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Motivation for research

Public health challenges:

Determine the public-level efficacy of various intervention
programs.

Describe the transmission dynamics of a disease and the
effect of intervention using a model of the underlying
medical, biological, and social processes.

Perform effective triage of limited prevention resources.
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Motivation for research

Current state:

Analytical or semi-analytical methods for computing
optimal control profiles for simple epidemiological models.

(−) Obtained results are typically not suitable for practical
use; too restrictive modeling assumptions.

Commercial tools aimed at high-level decision-makers for
choosing the best public health investments: OPTIMA, etc.

(−) A one–size–fits–all approach leads to solutions that
lack relevant details or specific constraints.
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Motivation for research

What we offer:

Population balance models tailored to particular applications.

Realistic model of different prevention/treatment programs.

Consider hard constraints.

Locally defined cost functions expressed in $$$.

Integrate the obtained results into epidemiological practice by
providing programmatic benchmarks.

Allow a practitioner to draw concrete conclusions about optimal
resource allocation in a specific setting.
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Population balance models

Total population is separated in a number of compartments.

Compartment: a homogeneous subgroup of the population.

Dynamics: transitions between groups and the in- and out-flows.

The dynamics of the ith compartment’s population:

ẋi =
∑
i 6=j

(
aij(x)− aji(x)

)
− aii(x) + wi,

where
xi – the number of individuals within ith compartment,
aji – the flow rate from compartment i to compartment j,
aii – the outflow out of the ith compartment, and
wi – the inflow into the ith compartment.

(A)

1 aij(x) ≥ 0 and wi ≥ 0 for all i, j and x ∈ Rn
≥0.

2 xi = 0 implies aji(x) = 0 and aii(x) = 0,
i.e. there is no flow out of an empty compartment.
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An example

Consider a population divided into 3 compartments:
S – susceptible, IA – acutely infected, and IC – chronically infected.

where
α – the inflow,
µ – the mortality,
δA – (duration of the acute phase)−1,
φ(X) – the incidence rate.
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An example: the model

İA = φ(X)S − (δA + µ) IA

İC = δAIA − (δC + µ) IC

Ṡ = α− (µ+ φ(X))S,

where φ(X) =
βAIA + βCIC

N
, X = [IA, IC , S], and N = S + IA + IC .
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An example: controlled case

Add 2 more compartments: T – treatment, P – prophylaxis.

İA = φ(X)S − (δA + µ) IA

İC = δAIA − uT IC + γTT − (δC + µ) IC

Ṡ = α− (µ+ φ(X))S + γPP − uPS

Ṫ = uT IC − (µ+ γT )T

Ṗ = uPS − (µ+ γP )P,

where uT and uP – fractions of the respective populations that are
addressed; γT and γP – the rates at which the prescribed care fails.
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An example: control theoretic view point

d

dt


IA
IC
S
T
P

 =


φ(X)S − (δA + µ) IA

δAIA + γTT − (δC + µ) IC
α− (µ+ φ(X))S + γPP

− (µ+ γT )T
− (µ+ γP )P

+


−IA 0

0 0
0 −S
IA 0
0 S


[
uT

uP

]

A bilinear control system.

The system is not controllable in the neighborhood of XDFE .

dim(controllable subspace) = 1!

R0 > 1 ⇒ uncontrollable subspace is unstable  system is not
stabilizable.

Standard non-linear control methods are not applicable . . .
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HIV Transmission: intro

Sexually transmitted diseases are particularly suitable for
modeling.

Further specialization of the model: Men having Sex with Men.

