andrei Sakharov

during his exile in Gorkiy town.

I In 2004 he won the highest prize ever awarded in Russia, for

his contribution to the TV contest devoted to scientific

discoveries. He divided the prize among the 192 competitors

(including himself), giving 5000 euros to everyone.
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Introduction

I In this lecture we present a few applications of
differential analysis of dynamical changes and
evolutionary trends in biological systems.

I First-order non-linear differential systems can
successfully describe dynamics of interacting populations
belonging to various species, but also the evolution of
total numbers of living cells, antigens and antibodies.

I As usual with very big numbers, a continuous limit is
proposed, consisting in replacing the actual numbers by
relative probabilities of finding a specific item, a living
organism or a specific cell.
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Introduction

I Usually, the average values given by statistical analysis
of data, are often the only useful experimental
information available.

I The Lotka-Volterra type equations represent one of the
best tools of modelling the variations in population
density of coexisting biological species.

I In this tutorial lecture we shall sketch a brief history of
mathematical modelling of biological systems, then give
examples of applications of Lotka-Volterra type
equations to population dynamics, immunology and
homeostasis.
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I The simplest paradigm of population dynamics can be
represented by the symbolic differential equation:

∆N

∆t
' [birth rate] − [mortality rate] + [migration] (1)

I The birth and mortality rates’ definition is obvious; the
“migration” term can be positive or negative, depending
on the situation: it takes into account the difference
between the incoming and the outcaming flux of
members of considered population.
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I The first equation describing the population growth
(without migration term) was proposed by Leonhard
Euler as early as in 1748:

Pn+1 = (1 + x) Pn = (1 + x)n PO . (2)

where x is the relative growth rate per unit of time
(usually a year).

I The continuous limit

lim
n→∞

(
1 +

x

n

)n
= ex .

defines the exponential function, introduced by Euler.
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Later on (1798) Thomas Malthus gave the continuous
version of Euler’s equation:

dN

dt
= b N − d N, (3)

whose solution is

N(t) = N0 e(b−d)(t−t0), where N0 = N(t0). (4)

b > d leads to exponential growth, b < d leads to
exponential extinction, and only strict equality b − d = 0
ensures the stability (solution in form of a constant).
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I In real life the resources are not infinite; when they
come to exhaustion, the death rate of the species which
needs them for sustaining its life becomes higher than
the birth rate, and instead of growing, population starts
to diminish until the resources become again sufficient.

I Pierre-François Verhulst (1838, 1845) proposed the
following modification of Malthus’ law:

dN

dt
= rN

(
1− N

K

)
, (5)

where K is the maximal population size compatible with
maintaining renewable resources at a constant level.
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The solution is:

N(t) =
N0K er(t−t0)

K + N0

(
er(t−t0) − 1

) . (6)

and tends asymptotically to the limit value K , the maximal
population able to survive on finite resources.

Graphical representation is shown in the Figure on the next
slide.
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Example of population evolution in Verhulst’s model
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I Benjamin Gompertz added an extra hypothesis to Verhulst’s

model, with mortality rate exponentially growing when the

resources do not suffice to sustain the species:

dN

dt
= rN ln

(
K

N

)
, (7)

I which is a limiting case of a more general equation (Birch,

1999):

dN

dt
= rN

(
1−

(
N

K

) 1
ν

)
. (8)
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I If the population gets under the critical threshold (e.g.
if it becomes so spatially diluted that it becomes difficult
to find a sexual partner for fecundation), the total
number N tends to 0, which means total extinction (the
so-called Allée effect):

I
dN

dt
= rN

(
1− N

K

)(
N

K0
− 1

)
. (9)

where K0 is the threshold population under which
extinction becomes inevitable.

DIFFERENTIAL STOCHASTIC APPROACH TO HOMEOSTASIS



Dedication Introduction Lotka-Volterra Immunity Homeostasis

I If the population gets under the critical threshold (e.g.
if it becomes so spatially diluted that it becomes difficult
to find a sexual partner for fecundation), the total
number N tends to 0, which means total extinction (the
so-called Allée effect):

I
dN

dt
= rN

(
1− N

K

)(
N

K0
− 1

)
. (9)

where K0 is the threshold population under which
extinction becomes inevitable.

