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First stages of photosynthesis —
quantum thermodynamic machine
(nonequilibrium quantum system with thermodynamic cycles).

Thermodynamic cycle:

– Absorption of photons and generation of excitons

– Transport of excitons to the reaction center

– Absorption of excitons



Two observations:
1) Transport of excitons is more effective than expected
(by one order of magnitude),
2) Photonic echo is observed for excitons, Coherencies for excitons
decay slower than expected (by one order of magnitude)
— the effect of quantum photosynthesis.
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Different mechanisms were proposed for quantum photosynthesis:
vibrones, supertransport, corrections to quantum Markov models,
holographic approach.

We discuss the second approach
(supertransport and superabsorption).
Can quantum coherences be observed in quantum thermodynamic
machine performing supertransport?

Degeneracy (many light harvesting antennas) —
Supertransport effect (quantum amplification of transport).

Leaks in the quantum thermodynamic machine —
quantum states with long lifetime (dark states) —
the effect of quantum photosynthesis.

Manipulation of quantum states by Lindblad dissipative dynamics.
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Non decaying ”dark” states are widely discussed in quantum
optics, quantum memory, light stopping . . .
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How to obtain photonic echo in a degenerate model of quantum
photosynthesis using dark states:

S.V. Kozyrev, I.V. Volovich, Dark states in quantum
photosynthesis, arXiv:1603.07182 [physics.bio-ph]

I. V. Volovich and S. V. Kozyrev, Manipulation of States of a
Degenerate Quantum System, Proceedings of the Steklov Institute
of Mathematics 294, 241–251 (2016).



Dynamics of quantum open systems
Open system — system interacts with environment (the reservoir)

H = HS + HR + λHI .

Sum of Hamiltonians of the system, the reservoir and the
interaction Hamiltonian, λ is the coupling constant.
Dynamics of the reduced density matrix of the system
(average over degrees of freedom of the reservoir)

d

dt
ρ(t) = Θ(ρ(t)),

the Lindblad (or GKSL) generator Θ is a sum of several

θ(ρ) = −i [Heff , ρ] + LρL∗ − 1

2
{ρ, L∗L}.

Here [A,B] – commutator, {A,B} – anticommutator.



Dirac notations
H — Hilbert space with scalar product 〈·, ·〉.
Let x ∈ H. Then x = |x〉 is called Dirac notation (ket–vector).
〈y | for y ∈ H (bra–vector) is a functional acting as 〈y ||x〉 = 〈y , x〉.
|z〉〈y | is an operator acting as |z〉〈y ||x〉 = |z〉〈y , x〉.



Model of quantum photosynthesis:

One exciton approximation,

Degeneracy in the light-harvesting system,

Excitons in chromophores interact with three quantum fields
(photons, phonons, sink).

Interaction with photons and phonons —
non-parallel vectors of ”bright” states.

Generation of non-decaying ”dark” states.

Relation to experiments with photonic echo.
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Degenerate 3–level system interacting with three reservoirs



Hamiltonian of light-harvesting system

HS = ε0|0〉〈0|+ ε1|1〉〈1|+ ε2

N∑
j=2

|j〉〈j |.

ε0 < ε1 < ε2,
|0〉 — state without excitons,
|1〉 is a state ”exciton in the reaction center”,
|j〉 — one-exciton states of chromophores in the ”global” basis.

Transitions between the levels are related to Bose quantum fields
(reservoirs) with Hamiltonians

HR =

∫
R3

ωR(k)a∗R(k)aR(k)dk,

where R = em, ph, sink enumerate the reservoirs, ωR is the
dispersion of the Bose field aR .



States of reservoirs — Gaussian states, quadratic correlator

〈a∗R(k)aR(k ′)〉 = NR(k)δ(k − k ′).

Temperature state

NR(k) =
1

eβRωR(k) − 1
.

Different reservoirs — different temperatures, for instance
β−1em = 6000K , β−1ph = 300K , β−1sink depends on approximation (we
take 300K for computation of transfer rate for excitons and 0K for
the investigation of manipulation of quantum dark states).

