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Diseases caused by cell signaling error

Different Types of Cancer:

® Bone cancer
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Cell signaling is part of a complex system of communication that
governs basic cellular activities and coordinates cell actions.

The ability of cells to perceive and correctly respond to
their micro-environment is the basis of development,
tissue repair, and immunity as well as normal tissue
homeostasis.

Errors in cellular information processing are responsible
for diseases such as cancer, autoimmunity, and
diabetes.

By understanding cell signaling, diseases may be treated effectively.
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( thst ey R Background work: Unraveling the Design Principle for
Motif Organization in Signaling Networks *

Aim: To understand the motif organization in filtering noise in the signal.

Feed-forward loop (FFL)
Input A+B (Inactive) ——2>  B(active)

A B 2= (18)
oy a, Active Inactive
form form

B ﬁ C Output B(active) + B(Inactive) = B(tot) =
ag

REF:
Motif Type Feature
Coherent | a1>0, a3>0, a2>0 dA A —
Incoherent | a1>0, a3<0, a2>0 ' oA I'E =F,(4,8,0), .
+ + - Stability result:
Coherent Il a1<0, a3>0, a2<0 A% B dB
Incoherent II a1<0, a3<0, a2<0 " Il ” =k -0,B+a,A(l-B)=F,(4,B,C), . Very "::_)t‘_‘St alr:d
1 unconditionally
Coherent Il 1>0, a3<0, a2<0 -
oheren a a a Aé B ic stable.
Incoherent lll a1>0, a3>0, a2<0 —=k,-0,C+a A(l - C) +a B(l - C) =F. (A B C)
d[ 2 2 2 3 3\ Ay Ly )y
Coherent IV a1<0, a3<0, a2>0 —
Incoherent IV a1<0, a3>0, a2>0
Generation of jnappropriate and — — A* 1
Input Noi non-specific r responses that may potentially be dA = Fi(A, B, C)dt + 01 (A — A")dE,
npu olse induced through either noise in the external dB = FQ(A B C)dt + 0.2(B . B*)d£2
A milieu, or through stochastic perturbations of the Y t

intracellular components (e.g. mu_tam))_ns. dC = Fg(A, B, C)dt —+ 0’3(0 — C*)df?
alterations in protein turn-over rates etc). May

cause Disease like cancer, autoimmunity e

4
* Chatterjee and Kumar. (2011) Plos One (6(12): e28606)
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Ranked structure based on stability area
a1>l], a3<l], a2<l]-- Clll = (ZD t )
1 parameter space
b u.gg . . [ ® u.gg . . :
o 5 10 15 o 5 10 15
B B
a1<0, a3>0, az<0-- cl a1>0, as>ll, a2<ll-- Icum
. Uél - U;l _ Stable region in sigma-beta plane
0 i D = o~ oge .
0 ® 15 0 5, W 15 Larger the stability region, more robust the structure
a1<l], a3<l], a2>l]--C v a1<[l, a3>0, a2>l]-- IC IV
o D;E""I E © U;h!! 1
0 g 1] i
0 5 10 15 0 5
B

10 15

| Rank1 | Ranke | Rank3 | Ranka | Ranks | Ranke | Rank7 | Ranks |
3 -4 -3 -2 -1 1 2 3 4
a, >0, a3<l], az>l]-- IC1

a1>l], a3>l], a2>l]-- Cl

Scoring of signaling intermediates for their vulnerability
— to noise in a human cancer signaling network*

Human Signaling Network

*Cui Q, Ma'Y, Jaramillo M, Bari H, Awan A, et al. (2007) A map of
(1634 nodes and 5089 interactions)

human cancer signaling. Mol Syst Biol 3: 152.
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Search for Frequency of nodes
in various 3 node FFLs

v

Cumulative Score for
Individual nodes
(Based on ranks of FFLs in Table )

l

Dividing the network node as
robust category or vulnerable category
(depending on their scores)
Node A---occur in motif of rank 8 with frequency 2+ motif of rank 2 with frequency 3, then

Example of scoring:

Total rank= 2*r(8)+3*r(5) (>4: robust, <- 4: vulnerable)

Background Mathematics



»Observations (from the cancer signaling network)

1.