DIFFERENTIAL STOCHASTIC APPROACH TO HOMEOSTASIS



Dedication Introduction Lotka-Volterra Immunity Homeostasis

I In some cases retardation effects must be taken into
account:

dN

dt
= f (N(t),N(t − τ)) . (10)

I This type of equation is used for the description of
systems with periodic bursts of one of the populations,
e.g. periodic illnesses like malaria, with the three-day
cycle of parasite population in blood.
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In 1931 Vito Volterra, (1860-1940), formulated and studied a

general model based on quadratic differential equation, which since

then bears his name along with Alfred J. Lotka, (1880-1949).

Typical time evolution of total numbers of prey (green) and

predator (blue). On the right, the phase portrait of the system
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The Lotka-Volterra equations

I The Lotka-Volterra equations describe the evolution of

biological systems with different living organisms, competing

for food and space, or even eating each other (predators and

preys).

I The simplest model is given by two species only, the
prey x and the predator y . The evolution of their
(relative) numbers can be described as follows:
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The Lotka-Volterra equations

I The prey population x(t) increases at a rate Axdt,
proportional to its own number, but is simultaneously
killed by predators at a rate −Bxydt;

I The predator population y(t) decreases at a rate −Cydt,
proportional to its own number, but increases at a rate
Dxydt;

I which leads to the following differential system:

dx

dt
= Ax − Bxy ,

dy

dt
= −Cy + Dxy .
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The Lotka-Volterra systems have been used for description of a

countless number of processes, not only in biology, but also in

chemistry, solid state physics, microbiology and virology.

The most general Lotka-Volterra system, with m interacting and

competing species takes on the following form:

dNi

dt
= Ni

(
bi + Σm

j=1 aijNj

)
. (11)

A non-trivial equilibrium point (N̄1, N̄2, ..., N̄m) is the solution
of the system of m algebraic equations

bi + Σm
j=1 aijNj = 0, i = 1, 2, ...,m. (12)
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I The predator-prey model has been extended independently by

Lotka and Volterra already in the early thirties. The

generalized version describes two or more coexisting species

competing for food (or prey).

dNi

dt
= riNi

(
1− Ni

Ki
− Σm

j=1αij
Nj

Ki

)
(13)

I Here Ni is the population density of i-th species, ri is the

growth rate of i-th species when the numbers Ni are relatively

low; Ki denote the carrying capacity of i-th species, and αij is

the linear reduction of the i-th species due to the negative

influence of the j-th species.
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I The model with two competing species was checked

experimentally in early seventies M.E. Gilpin and F.J. Ayala,

PNAS, 70 (12), pp. 3590-3593 (1973) on two different

populations of Drosophila flies evolving in a closed

environment with limited resources: Drosophila Willistoni and

Drosophila pseudoobscura.

I The experimental results are visualized in the figure 23
in the form of vectors representing time derivatives[

dNP

dt
,
dNW

dt

]
.

In many places those vectors are not horizontal close to
the isoclines; which is far from being satisfactory.
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The phase portrait of Lotka-Volterra system with two competing

species. The isoclines, dNW /dt = 0 and dNP/dt = 0 separate

regions with positive and negative growth for NW and NP .
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In their 1973 paper Gilpin and Ayala proposed two alternative
modifications of the classical Lotka-Volterra system, which in
the two-component case introduce only one extra parameter
to the model.

(A)
dNi

dt
= riNi

(
1−

(
Ni

Ki

)θi

− Σm
j=1αij

Ni

Ki

)
. (14)

(B)
dNi

dt
= riNi

(
1− Ni

Ki
− Σm

j=1αij
Ni

Ki
− βi

N2
i

Ki

)
. (15)

Both models reduce to the classical model when θi = 1 in
the model (A), or when βi = 0 in the model (B)
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I The comparison between the two generalizations (A) and (B)

leads to the conclusion in favor of system (A), although both

led to the agreement with the experiment within 95% to 99%

accuracy, including the vectors in the vicinity of the isoclines.