The full Hamiltonian

H = HS + Hem + Hph + Hsink + λ (HI ,em + HI ,ph + HI ,sink) ,

λ is the coupling constant.
The Hilbert space

H = HS ⊗Hem ⊗Hph ⊗Hsink.



Interacting Hamiltonians: different dipole Hamiltonians
Light (creation–annihilation of excitons):

HI ,em = Aem|χ〉〈0|+ A∗em|0〉〈χ|, A∗em =

∫
R3

gem(k)a∗em(k)dk,

the bright photonic vector χ belongs to the level ε2,
gem(k) — form–factor of the field.

Phonons (transport of excitons to the reaction center):

HI ,ph = Aph|ψ〉〈1|+ A∗ph|1〉〈ψ|, A∗ph =

∫
R3

gph(k)a∗ph(k)dk,

the bright phononic vector ψ belongs to the level ε2.

χ and ψ are non-parallel.

Sink (absorption of excitons):

HI ,sink = Asink|1〉〈0|+A∗sink|0〉〈1|, A∗sink =

∫
R3

gsink(k)a∗sink(k)dk.



Dynamics — sum of three generators (for three reservoirs)

d

dt
ρ(t) = (θem + i [·,Heff ] + θph + θsink) (ρ(t)).

Different terms in the generator — different parts of the quantum
thermodynamic cycle for photosynthesis.
The stochastic limit approximation
L. Accardi, Lu Yun Gang, I. Volovich, Quantum theory and its
stochastic limit, Springer-Verlag, Berlin, 2002

Light (creation of excitons): generator in Lindblad form

Lem = θem + i [·,Heff ],

Heff = s(|χ〉〈0|+ |0〉〈χ|), s ∈ R.

Heff describes coherent (laser) field (Rabi oscillations).



Dissipative (Lindblad) part of the generator

θem(ρ) = ‖χ‖2
[

2γ−re,em

(
〈χ̃|ρ|χ̃〉|0〉〈0| − 1

2
{ρ, |χ̃〉〈χ̃|}

)
−

−iγ−im,em[ρ, |χ̃〉〈χ̃|]+

+2γ+re,em

(
〈0|ρ|0〉|χ̃〉〈χ̃| − 1

2
{ρ, |0〉〈0|}

)
+ iγ+im,em[ρ, |0〉〈0|]

]
.

γ are some constants
(called susceptibilities, depend on the states of the fields),
the normed bright photonic vector is given by

|χ̃〉 =
|χ〉
‖χ‖

.



Phonons (transport of excitons):

θph(ρ) = ‖ψ‖2
[

2γ−re,ph

(
〈ψ̃|ρ|ψ̃〉|1〉〈1| − 1

2
{ρ, |ψ̃〉〈ψ̃|}

)
−

−iγ−im,ph[ρ, |ψ̃〉〈ψ̃|]+

+2γ+re,ph

(
〈1|ρ|1〉|ψ̃〉〈ψ̃| − 1

2
{ρ, |1〉〈1|}

)
+ iγ+im,ph[ρ, |1〉〈1|]

]
.

The normed bright phononic vector |ψ̃〉 = |ψ〉/‖ψ‖.

Sink (absorption of excitons)

θsink(ρ) = 2γ−re,sink

(
〈1|ρ|1〉|0〉〈0| − 1

2
{ρ, |1〉〈1|}

)
−iγ−im,sink[ρ, |1〉〈1|]+

+2γ+re,sink

(
〈0|ρ|0〉|1〉〈1| − 1

2
{ρ, |0〉〈0|}

)
+ iγ+im,sink[ρ, |0〉〈0|].



The constants γ have the form (note that γ+re,R/γ
−
re,R = e−βRωR )

γ+re,R = π

∫
|gR(k)|2δ(ωR(k)− ωR)NR(k)dk,

γ−re,R = π

∫
|gR(k)|2δ(ωR(k)− ωR)(NR(k) + 1)dk,

γ+im,R = −
∫
|gR(k)|2 P.P. 1

ωR(k)− ωR
NR(k)dk,

γ−im,R = −
∫
|gR(k)|2 P.P. 1

ωR(k)− ωR
(NR(k) + 1)dk.