Vulnerable/robust nodes
(cumulative)

===TGFB

SEROTONIN

GLUTAMATE

Starting with different
receptor molecules and going 6
steps downstream we observed that
early steps of the network are
significantly enriched with the robust
nodes.

Robust

Node Function Robust Vulnerable

Nodes (%) Neodes (%)
Kinase 28.08 8

f ——
Transcription Factor 12.35 6.67
Receptor 9.87 8

Vulnerable
Adaptor 6.79 4
Phosphatases 1.54 12
Apoptosis 3.08 62 67
N

3. The genes whose mutations are associated with cancer (e.g. ABL1, BRCA1, SRC, ATM,

BRAF, PTEN, TGFBR2, EGFR, RB, p53, SMAD4 etc) belongs to the robust category.

6
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Limitations and future expansion:

Limitations:

During our study we restricted our work to three node FFLs, but other categories of motifs, like Feed
Back Loops, Four-node FFLs, and Bifans are also present in the signaling network.

Consequently, an extension of the analysis described here to incorporate all such motifs can clearly be
expected to provide many additional insights into the regulatory aspects of signal transduction.

Moreover just to understand the system we simplify the model assuming white noise added to the
deterministic system. There are many other ways to incorporate noise and to extend the model
depending on the system.

Future expansion:

Extensive study on all possible two node motif structure is done and the most dynamically enriched
structure is identified.

Those dynamically enriched structure will start with all possible two-nodes and then be expanded to
two nodes and then to four nodes.

Finally stochastic perturbations will be studied on them to identify the sensitive node among a more

general structure.
7



Two node general structure
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40 possible structures
d, _ ki(-4) k.B.(1-4,) k.A.(1-4,)
di "k +(-4) kK +(1-4) k +(1-4,)

dB, _kyA,(1-B,) k,B,(1-B,)
dt &k +(-B) k_ +(1-B,)




‘ & Tetwn e hee |a. Ap=1 Forany+ve Defaultset
# CNSU e Nanieosl;
. A——'B |Bp=0 Bp=0
Structure of | Fixed points | Nature of B.=f(l); nature of | Figure(s)from Parameters
Model polynomial roots numerical
(inputlat (ouptut) simulations
eachA)
1. Forany +ve 1 Defaultset
A=1 valueofl;Bp = (allk’s=1and
p— T ' | N
Ae—B |7 | 1 1 km’s=0.5;i=5) |
Bp=1 ] :
112 Forany+ve Defaultset
2. For any +ve ] Initial Bp=1 Ap=1 value of I;
A i5 Ap=1 value of I;Bp=0 |} Initial Bp=1
I |
........ | Ap=0.000006 \—p |Bp=1
Bp=0 i=0.00005
3. Quadratic Default with | |4, Forany+ve Defaultset
Bp=1 egninAp. Forany +ve 1=0.5; Ap=1 value of I;
Ap=roots value of I; Two +ve Bp=1
A————B of — A8
eqgn Bp=1 roots out of 5 |Bp=1
which one U
feasible.
1.3 Ap=1 Forany+ve Defaultset 3.1 Bp=1 Fourthorder | Forany+ve Defaultset
ﬂ value of I; Bp=1 Ap=roots |polynomial |valueofl;
Bp=1 ﬂ of inAp. Bp=1
Ac—B .
| polynomia
U A ||
21 Ap=1 Forany +ve Defaultset 3.2 Bp=1 Second Forany+ve Default set
value of I; Bp=0 Ap=roots |order value of [;
ﬂ Bp=0 Af g | of polynomial | Bp=1
I P— U polynomia | in Ap(atleast
| one +ve root
exists) ——
2.2 -
3 Bp=1 Fourthorder | Forany +ve Defaultset
Ap=roots |polynomial |valueofl;
A » | of inAp. Bp=1
Ay 0 U polynomia
I
2.3
1 Bp=0 Forany+ve Defaultset
Ap=1 I fl;
Q . Ap:= va :Je 0
— Bp=0
U Ac—B 9
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4.2 Ap=1,Bp=0 | Quadraticin |Steadystate Ac ’B of4®
Bp with value of Bp order egn
Ac——B|And coefficients |dependson
containing parameters 1.5 Bp=0.68 Cubicegn |[Bp Defaultset
Ap=1,Bp= |only and inBp independent withi=0.8
roots of parameters |independentof Ae B - ’
second and notl. i <Defaultset 6"9’“ 1 of I_(dEpends
order (quadegn onjust
equation gives parameters)
devoid of | ORitis0 imaginary
rootsin this
case)
4.3 Ap=1,Bp=0 | Quadraticin | Steadystate
Bp with value of Bp
And coefficients |dependson

