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Introduction

Human Immunodeficiency virus (HIV) is a pathogen which
causes the well known Acquired Immunodeficiency Syndrom
(AIDS).

The HIV dynamics involving the density uninfected cells, the
density of the infected cells, the density of HIV virus and the
amount of CTL cells have been widely studied starting from
the work by Nowak and Bangham (1996)1 and two years later
by De Boer et al. (1998)2.

The dynamic of HIV including CTL cells and two saturated
rates is studied by Tabit et al. (2014)3

1
Nowak M.A.; Bangham C.R.M. Population dynamics of immune responses to persistent viruses. Science 173

1996, 272, 7479.
2
De Boer, Rob J., Perelson. Alan S. Target cell limited and immune control models of HIV infection: a 200

comparison, Journal of theoretical Biology 190 (1998) 201214.
3
Y. Tabit, K. Hattaf, N. Yousfi. Dynamics of an HIV pathogenesis model with CTL immune response and two

saturated rates. World Journal of Modelling and Simulation, 2014, 10(3): 215–223 .
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The model

The dynamics of HIV infection with CTL, antibody responses and
therapy that we consider is given by the following nonlinear system
of differential equations

dT

dt
= s − dT − (1− η)βVT

1 + aV
+ ρI ,

dI

dt
=

(1− η)βVT

1 + aV
− (δ + ρ)I − pIZ ,

dV

dt
= (1− ε)NδI − µV − qVW ,

dW

dt
= gVW − hW ,

dZ

dt
=

cIZ

1 + αI
− bZ .

(1)

With the initial conditions T (0) = T0, I (0) = I0, V (0) = V0,
Z (0) = Z0 and W (0) = W0.
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Positivity and Boundedness

Theorem

The solutions of the problem (1) exist. Moreover, they are
bounded, nonnegative and verify:

i) T1(t) ≤ T1(0) +
s

δ1
,

ii) V (t) ≤ V (0) +
(1− ε)Nδ

µ
‖I‖∞,

iii) W (t) ≤

W (0)+
g

q
[max(1; 2−µ

h
)V (0)+(

(1− ε)Nδ

µ
+
(1− ε)Nδ

h
) ‖I‖∞],

iv) Z (t) ≤ Z (0) +
c

p
[max(1; 2− d

b
)T (0) + I (0) + max(

s

b
;
s

d
) +

max(0; 1− δ

b
) ‖I‖∞],

where T1(t) = T (t) + I (t) and δ1 = min(d ; δ).
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Elements of the Proof

Proof (Elements)

We have Ṫ1 = s − dT − δI − pIZ , thus

T1(t) ≤ T1(0)e
−δ1t +

s

δ1
(1− e−δ1t)

From V̇ = (1− ε)NδI − µV − qVW , we have

V (t) ≤ V (0)e−µt + (1− ε)Nδ

∫ t

0
I (ξ)e(ξ−t)µdξ

See

Ẇ + hW = gVW =
g

q

(
(1− ε)NδI − (V̇ + µV )

)
From Ż =

cIZ

1 + αI
− bZ we have

Ż + bZ ≤ cIZ =
c

p
[s − (Ṫ + dT )− (İ + δI )]
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Stability of the disease-free equilibrium

The basic reproduction number of the system is given by

R0 =
(1− θ)Nδs

dµ(δ + ρ)
. (2)

(1− θ) = (1− η)× (1− ε)
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Stability of the disease-free equilibrium

There is an infection-free equilibrium

Ef = (
s

d
, 0, 0, 0, 0)

corresponding to the maximal level of healthy CD4+ T-cells.
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Stability of the disease-free equilibrium

Theorem

1 The disease-free equilibrium, Ef , is locally asymptotically
stable for R0 < 1.

2 The disease-free equilibrium, Ef , is unstable for R0 > 1.
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Elements of the Proof

Proof (Elements) At the disease-free equilibrium, Ef , the
Jacobian matrix is given as follows:

JEf
=



−d ρ −(1− η)βs

d
0 0

0 −(δ + ρ)
(1− η)βs

d
0 0

0 (1− ε)Nδ −µ 0 0
0 0 0 −h 0
0 0 0 0 −b


(3)

The characteristic polynomial of JEf
is

PEf
(ξ) = (ξ+d)(ξ+b)(ξ+h)[ξ2+(δ+ρ+µ)ξ+(δ+ρ)µ(1−R0)],

One of the eigenvalues is

ξ =
−(δ + ρ+ µ) +

√
(δ + ρ+ µ)2 − 4(δ + ρ)µ(1− R0)

