G.A.Bocharov, Yu.M.Nechepurenko, M.Yu.Khristichenko and
D.S.Grebennikov, Maximum response perturbation-based control of
virus infection model with time delays. Russ. J. Numer. Anal. Math.

Modeling, (2017).



Dynamic patterns of infectious diseases

tLethal infection

Chronic persistence

Pathogen load

Subclinical

t (time)

M.Yu.Khristichenko THE OPTIMAL DISTURBANCE APPROACH |mm 2 /20



The aim of the work and the plan of the talk

Aim of the work: Proposing a new method for constructing the
multi-modal impacts on the time-delay models of virus infections which is
based on the so called optimal disturbances.

The plan of the talk:
A model of LCMV infection

Steady states and linearized equations

Optimal disturbances

Results of numerical experiments
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Model of LCMV
A model of LCMV infection

V/(t) — concentration of viruses, E,(t) — population density of precursors, E.(t)
—population density of effectors, W (t) — the cumulative viral load.

virus growth

ion of viruses

gvin = pvio (1- 7)) - Sweelovi,
maintenance of precursor increase in the number of precursors
GE() = g B~ E(1) +Bogp(W)V(E— DBt
cell death
—aapV(t —Ta) V(L) Ep(t),
appearance of effectors
TE() = hugl WVt DBt D
cell death and natural death
~GaV{t — T)V(DE(D) — az, Ex(0),
increase in viral antigen  decrease of inhibitory effect
Twiw) = BaVE - aw®

where g,(W) = 1/(1+ W/0,)%, ge(W) =1/(1+ W/0¢)*.
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Optimal disturbances for delayed systems @Il EINCIEETTZET IS

Steady states and linearized equations
Let us denote the vector of system variables as

U(t) = (V(t), Ep(t), Ee(t), W(£)T
and express this system in the following compact form:

du
dt
U(t) is given for —t4 < t < 0.
Steady state U = U for system (1) can be computed from: F(U, U, U) =0
Representing arbitrary solution near the steady state as
U(t) = U+ eU'(t) + O(?)
we obtain the following system of linear differential equations for U’(t):

F(U(t),U(t—1),U(t —Ta)),Ta>T (1)

dU’(t)

o = LoU'(t) + LU (t — 1) + L, ,U'(t — TA) (2)
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Optimal disturbances for delayed systems @Il EINCIEETTZET IS

Optimal disturbances

1/2
t
Family of local norms at time t: ||[U|p:= | [ [|DU'(&)|I3 dE)

t—Ta
A solution U’(t) = Uy (t) of the linearized system providing the maximum
amplification of ||[U’||p,+ will be referred to as the optimal disturbance. The
optimal disturbance gives the maximum of
1U" |,

max ;————
20 [[U'][p,0

Where U’ € Q, and Q is the given subspace: Q C {q: [~Ta,0] — R*}
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[0-1310, ENC IS ITEET ISR I BV BEVE S . Computation of optimal disturbances

Computation of optimal disturbances

We can find optimal disturbances in three steps:

e Compute the maximum amplification

U/
. 1U'].
ueQu’#0 ||U'||p,o
e Find
topt = Minarg max I'(t)
t>
e Find

U711, tope

Ul €a .
opt rgU’GQU'#O HU'HDQ
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Using of optimal disturbance

We will use optimal disturbances for perturbing the stable steady states of
the original non-linear model:
du
o = FU@), Ut —m), Ut —2)),t >0
U(t) = U+ eU,(t),—12 < t <0
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Results of numerical experiments [LGRIEIREIITES

Subsapce Q of basis functions for V, W

U — 0,—talt<ty
exp(B(t—to)) = 1,60 <t <0

0 —TA ~7a/2 0
B=—1to=—Ta B=1to=—7a

1 L/I l I JI

I T 1 I 1 1

—TA —Tp/2 0 —TA ~7A/2 0

B=—1tg=—Ta/2 B=1,tg=—1a/2
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Initial values
Subsapce Q of basis functions for E,, E.