I The non-vanishing parameter β in the model (B) supposes

the existence of a social cooperation, which seems to be

absent in the case of Drosophila. On the other hand,

introducing the extra parameter θi in the (A) model gives the

possibility to break the symmetry imposed in its absence in

the two competeng species model, where the stability is

achieved at equal numbers N̄i = K
2 , i = 1, 2.
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In human populations interaction between two competing groups

or communities can be described by Lotka-Volterra system with

extra term corresponding to an incoming (or outcoming)

population flux. A yearly balance of two populations whose initial

numbers at the time t1 are N1 and N2, after a year (t → t + ∆t)

changes by:

∆N1 = ∆s1 + α1N1 + β1 N1N2,

∆N2 = ∆s2 + α2N1 + β2 N1N2,

The coefficients β take into account the phenomenon of conversion,

when the encounter with individuals of the second species

transforms the members of one population into members of the

other one. The increments ∆s1 and ∆s1 take into account
the incoming or outcoming populations of both kinds.
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I Continous limit gives the following differential system:

dN1

dt
= s1 + N1 (α1 + β1N2) ,

dN2

dt
= s2 + N2 (α2 + β2N1) ,

I It is easy to see that even when initially one has N1/N2 ≤ 0.05

(less than five per cent), but if s1 ≤ 0 and s2 > 0, and if at the

same time β1 < 0 while β2 > 0, in a finite time (and usually

more rapidly that one can imagine) the population 2 will

become dominant, and finally will replace the population 1 .

Examples abound, also in recent history.
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I The problem of stability of solutions is very important.
Levontin (1969) and May (1974) noted that
Lotka-Volterra systems whose interaction matrix aij is
antisymmetric are structurally unstable.
In a paper published in 1977 B.S. Goh analyzed global
stability of general Lotka-Volterra systems.

I By definition, the equilibrium is feasible if N̄i > 0 for all
i = 1, 2, ...,m.
However, even if such an equilibrium is stable, it does
not mean that stability will be observed in the more or
less remote vicinity.
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I An example of local stability combined with global
instability: Let N1 be the total predator number, N2 the
total number of prey.

dN1

dt
= N1 (−11 + N1 + N2)

dN2

dt
= N2 (5.6− 0.6N1 − 0.5N2) (16)

I We find easily the non-trivial stationary solution:

N̄1 = 1, N̄2 = 10. (17)

DIFFERENTIAL STOCHASTIC APPROACH TO HOMEOSTASIS



Dedication Introduction Lotka-Volterra Immunity Homeostasis

I An example of local stability combined with global
instability: Let N1 be the total predator number, N2 the
total number of prey.

dN1

dt
= N1 (−11 + N1 + N2)

dN2

dt
= N2 (5.6− 0.6N1 − 0.5N2) (16)

I We find easily the non-trivial stationary solution:

N̄1 = 1, N̄2 = 10. (17)

DIFFERENTIAL STOCHASTIC APPROACH TO HOMEOSTASIS



Dedication Introduction Lotka-Volterra Immunity Homeostasis

In order to check the stability of this solution against small
perturbations one should find the eigenvalues of the
following matrix:

N̄iaij

(no summation over i ). In the example cited here we have

aij =

(
1 1
−0.6 −0.5

)
,

so that

N̄iaij =

(
1 1
−6 −5

)
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I The eigenvalues are

−2±
√

3.

Both are negative, therefore the point 1, 10 is stable.
However, the initial conditions

N̄1 = 3, N̄2 = 11

lead to divergent solution (∞, 0).

