THE OPTIMAL DISTURBANCE APPROACH TO CONTROL OF VIRUS INFECTION MODEL WITH TIME-DELAYS

G.A.Bocharov, Yu.M.Nechepurenko, M.Yu.Khristichenko and D.S.Grebennikov, Maximum response perturbation-based control of virus infection model with time delays. *Russ. J. Numer. Anal. Math. Modeling, (2017).*

Dynamic patterns of infectious diseases

The aim of the work and the plan of the talk

<u>Aim of the work</u>: Proposing a new method for constructing the multi-modal impacts on the time-delay models of virus infections which is based on the so called optimal disturbances.

The plan of the talk:

- A model of LCMV infection
- Steady states and linearized equations
- Optimal disturbances
- Results of numerical experiments

A model of LCMV infection

V(t) — concentration of viruses, $E_p(t)$ — population density of precursors, $E_e(t)$ —population density of effectors, W(t) — the cumulative viral load.

$$\frac{d}{dt}V(t) = \overbrace{\beta V(t) \left(1 - \frac{V(t)}{V_{mvc}}\right)}^{virus\ growth} - \overbrace{\gamma_{VE}E_e(t)V(t)}^{elimination\ of\ viruses},$$

$$\frac{d}{dt}E_p(t) = \overbrace{\alpha_{E_p}(E_p^0 - E_p(t))}^{cell\ death} + \overbrace{\beta_p g_p(W)V(t-\tau)E_p(t-\tau)}^{cell\ death}$$

$$- \overbrace{\alpha_{AP}V(t-\tau_A)V(t)E_p(t)}^{elimination\ of\ viruses},$$

$$\frac{d}{dt}E_e(t) = \overbrace{b_d g_e(W)V(t-\tau)E_p(t-\tau)}^{cell\ death\ and\ natural\ death}$$

$$- \overbrace{\alpha_{AE}V(t-\tau_A)V(t)E_e(t) - \alpha_{E_e}E_e(t)}^{elimination\ of\ viruses},$$

$$\frac{d}{dt}W(t) = \overbrace{b_WV(t)}^{elimination\ of\ viruses}^{elimination\ of\ viruses}$$

where $g_p(W) = 1/(1 + W/\theta_p)^2$, $g_e(W) = 1/(1 + W/\theta_E)^2$.

Steady states and linearized equations

Let us denote the vector of system variables as

$$U(t) = (V(t), E_p(t), E_e(t), W(t))^T$$

and express this system in the following compact form:

$$\frac{dU}{dt} = F(U(t), U(t-\tau), U(t-\tau_A)), \tau_A \ge \tau \tag{1}$$

U(t) is given for $-\tau_A \le t \le 0$.

Steady state $U = \overline{U}$ for system (1) can be computed from: $F(\overline{U}, \overline{U}, \overline{U}) = 0$ Representing arbitrary solution near the steady state as

$$U(t) = \overline{U} + \varepsilon U'(t) + O(\varepsilon^2)$$

we obtain the following system of linear differential equations for U'(t):

$$\frac{dU'(t)}{dt} = L_0 U'(t) + L_{\tau} U'(t - \tau) + L_{\tau_A} U'(t - \tau_A)$$
 (2)

Optimal disturbances

Family of local norms at time
$$t$$
: $\|U'\|_{D,t} = \left(\int\limits_{t-\tau_A}^t \|DU'(\xi)\|_2^2 d\xi\right)^{1/2}$

A solution $U'(t) = U'_{opt}(t)$ of the linearized system providing the maximum amplification of $\|U'\|_{D,t}$ will be referred to as the optimal disturbance. The optimal disturbance gives the maximum of

$$\max_{t \ge 0} \frac{\|U'\|_{D,t}}{\|U'\|_{D,0}}$$

Where $U' \in \mathcal{Q}$, and \mathcal{Q} is the given subspace: $\mathcal{Q} \subset \{q : [-\tau_A, 0] \to \mathbb{R}^4\}$

Computation of optimal disturbances

We can find optimal disturbances in three steps:

• Compute the maximum amplification

$$\Gamma(t) = \max_{U' \in Q, U' \neq 0} \frac{\|U'\|_{D,t}}{\|U'\|_{D,0}}$$

Find

$$t_{opt} = \min \arg \max_{t > 0} \Gamma(t)$$

Find

$$U'_{opt} \in \arg\max_{U' \in Q, U' \neq 0} \frac{\|U'\|_{D, t_{opt}}}{\|U'\|_{D, 0}}.$$

Using of optimal disturbance

We will use optimal disturbances for perturbing the stable steady states of the original non-linear model:

$$\begin{aligned} &\frac{dU}{dt} = F(U(t), U(t-\tau_1), U(t-\tau_2)), t > 0\\ &U(t) = \overline{U} + \varepsilon U'_{opt}(t), -\tau_2 \le t \le 0 \end{aligned}$$

Subsapce Q of basis functions for V, W

$$U' = \begin{cases} 0, -\tau_A \le t < t_0 \\ \exp(\beta(t - t_0)) - 1, t_0 \le t \le 0 \end{cases}$$

Subsapce Q of basis functions for E_p , E_e

$$U' = \begin{cases} 0, -\tau_{A} \le t < t_{0} \\ \exp(\beta(t - t_{0})), t_{0} \le t \le 0 \end{cases}$$

Low level of viral load. Traditional treatment scenario.