;o 0,—a<t<t
exp(B(t—to)),to <t <0

I - — }
—TA ~7a/2 0 —T4A ~7a/2 0
B:—l,to——TA ﬁ:].,t():—TA
1 1\\ | I 1‘/1
r T B | I T 1
—TA —Ta/2 0 —T4 ) 0
B:—l, to:—TA/2 [3:]_, tOZ_TA/z
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[RESTCR T TR RGO EO Sl Low level of viral load

Low level of viral load. Traditional treatment

scenario.

A B
Fig. 1: The initial values (A) and the result of integration (B) for ¢ = —0.45
% E, E. W
Steady state 11.5 1.01-10% | 8.9-10° 104
Minimum [ 3.46-10 ™ 10° 3.9-10° [ 9.09-10°
Maximum 334.7 1.1-108% | 1.73-10° 1.1-103
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[RESTCR T TR RGO EO Sl Low level of viral load

Low level of viral load. Treatment via exacerbation.

: 4T :
: B — v .
A B
Fig. 2: The initial values (A) and the result of integration (B) for ¢ = 0.45
% E, E. W
Steady state 11.5 1.01-10% | 8.9-10° 104

Minimum | 4.85-1073% | 9.5.10° | 6.5-10% | 6.15-10° %
Maximum 1.05-103 | 1.17-10° | 2.39-.10° | 2.37-103
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Results of numerical experiments EIEGNEVERSRVIENIEL]

High level of viral load. Traditional treatment scenario.

T T : ‘:::
A B
Fig. 3: The initial values (A) and the result of integration (B) for ¢ = 0.5371
% E, E. W
Steady state | 1.35-10° 103 5.95-10% [ 1.23-10°
Minimum 21.18 656.9 81.7 | 1.27-10*
Maximum | 1.55-10° | 1.06 - 10% | 6.18-10* | 2.18 - 10°
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Results of numerical experiments EIEGNEVERSRVIENIEL]

High level of viral load. Treatment via exacerbation.

uuuuuuuuuuuuuuuuuu

uuuuuuuuuuuuuuuuuu

A B
Fig. 4: The initial values (A) and the result of integration (B) for ¢ = —20
Vv E, E. W
Steady state | 1.35-10° 103 5.95-10% | 1.23-10°
Minimum 23.38 103 108.9 | 6.93-10%
Maximum 5.34-10° | 3.06 - 10* | 2.38-10° | 1.32-10°
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Results of numerical experiments EIEGNEVERSRVIENIEL]

Other basis functions
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Results of numerical experiments EIEGNEVERSRVIENIEL]

Conclusions

e The concept of optimal disturbances for time delay systems is proposed

e The possibility of multi-component treatment of infectious diseases in
chronic phase with the help of optimal disturbances was shown
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Results of numerical experiments EIEGNEVERSRVIENIEL]
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M.Yu.Khristichenko THE OPTIMAL DISTURBANCE APPROACH | I 17 / 20



Thank you for your attention!



RESTCR I TR RGO EN Sl Numerical algorithm

In the present work we use implicit scheme of the second order BDF2 on
the uniform grid t, = k& built in interval (—t4, 00) with step & > 0,
m = [T/é],mA = [TA/&,

15Uk —2U;_ 1+ 05U, >
1)
Where U, = U(ty). Let us write equation in the form:

U = QU1 + QU2 + CrUk—m + Cpy Uk—m,

= LoUk + LeUpm + Loy Ukompy k = 1,2, ...

It can be written in the form:

Xy = MX,_1, k=1,2,...

where
G G 0 0 Cn O 0 Cnm,
Uy I 0 O 0 0 O 0 o0
X, = : . M= 0 I o0 0 0 O 0 o0
Uk—mu+1 : o : : : S :
o 0 0 ... 00 O .. 1T o0
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RESTCR I TR RGO EN Sl Numerical algorithm

Grid analogue of norm:

1/2

ty

1V llp,e = ( J ||DU’(E)H§d5) ~ [1HXkll2y  H=1Tm, © D
tk—TA

Grid analogue of T'(t):

I, = max |HM*Xo|[2 = |HM*H Q||
Xo€Span(Q),|| HXo||2=1

Let kopt be the value of k, at which the maximum of T is reached:

kopt = minarg max T
op gkzO k

Computing the normalized right singular vector n of HMkert H1Q),

corresponding to its largest singular value. According to:
[HM 2t H Qn[|2 = Ty [l = 1

Therefore XgP* = H™! @n
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