ﬂ containing parameters
Ap=1,Bp= |only and —

Ac_ B | rootsof parameters |independentof 24 Bp=0 Cubic in Ap, [ Bp=0forany| Default set
second andnotl. i withi=0.8
order < Defaultset Ap=roots
equation ORitis 0 A —lB of cubic
devoid of I I

14 Bp=1 4% order Bp=1foranyl Defaultset 25 Bp=0 Bp=0foranyl Defaultset
-n polynomial withi=0.8 ' with =0.8
Ap=roots |inAp, — _ N
5, | ofgth A8 |Ap=1
Ne———~
order egn U
15 Bp=0.68 | Cubicegn |[Bp Defaultset | Bp=0 Cubicin Ap_ | Bp=0forany| Default set
inBp independent withi=0.8 with i=0.8
Ae——B Ap=1 of I (depends Ap=roots o
onjust A B .
J ! of cubic
parameters)
16 3.4 Bp=1 4% orderin |Bp=1foranyl Default set
Ap withj=0.8
Ae—B AL >y | Ap=roots
of 4t
orderegn
24 Bp=0 Cubic in Ap, | Bp=0forany| Defaultset 3.5
withi=0.8
Ap=roots
A "B
A '8 | of cubic ' 10
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A8 1.7 Bp=0.68 Cubicegn Bp=solution of Defaultset
U ﬂ in Bp the cubic With i=0.8
A ’B Ap=1 (independ: | equation
4.4 Bp=0 Bp=0foranyl Defaultset — always entofl) (independent
ﬂ Ap=0.62
Ac_— B
1. Bp=1 Bp=1foranyl Defaultset
withi=0.8
4.5 Bp=0 Bp=0foranyl Defaultset + Ap=0.81
Ac——B |Ap=1 U
2 Bp=0 Bp=0foranyl Defaultset
4 Bp=0 Bp=0foranyl Defaultset Withj=0.8
ﬁ Ap=0.63 With =0.8 A,—‘B Ap=1
A B
—
3.8 Bp Bp=1foranyl Defaultset
ﬂ with i=0.8
A
Aj B B
4.7 Bp Bp=0foranyl Defaultset
B |Ap:
U U 11
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Two frequently observed topologies

Input

Input
(1) m (1) m

(a) (b)

Figure 1. Schematic diagram for two-node motif showing all possible interactions be-
tween two nodes. The Fig. (a) depicts the structure 1 and The Fig. (b) depicts the

structure 2. Details of the structures are given in the text.