Here functions NR(k) describe thermal reservoirs

NR(k) =
1

eβRωR(k) − 1
,

R = em, ph, sink, β−1em = 6000K , β−1ph = β−1sink = 300K ,

ωem = ε2 − ε0, ωph = ε2 − ε1, ωsink = ε1 − ε0.



The temperatures for different reservoirs are different:
β−1em = 6000K , β−1ph = 300K , β−1sink = 300K .

Thus our model is an example of nonequilibrium quantum system.

Since there are thermodynamic cycles

(absorption of photons and creation of excitons –
transport of excitons to the reaction center –
absorption of excitons)

the model describes a quantum thermodynamic machine
(which transforms light to absorbed excitons).
The flow (transfer rate) of excitons describes the efficiency of this
machine. To improve the efficiency one has to increase the flow.

Let us discuss how this quantum thermodynamic machine works.



Flow for the case of parallel bright vectors
Let us denote α the angle between bright photonic and phononic
vectors |χ〉, |ψ〉. Let α = 0 (bright vectors are parallel).
Transport of excitons runs in the subspace of matrices

ρ = ρ00|0〉〈0|+ ρ11|1〉〈1|+ ρψψ|ψ̃〉〈ψ̃|.

The stationary state of dynamics from this subspace

d

dt
ρ(t) = (θem + θph + θsink) (ρ(t)) = 0.

(Nonequilibrium environment, no laser, parallel bright vectors).



Dynamics — relaxation to nonequilibrium Stationary state

ρψψ =
γ+re,emγ

+
re,ph‖χ‖

2‖ψ‖2 + γ+re,emγ
−
re,sink‖χ‖

2 + γ+re,phγ
+
re,sink‖ψ‖

2

∆
;

ρ11 =
γ+re,emγ

−
re,ph‖χ‖

2‖ψ‖2 + γ−re,emγ
+
re,sink‖χ‖

2 + γ−re,phγ
+
re,sink‖ψ‖

2

∆
;

ρ00 =
γ−re,emγ

+
re,ph‖χ‖

2‖ψ‖2 + γ−re,emγ
−
re,sink‖χ‖

2 + γ−re,phγ
−
re,sink‖ψ‖

2

∆
;

∆ =
(
γ+re,phγ

+
re,em + γ−re,phγ

+
re,em + γ+re,phγ

−
re,em

)
‖χ‖2‖ψ‖2+

+
(
γ+re,phγ

+
re,sink + γ−re,phγ

+
re,sink + γ−re,phγ

−
re,sink

)
‖ψ‖2+

+
(
γ+re,emγ

−
re,sink + γ−re,emγ

+
re,sink + γ−re,emγ

−
re,sink

)
‖χ‖2.



Transfer rate of excitons to sink is equal

F = 2γ−re,sinkρ11 − 2γ+re,sinkρ00.

For the stationary density matrix the flow reduces to

F =
2‖χ‖2‖ψ‖2γ−re,emγ

+
re,phγ

+
re,sink

∆

(
e(βph−βem)(ε2−ε0) − 1

)
.



1) Coefficient ‖χ‖2 in the numerator describes the effect of
superabsorption – coherent amplification of absorption (the inverse
effect to superradiance.
2) Coefficient ‖ψ‖2 describes the effect of supertransfer – coherent
amplification of transfer.
3) The numerator of expression for the flow contains the product
of three coefficients γ (related to each of three reservoirs), and the
denominator contains a linear combination of products of γ for
pairs of reservoirs. Thus the dependence of the flow on γre,R for
R = em, ph, sink has saturating form — for small γre,R

(corresponding to low intensity of the corresponding interaction, in
particular for R = em small γre,em corresponds to low intensity of
light) the dependence of the flow on γre,R will be linear and for
high γre,R this dependence will tend to constant.
4) When the state of environment tends to equilibrium, i.e.
βem → βph, the flow tends to zero. This corresponds to absence of
thermodynamic flows in equilibrium systems.