I This example provides a plausible description of how a pest

population which feeds on a plant species and whose

population density is normally at low level, could sustain a

population explosion when a burst of good weather shifts

initial conditions.
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Graphical analysis of two species competition have given rise to a

general expectation that in all Lotka-Volterra models of

competition, local stability implies global stability in the feasible

region. However, the following example puts an end to this illusion.

dN1

dt
= N1 (2− 0.8N1 − 0.7N2 − 0.5N3) ,

dN2

dt
= N2 (2.1− 0.2N1 − 0.9N2 − N3) ,

dN3

dt
= N3 (1.5− N1 − 0.3N2 − 0.2N3) ,

The non-trivial equilibrium solution is found at(
N̄1, N̄2, N̄3

)
= (1, 1, 1).
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I The above stationary solution(
N̄1, N̄2, N̄3

)
= (1, 1, 1).

is stable because the eigenvalues of the matrix (N̄i aij are
approximatively

−1.88, −0.01± 0.29i .

I However, a computer simulation shows that starting
from the initial state(

N̄1, N̄2, N̄3

)
= (0.5, 1, 2).

the solution tends rapidly to a totally different situation,
with (

N̄1, N̄2, N̄3

)
= (0, 0, 7.5).
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I A theorem by B.S. Goh (1977) sheds more light on the
conditions under which global stability in Lotka-Volterra
systems can be achieved. It states what follows:

I If the non-trivial equilibrium(N̄1, N̄2, ...N̄m) of the
Lotka-Volterra system

d ~N

dt
= ~b + A ~N

is feasible, and if there exists a constant positive
diagonal matrix C such that CA+ATC is negative definite,
then the system is globally stable in the feasible region.
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Recently (2014) Nick Britton discussed a generalization of
the Lotka-Volterra model of competing species to the case
including sources with constant flux:

dNi

dt
= si + Ni

(
bi + Σm

j=1aijNj

)
, (18)

which reduces to the standard Lotka-Volterra system for
si = 0, i = 1, 2, ...,m.
Britton generalized Goh’s theorem for the case when si ≥ 0.
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In both cases the proof uses Lyapunov’s function. The matrix
C being equal to

C = diag(c1, c2, ..., cm),

Lyapunov’s function is given by

V = Σm
i=1 ci

[
Ni − N̄i − N̄i ln

Ni

N̄i

]
. (19)

For large values of Ni

N̄i
, the Lyapunov function is proportional

to the energy of the species stored in its biomass.
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I The model of immune reaction of living organisms we
present at first is due to D.S. Chernavsky and his
collaborators Yu.M. Romanovsky and N.V. Stepanova
(1973, 1975).

I Immunity reaction of living creatures, when it is successful,

leads to a dynamical equilibrium that describes stationary

state of organisms defending themselves against external

agressions: bacteria, viruses, parasites, appearing in

mathematical model under a common name antigens or

pathogens.

I In organisms able to fight the intruder (“antigen”) by

producing antibodies, i.e. proteins able to neutralize the

antigen of a given type, cells can be divided into three

categories, which we shall denote by corresponding symbols

X , Y and Z .
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Transformations of cells under antigen’s influence: after first

encounter, “precursor calls” X transform into antibody producing

cells Y ; after second encounter, the Y cells are transformed into Z

cells, more intensely productive, but not proliferating.
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I The simplified scenario of organism’s reaction to
antigens (G) is thus as follows:
- The cells X are “precursors”; they circulate in organism’s

lymphatic system, and after some time, if they do not

encounter antigen, die and are removed.

I - The X cells that come into contact with antigen are

transformed into a new type of cell Y , which start to produce

antibodies and multiply by division at the same time. The Y

cells live very long, comparably to the lifetime of the organism

itself.

I - The Y cells transform themselves into Z cells after a second

contact with antigen. The Z cells produce antibodies more

massively, but cannot divide anymore, because they are

deprived of nucleus.
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Here is the set of dynamical equations regulating the
numbers of cells of the three types, X , Y and Z :

dX

dt
= ν − kx X − αx XG ;

dY

dt
= αx XG + f (G ) Y − αy YG − ky Y ;

dZ

dt
= αy YG − kz Z ;

here f (G ) = mG
K+G , where 1

m is the average time of
reproduction of cells of Y type when the antigen supply
becomes very high.
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In order to close the system we have to add two extra
equations for variations of antigens and antibodies:

dG

dt
= β0 G − kg G − lg (AG )n;

dA

dt
= hy Y + hz Z − ka A− la (AG )n.