Structure 1 Structure 2

dA _ KI(1-4) | kaA(1-4)  kBA dA _ kld(1-4) . kyB(1—A)  ksA?
At kpr+(1-A)  kpa+(1—4) kpo+A’ dt  kprt+(1—A4)  kpot+(1—-A) kpa+ A’
dB _ kgB(1-B)  kAB

dB _ kA(1-B)  kpB’ ) ab _ _ _
dt  km+(1-B) knp+B’ d¢  kmp+(1-B) km+B

12
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Change of no of stablity points w.r.t the vrying parameters

A= (1101 A+ 1= 8) + (1A (1 - AkmA = 1 - &) = (1B AY(km2 + A) 1=0007 =01 -
B2 (1A (1 Bk +1 - B) - (1 B B)(kmB + B)) km2=0.1 kmA=0.1 kmB =08

km1

kmA

km2

ki

Cursorposiion: (0.34.0.415)

kml

Figure. Phase portrait showing bistability of the structure 1. 10 folds down initial values 10 folds up

Figure. Parameter ranges for which the number of equilibrium point(s) changes. Here, the black colour shows the range of
each parameter for which the system has only one stable point and the white colour shows the range of each parameter for
which the system is bistable.

PRCCs

I PRCC node B

0.8 -1

0.6

0.2

-0.2

-0.4

L L L L
1 Kl k1 k2 kA kB kml km1 km2 kmA kmB dummy

Figure. Global sensitivity analysis (GSA) of model parameters of node B using Latin Hypercube Sampling (LHS) method.
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A= (K11 = ANO.1 41 = A) +((1 B (1~ AY01 + 1.~ A) - (kA A AY(kmA + A) 1203 KI1=0001 KA=0001
B°=((1B(1-B)(kmB-+ 1 - B)) - (1 AB){km1 +B)) i =07 kmA=0.1 (mB=01

km1

ki

09~

B kmB

08

Parametrs

kml

km2

0 X 02 03 04 05 08 07 08 03 1 KkmA .
A

| I

Cursor postion: (0.325,0.407) 10 folds down initial values 10 folds up

Figure. Parameter ranges for which the number of equilibrium point(s) changes. Here, the black colour shows the range of
each parameter for which the system has no stable point, grey colour shows the range of each parameter for which the
system has only one stable equilibrium point and the white colour shows the range of each parameter for which the system
is bistable.

Figure. Phase portrait showing bistability of the structure 2.

T T T
PRCC node B

! !

L L L L
I kil k1 k2 kA kB kml km1 km2 kmA kmB dummy

_1 L L ! ! L L

Figure. Global sensitivity analysis (GSA) of model parameters of node B using Latin Hypercube Sampling (LHS) method.
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dA = Fy(A, B)dt + o1(A — A*)d¢}
dB = F»(A, B)dt + 02(B — B*)d¢? . (18)

where 0, and o9 are real constants and known as the intensity of the fluc-
tuations , & = &(t), i = 1,2 are standard Wiener processes, independent

of each other, and F3, F, are defined in the Eq. (3). We consider Eq. (18)
as an Ito stochastic differential system of the type

dX, = F(t, X;)dt + G(t, X,)d&; (19)

where the solution (X¢,t > 0) is an Ito process, ’F” is the drift coefficient,
’G’ is the diffusion coefficient and &; is a two dimensional stochastic process
having scaler Wiener process components with increments Agg' = & (t+
At) — &;(t) are independent Gaussian random variables N(0, At). In the
case of system (18),

e A - [4]
Fi(A, B)] o [al(A— A% 0

F =
| F»(A, B) 0  oo(B— B

(21)

15
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A Bistability under stochastic perturbation

0.8 T T T T
Structure 1 o7 ]
06 F E
05F E
04F R
032 , . ‘ ‘ ,
0.2 0.3 0.4 0.5 0.6 0.7 0
T 0.69 T T T T
0.455 | R \
0.68 - e i
Ay
0.45 - FITTERRL TN S . e e e
. FRNT I . 0.67 F Pl A whi |
.‘,.:*K?.\' ot ' f_::.-'.l.}',:‘;'v_‘
0.445 | 4 0.66 | J
n L L L L L L L L 0.65 £ | L L L L L L I E|
0.28 0.3 0.32 0.34 0.36 0.38 0.4 0.42 0.44 064 065 066 067 068 0.69 0.7 0.71 072 0.73