2
,
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Stability of the disease-free equilibrium
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Figure 1: Behavior of the infection during the time which correspond to the stability of the free-equilibrium
Ef . s = 5, β = 0.000024, d = 0.02, δ = 0.5, p = 0.001, N = 500, µ = 3, ρ = 0.01, a = 0.001, α = 0.001,

c = 0.03, b = 0.2, q = 0.5, g = 10−11, h = 0.1, η = 0.4 and ε = 0.55.
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Stabiliy of the infection steady states

The infection steady states:
E1 = (T1, I1,V1, 0, 0), where

T1 =
s

d
[
a(1− ε)Ns + µ

a(1− ε)Ns + µR0
],

I1 =
s

δ
[

µ(R0 − 1)

a(1− ε)Ns + µR0
],

V1 =
(1− ε)Ns(R0 − 1)

a(1− ε)Ns + µR0
,
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Stabiliy of the infection steady states

E2 = (T2, I2,V2,W2, 0), where

T2 =
(ρ+ δ)(g + ah)s

d(ρ+ δ)(g + ah) + (1− η)βδh
,

I2 =
(1− η)βhs

d(ρ+ δ)(g + ah) + (1− η)βδh
,

V2 =
h

g
,

W2 =
µ

q
[

(1− θ)Nδβgs

µ[d(ρ+ δ)(g + ah) + (1− η)βδh]
− 1],
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Stabiliy of the infection steady states

E3 = (T3, I3,V3, 0,Z3), where

I3 =
b

c − αb
,

T3 =
(a(1− ε)Nδρ)I 23 + (a(1− ε)Nsδ + µρ)I3 + µs

(1− ε)Nδ(ad + (1− η)β)I3 + µd
,

V3 =
(1− ε)NδI3

µ
,

Z3 =
−(1− ε)Nδ[adρ+ δ(ad + (1− η)β)]I3
p((1− ε)Nδ(ad + (1− η)β)I3 ++µd)

+
((1− θ)βNsδ − dµ(ρ+ δ))

p((1− ε)Nδ(ad + (1− η)β)I3 + µd)
,
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Stabiliy of the infection steady states

and E4 = (T4, I4,V4,W4,Z4), where

I4 =
b

c − αb
,

V4 =
h

g
,

T4 =
(s + ρI4)(1 + aV4)

d(1 + aV4) + (1− η)βV4
,

W4 =
1

q
(
(1− ε)NδI4

V4
− 1),

Z4 =
1

p
(
s

I4
− dT4

I4
− δ).
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Stabiliy of the infection steady states

In order to study the local stability of the points E1, E2, E3 and
E4, we first define the following numbers:

DW
0 =

(1− ε)gNs

hµ
, D̃W

0 = DW
0

µR0

(a(1− ε)Ns + µR0)
, HW

0 =
1

1

R0
+

1

D̃W
0

,

DZ
0 =

cs

bδ
, D̃Z

0 = DZ
0

µδR0

(a(1− ε)Ns + µR0) + αµs(R0 − 1)
, HZ

0 =
1

1

R0
+

1

D̃Z
0

,

and

HW ,Z
0 =

DZ
0 R0

DW
0 (1 +

ah

g
) + R0(1 +

αs2

δ
)

.
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Stability of E1

Theorem

1 If R0 < 1, then the point E1 does not exist.

2 If R0 = 1, then E1 = Ef .

3 If R0 > 1, then E1 is locally asymptotically stable for HW
0 < 1,

and HZ
0 < 1; however it is unstable for HW

0 > 1 or HZ
0 > 1.
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Elements of the Proof

Proof (Elements)
It easy to see that if R0 < 1, then the point E1 does not exist and
if R0 = 1 the two points E1 and Ef coincide. If R0 > 1, the
Jacobian matrix at E1 is given by

JE1 =



−d − (1− η)βV1

1 + aV1
ρ − (1− η)βT1

(1 + aV1)2
0 0

(1− η)βV1

1 + aV1
−(δ + ρ)