Flow for the case of non–parallel bright vectors
The flow of excitons (efficiency of the quantum thermodynamic
photosynthetic machine) will be proportional to

|〈ψ̃, χ̃〉|2 = cos2 α,

In the first approximation the flow for non–parallel case is given by
the flow for parallel case multiplied by cos2 α.
Hence for non–parallel |χ〉, |ψ〉 some parts of the quantum
thermodynamic machine (photonic and phononic generators) are
not well fit together and some quantum states will leak.

This leakage of quantum dark states can be discussed as origin of
quantum coherences observed in quantum photosynthesis.



Quantum photosynthesis – photonic echo in photosynthetic
systems.

We will discuss manipulations with quantum states which imitate
the experimental setup in Quantum photosynthesis — switch on
and off different generators in the sum

θem + i [·,Heff ] + θph + θsink.

Here the laser part of the generator i [·,Heff ] is important. We will
also use the approximation β−1sink = 0 — absorption of excitons in
the reaction center is irreversible.

Let us discuss properties of Lindblad generators for degenerate
systems.



Bright, dark and off-diagonal matrices: are defined for each
Lindblad generator. Generator θem (light):
Bright matrices — linear combinations

|0〉〈0|, |χ〉〈χ|.

Dark matrices B give zero when multiplied by any bright matrix A:

AB = BA = 0.

Off-diagonal matrices C are orthogonal to all bright A and dark B

tr(CA) = tr(CB) = 0.

Dark matrices for θem — linear combinations of

|φ〉〈φ′|, |1〉〈1|, |φ〉〈1|, |1〉〈φ|, φ⊥χ, φ′⊥χ.

Off-diagonal matrices for θem — linear combinations of

|χ〉〈0|, |χ〉〈φ|, |χ〉〈1|, |1〉〈0|, |φ〉〈0|, φ⊥χ

and conjugated.



Generator θph (phonons):
Bright matrices — linear combinations of

|1〉〈1|, |ψ〉〈ψ|.

Dark matrices — linear combinations of

|η〉〈η′|, |0〉〈0|, |η〉〈0|, |0〉〈η|, η⊥ψ, η′⊥ψ.

Off–diagonal matrices — linear combinations of

|ψ〉〈1|, |ψ〉〈η|, |ψ〉〈0|, |0〉〈1|, |η〉〈1|, η⊥ψ

and conjugated.

Space of all matrices is an orthogonal sum of dark, bright and
off–diagonal subspaces. Bright matrices — quantum transport;
dark matrices — stationary (no dynamics, no transport, no
dissipation, no decoherence); off–diagonal matrices — decoherence.
Bright and dark spaces for photons and phonons in our model are
different, this leads to excitation of quantum coherences.



Manipulations with quantum states and experiments on
quantum photosynthesis
Let us describe manipulations with quantum states in our model of
quantum photosynthesis which imitate the scheme of experiments
on photonic echo in quantum photosynthesis.

Manipulations by Lindblad dissipative dynamics in complex
quantum system.

1) Prepare a state by application of laser.
Excitations of quantum coherences.

2) Switch off the laser and make system relax.
Part of coherences are destroyed by decoherence,
and part will survive –
by the effect of dark states
(coherent population trapping,
decoherence free subspace).

3) Spectroscopy — apply the laser again and observe a response.



Manipulations with quantum states: step 1.
Switch on the light.
Initial state — no excitons

ρ0 = |0〉〈0|.

Apply dynamics given by the light generator Lem = θem + i [·,Heff ]
(switch off other generators, strong light approximation), get

ρ1 = ρ00|0〉〈0|+ ρχχ|χ̃〉〈χ̃|+ ρχ0|χ̃〉〈0|+ ρ0χ|0〉〈χ̃|,

ρ00 =
γ−re,em − s2

‖χ‖2Re
(

1
µχ0

)
γ+re,em + γ−re,em − 2 s2

‖χ‖2Re
(

1
µχ0

) ,
ρχχ =

γ+re,em − s2

‖χ‖2Re
(

1
µχ0

)
γ+re,em + γ−re,em − 2 s2

‖χ‖2Re
(

1
µχ0

) ,



ρχ0 =
is

‖χ‖µχ0
γ−re,em − γ+re,em

γ+re,em + γ−re,em − 2 s2

‖χ‖2Re
(

1
µχ0

) ,
ρ0χ = − is

‖χ‖µ0χ
γ−re,em − γ+re,em

γ+re,em + γ−re,em − 2 s2

‖χ‖2Re
(

1
µχ0

) ,
where

µχ0 = µ∗0χ = −γ−re,em − γ+re,em + iγ−im,em + iγ+im,em.