Gay population in USA: 3-4% of total population  60-70% new
infections

Compartmental model: 9 subpopulations (2 x Susceptible, 4 x
Infected, 2 x Treatment, 1 x Prophylaxis)

2 controls: TaP vs. PrEP (fractions of screened individuals that
are administered either to treatment or to prophylaxis)
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HIV Transmission: compartmental model
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HIV Transmission: ODEs

ṠH = αH − (φH(X) + ρH + µ)SH + ρLSL + xP − uP ζP (X)N

ṠL = αL − (φL(X) + ρL + µ)SL + ρH(SH + P )

İCH = δAIAH − (ρH + µ+ δC + vb)ICH + ρLICL + yTH − uT ζT,H(X)N

İCL = δAIAL − (ρL + µ+ δC + vb)ICL + ρHICH + yTL − uT ζT,L(X)N

İAH = φHSH − (ρH + µ+ δA)IAH + ρLIAL

İAL = φLSL − (ρL + µ+ δA)IAL + ρHIAH

ṪH = − (y + ρH + µ)TH + vbICH + ρLTL + uT ζT,H(X)N

ṪL = − (y + ρL + µ)TL + vbICL + ρHTH + uT ζT,L(X)N

Ṗ = − (x+ ρH + µ)P + uP ζP (X)N,

where ζ(∗)(X) and φ(∗)(X) are rational functions related to probabilities.
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Optimal control problem

Consider the period [0, tf ] divided into nint equal intervals

Over each single interval i the control is constant: U i = [ui
T , u

i
P ] ∈ R2

Minimize the total incidence rate:

JC(X) =

tf∫
0

SHφH(X) + SLφL(X)dt,

Budgetary restrictions (for each interval [ti−1, ti]):

JB
i (X,U i) =

=

ti∫
ti−1

K3[TH(t)+TL(t)]+K4P (t)+K5N(t)ui
T (t)+K6N(t)ui

P (t)ds,

and
JB
i (X,U i)− JB

i (X̃i,0) ≤ B, i = 1, . . . , nint.
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Numerical approach

The total interval is separated into nint subintervals

Over each interval the system’s trajectory is interpolated by Lagrange
polynomials with a non-uniform grid {τi}ncp

i=0.

X̂j(t) =

ncp∑
k=0

Lk(t)Xj(τk), where Lk(t) =

ncp∏
l=0, l 6=k

t− τl
τk − τl

.

The trajectory (solution) is parametrized by Xj(τk).

Grid points – zeros of a Legendre/Chebyshev polynomial
(recall Runge’s phenomenon)



Intro Model HIV Control Decision making

Numerical approach (cont’d)

Integration and differentiation reduce to linear algebraic operations

Differentiating X̂j(t) =
ncp∑
k=0

Lk(t)Xj(τk) and evaluating at τk we get

˙̂
Xj(τk) =

ncp∑
l=0

Xj(τl)L̇l(τk) =

ncp∑
l=0

Xj(τl)Dkl,

where D is an [ncp × (ncp + 1)] differentiation matrix.

DEs Ẋ = F (X,U) turn into a set of linear algebraic equations:

DX− δt

2
F (X, U) = 0,

where Xj,k = Xj(τk), and δt is the length of the interval.



Intro Model HIV Control Decision making

Numerical approach: what’s at the end?

Resulting nonlinear constrained optimization problem:

δt

2

nint∑
i=1

ncp∑
k=0

wkC(X(τ ik), U i)→ min

s.t. DXi − δt

2
F (Xi, U i) = 0

X(τ i0)− δt

2

ncp∑
k=0

wkFj(X(τ ik), U i) = 0, i = 1, . . . , nint,

DXi
0 −

δt

2
F (Xi

0, 0) = 0, i = 1, . . . , nint,

Xi
0(ti−1) = X(tii−1), i = 1, . . . , nint,

δt

2

ncp∑
k=0

wk

[
Bi(Xi(τ ik), U i)−Bi(Xi

0(τ ik), 0)
]
−Blim ≤ 0,

i = 1, . . . , nint.



Intro Model HIV Control Decision making

Implementation

The described problem is implemented in Matlab with
fmincon.

Computation time depends on the initial guess. Typically a
couple of hours.