In most cases it is enough to assume that n = 1.
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The response of the organism attacked by pathogens. Continuous

lines: first reaction, Hatched lines: second reaction, with acquired

immunity.
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I Homeostasis corresponds to a dynamical equilibrium that

describes stationary states of organisms. French physiologist

Claude Bernard was first to describe the concept in 1865. The

word “homeostasis” was introduced by W.B. Cannon in 1926.

I Homeostasis is the property of a system within an organism in

which a variable, such as the concentration of a substance in

solution, is actively regulated to remain very nearly constant.

I Examples of homeostasis include the regulation of body

temperature or the concentrations of various ions, as well as

that of glucose in the blood plasma, despite changes in the

environment. Each of these variables is controlled by a

separate regulator or homeostatic mechanism, which,

together, maintain life.
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The model of homeostasis presented here is due to
V.I. Yukalov, D. Sornette, E.P. Yukalova, J-Y. Henry and J.P.

Cobb,

arXiv : 0907.4628v1 [physics.bio-ph] (2009)
.

It extends the previous model so as to include the numbers
of immune cells of two types, naturally immune and with
acquired immunity, infected cells, and dead cells.
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Non-linear equations governing cell population.

I A living organism can be regarded upon as a
self-consistent system of cells subjected to an external
pathogen flux.

I Let us introduce five types of cells:
- The healthy cells,
- The ill cells,
- Innate immune cells,
- Specific immune cells,
- Pathogens.
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I Their respective numbers will be denoted by

N1, N2, N3, N4 N5.

I The evolution equations should take into account the
natural life rate of each species, the interaction intensity
which defines the influence one of the species exerts on
another one, and finally the influx rate, which here
concerns mostly the pathogen cells invading the
organism from the exterior.
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I The general form of the evolution system is as follows:

dNi

dt
= RiNi +

∑
j

RijNiNj + Fi .

Here t is time, Ri is the life rate, Rij the interaction
intensity and Fi the influx.

I The quantities Ri and Rij are treated as parameters,
whether the influx Fi contains the external influx as well
as the internal one, coming from cells in the organism
itself. The latter part of the influx is usually a function
of Nj with j 6= i .

DIFFERENTIAL STOCHASTIC APPROACH TO HOMEOSTASIS



Dedication Introduction Lotka-Volterra Immunity Homeostasis

I The general form of the evolution system is as follows:

dNi

dt
= RiNi +

∑
j

RijNiNj + Fi .

Here t is time, Ri is the life rate, Rij the interaction
intensity and Fi the influx.

I The quantities Ri and Rij are treated as parameters,
whether the influx Fi contains the external influx as well
as the internal one, coming from cells in the organism
itself. The latter part of the influx is usually a function
of Nj with j 6= i .

DIFFERENTIAL STOCHASTIC APPROACH TO HOMEOSTASIS



Dedication Introduction Lotka-Volterra Immunity Homeostasis

I In order to avoid inconsistency, we should assume that
the influx terms cannot be more than quadratic
functions of the Ni , as were the interaction terms. Also,
if there is a non-zero term Rij , then there should be, as a
reaction to it, the conjugate term Rji , although in
general Rij 6= Rji .

I Let us consider the living organism as a collection of N1

healthy cells, N2 ill cells, N3 innate immune cells, N4

specific immune celles, and N5 pathogens.
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1) Healthy cells are characterized by a natural reproduction
rate R1 = A1. The carrying capacity is limited, due to the
finite size of the organism, by the negative coefficient
R11 = −A11, A11 > 0. We suppose that ill cells do not
interact with the healthy ones, hence R12 = 0.
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2) Ill cells have their natural reproduction rate R2 = −A2, with
A2 > 0. They can also exhibit unnatural proliferation when A2 <,
which happens when there is a cancer developing. Healthy cells do
not usually interact with ill cells, therefore we shall set R12 = 0.