Figure. Phase plane diagram for structure 1. Top figure shows stable nature of E* for low value of 01 2 =0.1 and the bottom

figures shows the probability clouds for 01 ) =1.3, above the threshold value. ’
’
08 : : ;
Structure 2 08! \
041 1
02r 1
0.65 07 075 08 085 09 0.95 1
-4
x10 . , , , , 0.8007 . . ,
8r " / 1
i, 0.8006 | 1
6 ALt iy e s e 1
al ] 0.8005 - L 1
. \"_Fa,.r. oy
oL | 0.8004 Has 1
0 . ‘ ‘ s ‘ 0.8003 s ! ‘ ‘ ! s
0.634 0.636 0.638 0.64 0.642 0.644 099986 0.99987 0.99988 0.99989  0.9999  0.99991  0.99992

Figure. Phase plane diagram for structure 2. Top figure shows stable nature of Ex for low value of 6 = 0.1 and the bottom figures
shows the probability clouds forc = 1.2, above the threshold value. 12
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Observations

We studied two well observed motif structures which shows bistability, i.e.,
depending upon the initial conditions the final outcome can take any of the two
steady state values.

We observed that the range of output signal depends on the structure but the
sensitivity of the parameter is independent of the structure.

In both the structures, it is the downstream node which is more sensitive in the
outcome of output signal.

We also observed that under random perturbation with high noise intensity,

the systems looses its stability and the bistable points scattered leading to
undesirable output signal.

17



« A possible design principle is proposed, for higher-order organization of motifs into
larger networks in order to achieve specific biological output.

« Using our ranks in a human cancer network, we observed that the molecules are so
arranged inside the cell to reduce the effect of ‘any noise’ on the cell signaling to
minimum.

The proposed ranks could be use to get an initial idea of the important molecules
based on their motif structure(s) and will accelerate screening experiments.

The information can be use to filter noise from the signal. This could be a potential
therapeutic strategy in case of diseases like auto-immunity.

»0ngoing study.....

The ranking is refining using all possible structure to increase robustness of the result.

This is a small study focusing on only two specific structures, but it shows the
importance of the structure and the noise in the signalling mechanism. In future we will
extend our study on other structures and on higher dimension with three and possibly

four nodes. .
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Mathematics behind the analysis

Back



Equilibrium point and stability analysis

The interior equilibrium point,
(final steady state)

E* = A*=[. B*:k1+_av8 C*:"'2+01,3+03B*

o,+a,p o,+apf+aB*
-a 0 0
a,(1-B*) —6,—a,p 0

a,1-C*) a,(1-C*) -6,-a,f—a,B*

The eigenvalues associated with the matrix are negative real numbers, and
so the interior equilibrium point is always stable.

Back
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Def: Stochastic stability

dry = Fi(z1,2...2p)dt + 01(z1 — 27)dE]
dzy = Fy(zq,z9...70)dt + 0'2(.’112 - I;)d{? (1)
dzg = Fpl(ey,o...o0)dt+ on(z, — o5,)dET,

where o, i = 1,2, ..m are real constants and known as intensity of environ-
mental fluctuation, & = &(t), i = 1,2, ...,m are standard Wiener processes
independent from each other [3] and F;, ¢ = 1,2, ..m are the corresponding
deterministic part of the variables (1, g, ..., ).

Stochastic stability [from Mao (1997)]:

The trivial solution of equation (1) is said to be stochastic stable or
stable in probability if for every pair of € € (0,1) and r > 0, there exists a
6 = (e, 1, t9) > 0 such that

P{|z(t;to,z0)| <7 forall t>ty}>1—¢,

whenever |zo| < 4. Otherwise, it is said to be unstable.