Reason for large time consumption: sensitivity of the
constraints to the control values.
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Suboptimal solutions

If one component of U i is kept zero ∀t ∈ [0, tf ], the optimization
problem turns to a set of nint scalar optimization problems:

Determine the value of control U i ∈ {0} × R≥0 (U i ∈ R≥0 × {0}) s.t.

‖U i‖ → max,

JB
i (X,U i)− JB

i (X̃i,0) ≤ B,
X(t), t ∈ [ti−1, ti],

satisfies (∗) with X(ti−1) = Xi−1 and U(t) = U i,

X̃i(t), t ∈ [ti−1, ti]

satisfies (∗) with X(ti−1) = Xi−1 and U(t) = 0,

which can be solved sequentially for i = 1, . . . , nint.

Rule: determine the maximal value of the respective control such
that the budgetary constraint holds.

Scalar optimization problem: can be solved within seconds.



Intro Model HIV Control Decision making

Suboptimal solutions (cont’d)

Suboptimal solutons

can be computed for a large set of parameters;

provide certain intuition about true optimal solutions:

x = 0 x = 1/60 x = 1/24 x = 1/12

single TaP 6.843e+04 6.843e+04 6.843e+04 6.843e+04

single PrEP 4.179e+04 7.753e+04 8.852e+04 9.300e+04

mixed 4.109e+04 6.634e+04 6.829e+04 6.841e+04

Further analysis?

Clusterization?

Parallel coordinate plot.
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Parallel coordinate plot
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We vary values of different param’s, e.g. λH/λL, βH/βL, and ρL/ρH ,
and determine for each param. set if TaP or PrEP yields lower cost.



Intro Model HIV Control Decision making

Enrollment

Enrollment: by randomly sampling individuals at locations where
high-risk individuals resp. chronically infected prevail (HRE).

Evaluating probabilities using Bayes rule:

P(X|HRE) =
P (HRE|R=H)P (X)

P (HRE|R=H)P (R=H)+P (HRE|R=L)P (R=L)

=
pH

X
N

pH
NH

N + pL
NL

N

=
rbX

rbNH +NL
,

where NH=SH+IAH+ICH+P+TH , NL=SL+IAL+ICL+TL, N=NH+NL.

rb = pH/pL – odds of a high-risk person to go to a HRE.
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State Estimation

Ns – the number of individuals that were sampled at a HRE;

ŝ(·), î(·), . . . – fractions of the respective groups within the
sample;

Compute fractions of the respective groups within the total
population:[(

rbI 0
0 I

)
+ (1− rb)

(
diag(x̂H) 0

0 diag(x̂L)

)(
1 0
1 0

)](
xH
xL

)
=

(
x̂H
x̂L

)
where xH = (sH iAH iCH tH p)

T
, xL = (sL iAL iCL)

T

and a normalization condition
∑
x̂L +

∑
x̂H = 1 was employed.
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State estimation (cont’d)

Estimates for rb.

Some groups cannot be recognized during sampling, e.g.,
SH ↔ IAH .

Statistical analysis: multinomial distributions.

Not many results are available...

“On-the-fly” state estimation.

. . .
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Conclusions and future directions

Now:

Efficient numerical optimization scheme

A number of results aimed at providing practical rules for a
decision maker

In future:

Analyzing and addressing potential issues when applying the
obtained results in epidemiological practice

Application of control-theoretic methods to controlled
population balance models.

References:

Gromov, D., Bulla, I., Serea O.S., and Romero-Severson E.O. Numerical optimal control
for HIV prevention with dynamic budget allocation, in print, Mathematical Medicine &
Biology, 2017.

Bulla, I., Spicknall, I., Gromov, D., Romero-Severson, E. Maximizing population-level
prevention effects by dynamic allocation of limited resources: Treatment-as-Prevention
and Pre-Exposure Prophylaxis for HIV prevention, submitted to Epidemiology, 2017.
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Work is in progress, we are open for suggestions and comments.

Thank you!
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