Ill cells are usually of one or two orders of magnitude less

numerous than the healthy ones, hence we shall set R22 = 0. Ill

cells are killed and eliminated by immune cells, therefore we shall

set R23 = −A23 and R24 = −A24, with A23 > 0 and A24 > 0.
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The degradation of ill cells is increased under the influence
of pathogens, as the latter catalyze the immune system,
therefore R25 = −A25.
Finally, the number of ill cells rises as the pathogen infect
the healthy cells, so we set F2 = A51N5N1.
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I 3) Innate immune cells die by apoptosis, like the healthy cells,

with a rate R3 = −A3. They can be promoted by healthy cells,

so R31 = A31, or activated by ill cells, so R32 = A32. The

carrying capacity of immune cells is much larger than that of

healthy cells, so we may set R33 = 0.

I Innate immune cells are activated by specific immune cells,

therefore R34 = A34, and by the pathogens as well, so

R35 = A35. There is no external flux from the outside of the

organism, so that F3 = 0.
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4) Specific immune cells also have a finite lifetime,
characterized by their apoptosis rate R4 = −A4.
They can be promoted by healthy cells, so we set R41 = A41,
or activated by ill cells, R42 = A42. Innate immune cells
inhibit an excessive amount of specific immune cells,
therefore R43 = −A43. As in the case of innate immune cells,
there is no carrying capacity limitation, so R44 = 0.
Pathogens activate specific immune cells, hence R45 = A45.
And there is no external flux, so F4 = 0.
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5) Pathogens are characterized by a natural decay rate
R5 = −A5. Their number does not depend on the number of
healthy cells, so R51 = 0. Pathogens proliferate by lysis of ill
cells, therefore R52 = A52. They are killed and eliminated by
innate as well as by the specific immune cells, so we have
R53 = −A53.
The number of pathogens can be of an order or of several
orders larger than the number of that of the healthy cells.
Therefore there is practically no carrying capacity limitation
for them, i.e. we can set R55 = 0.
Contrary to all other cells, the external flux is not zero, so
F5 = F . Here we suppose that the exterior pathogen flux is
constant.
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Taking into account all these assumtions leads to the
following differential system:

dN1

dt
= A1 N1 − A11 N

2
1 − A13 N1N3 − A14 N1N4 − A15 N1N5 ,

dN2

dt
= A2 N2 − A23 N2N3 − A24 N2N4 − A25 N2N5 − A51 N5N1 ,

dN3

dt
= A3 N3 − A31 N3N1 − A32 N3N2 − A34 N3N4 − A35 N3N5 ,

dN4

dt
= A4 N4 − A41 N4N1 − A42 N4N2 − A43 N4N3 − A45 N4N5 ,

dN5

dt
= A5 N5 − A52 N5N2 − A53 N5N3 − A54 N5N4 + F .
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The numbers in the above equations are very great, so we
should turn to relative concentrations, or probabilities of
encounter of a given cell state among all cells. Usually the
number of healthy cells is about N1 ' 1013, and the number
of pathogens can be even greater, close to N5 ' 1014. It is
natural to introduce the reduced variables:

xi =
Ni

N
, i = 1, 2, 3, 4, 5.