The trivial solution is said to be stochastically asymptotically stable if
it is stochastically stable and, moreover, for every € € (0,1), there exists a
8o = o€, tg) > 0 such that

P{|z(t;to,z0)| =0} > 1 —¢,

whenever |zo| < do.

Method:

Stochastic model:

dA =F,(4.B.C)+0,(4A- A%d&,
dB =F,(A.B.C)+0,(B-B*d&:. )
dC = F,(4.B.C)+0,(C-C¥d&?,

Where, G,,7 =123, are real constants and known as the intensities of fluctuations, & =& (f),i=12.3, are
standard Wiener processes, independent of each other. We consider (1) as an Ito stochastic differential system of
type

d’(r =1(t,X,)dr+g(t,X,)d.§,, X:o = XO‘ @

In the equation,

X, =(4B.0). §=(£.6.8). y=(F.F.F).

Gy (4d- 4% 0 0
g=| 0  oB-BY 0
0 0 o,(C-C%)

The linearized version of (2) at E * is given by
du(t) = H(u())dt + g(u(1))ds (1),
Where,

Hu(t)) = (- au,.a,(1- B, — (8, +a,B)u,.a,(1-C*u, +a,(1-C*u, — (5, +a,f +a,B*u,)

o, 0 0
gu@®)=| 0 ocu, 0
0 0 oy,

Back -
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() thSt s © that in the equilibrium E* corresponds to the origin in the new Coor-
amates (uy, ug, uz) = (0,0,0). Let us define the set I' = {(t > ty) x Rty €
R*}. Let Z € C3*(I") be a continuously differentiable function of time ¢ and
twice continuously differentiable function of u. Let us introduce the following
operator acting on Z defined by

OZ(t.u(t)) . .r Z(t, u) 1 T 0?7 (t, u)
tou) = ——2 0 £))—— 4 — u(t)) ———2— g(u(t
L(t.w) = 22080 g ) 22809 | L e 228 g )
. . . AT 52,
where % = g—‘ﬁ,g—é,%) . %ﬂ = (au 8u) for i,7 = 1,2,3 and tr[A4]

denotes the trace of the matrix A.
To analyze the stability, we need a result (Afanas’ev (1996)) which we
write in a particular case as follows
Proposition 1. Suppose for i = 1,2,3 for suitable K; > 0 the function
Z(t,u) € C3(I') satisfies the inequalities
Kilul®* < Z(t,u) < Kolu|?, LZ(t,u) < —Ks|u|?.
Then the trivial solution is globally asymptotically stable in probability.

Theorem: Assuming that det(Q) > 0, where Q is given below, it is observed that
the zero solution of system 1is asymptotically stable if

,a o, +a,p o, +a,f+a,B*
o, = EEO-IC’ O, = _2 =0, O3 = =03y

2

1

1
E_ 1 _Zal(l_B*) _Zaz(l_c*)
1 S, +a,p 1
and, O = -Za‘(l_B*) %-ag —Za3(1—C*)
| 1 o, +a,f+a,B
-—a,1-C*) —-—a,(1-Cc*) +—2—2
-7%0-CY —7a(-C) .

Back
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Formula defining the rank

We devised an indigenous method to estimate the cumulative vulnerability score for
each of the nodes 1n a signaling network. Suppose NV denotes the node number and X;

denotes the number of times the NV node occurs in the i ® rank. Let S; be the score

(i—l)—ﬁ,for i<n/2

given to the i ® rank such that s(7) =s, = . E
f—;,for i>nl2

where 7 denotes the total number of motif types (eight in the present study).

Then the cumulative score given for N* node is

N=>KS,

Tl
Nodes with the cumulative score greater than »/2 was then 1dentified as robust nodes

while those with less than —2/2 were classified as vulnerable nodes.

Back
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