(1− η)βT1

(1 + aV1)2
0 −pI1

0 (1− ε)Nδ −µ −qV1 0
0 0 0 gV1 − h 0

0 0 0 0
cI1

1 + αI1
− b


then, its characteristic equation is

(ξ + h − gV1)(ξ + b − cI1
1 + αI1

)(ξ3 + a1ξ
2 + a2ξ + a3) = 0,
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where

a1 = d + δ + µ+ ρ+
(1− η)βV1

1 + aV1
,

a2 = (δ + µ+ ρ)d + (µ+ δ)
(1− η)βV1

1 + aV1
+ µ(δ + ρ)− (1− θ)NδβT1

(1 + aV1)2
,

a3 = µd(δ + ρ) +
µδ(1− η)βV1

1 + aV1
− (1− θ)NδβT1d

(1 + aV1)2
,

We have gV1 − h =
hD̃W

0 (HW
0 − 1)

HW
0

and

cI1
1 + αI1

− b =
bD̃Z

0 (H
Z
0 − 1)

HZ
0

. Checking the negativity by

Routh-Hurwitz Theorem.
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Stability of E1
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Figure 2: Behavior of the infection during the time which correspond to the stability of the
endemic-equilibrium point E1. s = 5, β = 0.000024, d = 0.02, δ = 0.5, p = 0.001, N = 1200, µ = 3, ρ = 0.01,

a = 0.001, α = 0.001, c = 0.03, b = 0.2, q = 0.5, g = 10−11, h = 0.1, η = 0.1 and ε = 0.2.
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Stability of E2

Theorem

1 If HW
0 < 1, then the point E2 does not exist.

2 If HW
0 = 1 then E2 = E1.

3 If HW
0 > 1 then E2 is locally asymptotically stable for

HW ,Z
0 < 1 and unstable for HW ,Z

0 > 1.
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Stability of E2
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Figure 3: Behavior of the infection during the time which correspond to the stability of the
endemic-equilibrium E2, s = 10, β = 0.000024, d = 0.02, δ = 0.5, p = 0.001, N = 1200, µ = 3, ρ = 0.01,

a = 0.001, α = 0.001, c = 0.03, b = 0.2, q = 0.001, g = 10−4, h = 0.01, η = 0.55 and ε = 0.45.
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Stability of E3

Theorem

1 If α >
c

b
or HZ

0 < 1, then the point E3 does not exist and

E3 = E2 when HZ
0 = 1.

2 If α <
c

b
, HZ

0 > 1 and DW
0 < (1− αb

c
)DZ

0 , then E3 is locally

asymptotically stable.

3 If α <
c

b
, HZ

0 > 1 and DW
0 > (1− αb

c
)DZ

0 , then E3 is

unstable.
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Stability of E3
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Figure 4: Behavior of the infection during the time which correspond to the stability of the
endemic-equilibrium E3, s = 15, β = 0.000024, d = 0.02, δ = 0.5, p = 0.001, N = 1200, µ = 3, ρ = 0.01,

a = 0.001, α = 0.001, c = 0.03, b = 0.2, q = 0.5, g = 10−11, h = 0.1, η = 0.02 and ε = 0.07.
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Stability of E4

Theorem

1 If α >
c

b
or DW

0 < (1− αb

c
)DZ

0 or HW ,Z
0 < 1, then the point

E4 does not exist. Moreover E4 = E2 when HW ,Z
0 = 1 and

E4 = E3 when DW
0 = DZ

0

2 If α <
c

b
, DW

0 > (1− αb

c
)DZ

0 and HW ,Z
0 > 1, then E4 is

locally asymptotically stable.
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Stability of E4
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Figure 5: Behavior of the infection during the time which correspond to the stability of the
endemic-equilibrium E4, s = 10, β = 0.000024, d = 0.02, δ = 0.5, p = 0.001, N = 1200, µ = 3, ρ = 0.01,

a = 0.001, α = 0.001, c = 0.03, b = 0.2, q = 0.5, g = 10−4, h = 0.1, η = 0.05 and ε = 0.2.
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Conclusion

The local stability of the disease-free equilibrium depends on
the basic reproduction number R0.

The local stability of the infection steady states depends on
the basic reproduction number R0, the CTL immune response
reproduction number DZ

0 and the antibody immune response
reproduction number DW

0 .

In the presence of therapy, an increases of the uninfected cells
is observed.

The results of this work confirm that the therapy may control
the viral replication and reduce the infection.
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Thank you for your attention

29 / 29


	Introduction
	The model
	Positivity and Boundedness
	Analyse of the model
	Stability of the disease-free equilibrium
	Stabiliy of the infection steady states

	Conclusion
	References