The sum of the xi is not necessarily normalized to 1, but are
of the same order of magnitude.
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It is also necessary to determine a time scale characteristic
of the system, and representing a typical duration of the
homeostasis processes. Let us call this typical scale τ . Then
we can define dimensionless decay rates

αi = Ai τ ;

and the dimensionless interaction parameters

αij = Aij N τ.

and finally, the dimensionless pathogen influx:

ϕ =
τ

N
F .
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dxk
dτ

= fk

f1 = α1x1 − α11x
2
1 − α13x1x3 − α14x1x4 − α15x1x5

f2 = α2x2 − α23x2x3 − α24x2x4 − α25x2x5 + α51x5x1

f3 = α3x3 + α31x3x1 + α32x3x2 + α34x3x4 − α35x3x5

f4 = α4x4 + α41x4x1 + α42x4x2 − α43x4x3 + α45x4x5

f5 = α5x5 + α52x5x2 − α53x5x3 − α54x5x4 + ϕ
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Simplifying assumptions

I In order to make this model operational, we must make
some simplifying assumptions. First of all, we shall take
for the normalizing constant N the capacity number of
healthy cells,

N =
A1

A11

I The characteristic temporal scale τ can be identified
with the characteristic time of healthy cells’
reproduction,

τ =
1

A1

With this choice of scaling parameters we have

α1 = 1, α11 = 1.
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Ill cells can either exhibit a natural decay, when α2 > 0, or
they can show a pathological proliferation, when alpha2 < 0.
Let us introduce the parameter β such that

β =
1− α2

2
, α2 = 1− 2β.

The value β = 0 corresponds to α2 = 1 > 0 , while β = 1
corresponds to α = −1 < 0
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I Next simplifying (but still quite realistic) assumptions
are:
1) The innate and specific immune cells have the same
apoptosis rate,

α3 = α4 = α,

and let us set also α5 = 1

I 2) Let also all interactions between healthy and immune
cells be of the same strength:

α13 = α31 = α14 = α41 = b
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I When b = 0 , immune cells do not attack healthy cells,
so there is no autoimmune deseases. Conversely, for
b > 0 , autoimmune disorders become possible. We shall
also assume that all other processes, except those
identified with b.

I α13 = α31 = α14 = α41 = b
are of the same order as α11 , so we can set

αij = 1, except for αij = b

I We are left now with only four parameters:

β b α, and ϕ
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The values of parameters β and b control the occurrence of a

chronic pathology or of an autoimmune disease. Varying these

parameters, we can reach four limiting cases:

1) No chronic pathology and no autoimmune disorder:

β = 0, b = 0.

) No chronic pathology, but presence of an autoimmune disorder:

β = 0, b = 1.

3) Chronic pathology but no autoimmune disorder:

β = 1, b = 0

4) Chronic pathology and autoimmune disorder:

β = 1, b = 1
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We can also define four stationary states characterized by
two “essential” variables, defined as follows:

x := x1 + x2,

the sum of the healthy and ill cells;

y = x3 + x4,

the sum representing the fraction of all immune cells, innate
and specific alike.
For any given values of the parameters β and b, four
stationary states characterized by the fixed points x∗ and y∗:
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A: Alive state: x > 0, y > 0,
when there are both self-immune cells and the specific immune
cells;
B: Boundary state: x > 0, y = 0.
when there are self-immune cells, but not innate immune cells;
C: Critical state: x = 0, y > 0.
when only immune cells can survive,
D: Dead state: x = 0, y = 0.
when there are neither self-cells nor specific imumune cells.
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I We can display the character of the stable points of the

non-linear system on the plane parametrized by the remaining

two free parameters, α and ϕ the first characterizing the

common apoptosis rate of innate and specific immune cells,

and the second defining the (dimensionless) pathogen flow.

I The four possibilities are found inside the domains
labeled with letters A, B C and D, and represented in
the following Figures.
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The phase portrait 1.

Figure: The phase portrait of the α− ϕ plane, with β = 0 and b = 0. No
chronic pathology and no autoimmune disorder present.
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The phase portrait 2.

Figure: The phase portrait of the α− ϕ plane, with β = 0 and b = 1.
Without chronic pathology, but with autoimmune disorder.
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The phase portrait 3.

Figure: The phase portrait of the α− ϕ plane, with β = 1 and b = 0.
Chronic pathology present, but no autoimmune disorder.
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The phase portrait 4.

Figure: The phase portrait of the α− ϕ plane for β = 1 and b = 1. Both
chronic pathology and immune disorder are present.
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