Fig. 1: The initial values (A) and the result of integration (B) for $\varepsilon = -0.45$

	V	E_p	E _e	W
Steady state	11.5	$1.01 \cdot 10^{6}$	$8.9 \cdot 10^{5}$	104
Minimum	$3.46 \cdot 10^{-14}$	10 ⁶	$3.9 \cdot 10^{5}$	$9.09 \cdot 10^{-5}$
Maximum	334.7	$1.1 \cdot 10^{6}$	$1.73 \cdot 10^{6}$	$1.1 \cdot 10^{3}$

Low level of viral load. Treatment via exacerbation.

Fig. 2: The initial values (A) and the result of integration (B) for $\epsilon=0.45$

	V	E_p	E _e	W
Steady state	11.5	$1.01 \cdot 10^{6}$	$8.9 \cdot 10^{5}$	104
Minimum	$4.85 \cdot 10^{-36}$	$9.5 \cdot 10^{5}$	$6.5 \cdot 10^4$	$6.15 \cdot 10^{-8}$
Maximum	$1.05 \cdot 10^{3}$	$1.17 \cdot 10^{6}$	$2.39 \cdot 10^{6}$	$2.37 \cdot 10^3$

High level of viral load. Traditional treatment scenario.

Fig. 3: The initial values (A) and the result of integration (B) for $\epsilon=0.5371$

	V	$ E_{p} $	$ E_e $	W	
Steady state	$1.35 \cdot 10^{5}$	10 ³	$5.95 \cdot 10^4$	$1.23 \cdot 10^{6}$	
Minimum	21.18	656.9	81.7	$1.27 \cdot 10^4$	
Maximum	$1.55 \cdot 10^{5}$	$1.06 \cdot 10^{3}$	$6.18 \cdot 10^4$	$2.18 \cdot 10^{6}$	

High level of viral load. Treatment via exacerbation.

Fig. 4: The initial values (A) and the result of integration (B) for $\epsilon=-20$

	V	E_p	E _e	W
Steady state	$1.35 \cdot 10^{5}$	10^{3}	$5.95 \cdot 10^4$	$1.23 \cdot 10^{6}$
Minimum	23.38	10^{3}	108.9	$6.93 \cdot 10^3$
Maximum	$5.34 \cdot 10^{5}$	$3.06 \cdot 10^4$	$2.38 \cdot 10^{6}$	$1.32 \cdot 10^{6}$

Other basis functions

Conclusions

- The concept of optimal disturbances for time delay systems is proposed
- The possibility of multi-component treatment of infectious diseases in chronic phase with the help of optimal disturbances was shown

This work was supported by the Russian Foundation for Basic Research (Grant 16-01-00572) 'Design of advanced numerical methods for stability analysis of time-delay systems' (the development and implementation of numerical methods) and the Russian Science Foundation (Grant 15-11-00029) 'Mathematical approaches to integrate the multiscale regulation of the 'virus-host organism' system dynamics during infectious diseases for the prediction of multi-modal treatments' (the numerical experiments and biological interpretation of the results).

Thank you for your attention!

In the present work we use implicit scheme of the second order BDF2 on the uniform grid $t_k = k\delta$ built in interval $(-\tau_A, \infty)$ with step $\delta > 0$, $m = [\tau/\delta], m_A = [\tau_A/\delta],$

$$\frac{1.5U_k - 2U_{k-1} + 0.5U_{k-2}}{\delta} = L_0U_k + L_{\tau}U_{k-m} + L_{\tau_A}U_{k-m_A}, k = 1, 2, \dots$$

Where $U_k = U(t_k)$. Let us write equation in the form:

$$U_k = C_1 U_{k-1} + C_2 U_{k-2} + C_m U_{k-m} + C_{m_A} U_{k-m_A}$$

It can be written in the form:

$$X_k = MX_{k-1}, \quad k = 1, 2, \dots$$

where

$$X_{k} = \begin{pmatrix} U_{k} \\ \vdots \\ U_{k-m_{A}+1} \end{pmatrix}, \quad M = \begin{pmatrix} C_{1} & C_{2} & 0 & \dots & 0 & C_{m} & 0 & \dots & 0 & C_{m_{A}} \\ I & 0 & 0 & \dots & 0 & 0 & 0 & \dots & 0 & 0 \\ 0 & I & 0 & \dots & 0 & 0 & 0 & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & 0 & 0 & 0 & \dots & I & 0 \end{pmatrix}$$

Grid analogue of norm:

$$\|U'\|_{D,t_k} = \left(\int_{t_k - \tau_A}^{t_k} \|DU'(\xi)\|_2^2 d\xi\right)^{1/2} \sim \|HX_k\|_2, \quad H = I_{m_A} \otimes D$$
Grid analogue of $\Gamma(t)$:

 $\Gamma_k = \max_{X_0 \in \text{span}(Q), ||HX_0||_2 = 1} ||HM^k X_0||_2 = ||HM^k H^{-1} \widetilde{Q}||_2$

Let k_{opt} be the value of k, at which the maximum of Γ_k is reached:

$$k_{opt} = \min \arg \max_{k \geq 0} \Gamma_k$$

Computing the normalized right singular vector η of $HM^{k_{opt}}H^{-1}Q$, corresponding to its largest singular value. According to:

$$\|HM^{k_{opt}}H^{-1}\widetilde{Q}\eta\|_{2} = \Gamma_{k_{opt}}, \|\eta\|_{2} = 1$$

Therefore $X_0^{opt} = H^{-1}\widetilde{Q}\eta$