is (up to normalization) the eigenvalue for θem acting on the
off–diagonal matrix |χ〉〈0|:

θem(|χ〉〈0|) = ‖χ‖2µχ0|χ〉〈0|.



Manipulations with quantum states: step 2.
Switch off the light.
Apply to ρ1 (obtained at the previous step) the dynamics
generated by θph + θsink (transport and absorption, no light)

χ̃ = χ̃0 + χ̃1, χ̃0‖ψ̃, χ̃1⊥ψ̃, ‖χ̃0‖ = cosα, ‖χ̃1‖ = sinα,

|χ̃0〉 = 〈ψ̃, χ̃〉|ψ̃〉 = |ψ̃〉〈ψ̃||χ̃〉, |χ̃1〉 = (1− |ψ̃〉〈ψ̃|)|χ̃〉.

In dynamics survives only the part of ρ1 which is dark for the
phononic generator θph (here it is important β−1sink = 0 – absorption
of excitons is irreversible). Thus the dynamics of the density
matrix reduces to substitution |χ̃〉 7→ |χ̃1〉. In the limit t →∞ of
the dynamics

ρ2 = ρ00|0〉〈0|+ ρχχ|χ̃1〉〈χ̃1|+ ρχ0|χ̃1〉〈0|+ ρ0χ|0〉〈χ̃1|,

ρχχ, ρχ0, ρ0χ are as above (for ρ1) and

ρ00 = 1− ‖χ̃1‖2ρχχ.

This state in our model never decays (when there are no light).



Manipulations with quantum states: step 3.
Switch on the light again.
Spectroscopy: apply to ρ2 the dynamics generated by i [·,Heff ]
(ignore transport and absorption) and consider the dynamics of the
off-diagonal part of ρ2

ρχ0|χ̃1〉〈0|+ ρ0χ|0〉〈χ̃1|.

Contribution to this dynamics comes from χ̃2 — projection of χ̃1

to χ̃, equal to

|χ̃2〉 =
(

1− |〈ψ̃, χ̃〉|2
)
|χ̃〉 = sin2 α|χ̃〉

where α is the angle between bright photonic and phononic vectors
|χ〉, |ψ〉.



Non–trivial contribution to spectroscopy is given by

ρ3 = i [ρχ0|χ̃2〉〈0|+ ρ0χ|0〉〈χ̃2|,Heff ].

In the limit s →∞ (i.e. for strong laser fields) we get

lim
s→∞

ρ3 = −1

2
‖χ‖2π

∫
|gem(k)|2δ(ωem(k)− ε2 + ε0)dk

sin2 α (|0〉〈0| − |χ̃|〉〈χ̃|) .

We observe here matrices which photosynthetic quantum
thermodynamic machine was not able to transport.

Quantum photosynthesis is the effect of leakage of quantum
dark states in poorly developed quantum thermodynamic
machine.
Exciton transport (proportional to cos2 α) and photonic echo
(proportional to sin2 α) are competing phenomena

cos2 α + sin2 α = 1.



Summary:
Model of quantum photosynthesis:
Degeneracy in the light-harvesting system,
Excitons in chromophores interact with three quantum fields
(photons, phonons, sink).
Degeneracy may lead to the supertransport effect — coherent
amplification of the transport.

Interaction with photons and phonons — non–parallel bright
vectors (α is the angle between bright vectors). The flow of
excitons is proportional to cos2 α.
Bright photonic states can be dark phononic states.
Generation of non-decaying dark phononic states — proportional
to sin2 α.
Relation to experiments with photonic echo — dark states give
non–zero contribution in spectroscopy.


