Effect of therapy on the dynamics of HIV model

with adaptive immune response and two saturated
rates

Karam Allali (with S. Harroudi and Y. Tabit)

Laboratory of Mathematics and Applications, University of Casablanca, Morocco

17th International Symposium on Mathematical and
Computational Biology

Institute of Numerical Mathematics, Russian Academy of Sciences, Moscow, Russia, - 30th October - 03rd
November 2017

1/29



© Introduction

© The model

© Positivity and Boundedness

@ Analyse of the model
@ Stability of the disease-free equilibrium
@ Stabiliy of the infection steady states

© Conclusion

@ References

2/29



Introduction

@ Human Immunodeficiency virus (HIV) is a pathogen which
causes the well known Acquired Immunodeficiency Syndrom
(AIDS).

@ The HIV dynamics involving the density uninfected cells, the
density of the infected cells, the density of HIV virus and the
amount of CTL cells have been widely studied starting from
the work by Nowak and Bangham (1996)! and two years later
by De Boer et al. (1998)2.

@ The dynamic of HIV including CTL cells and two saturated
rates is studied by Tabit et al. (2014)3

1Nowak M.A.; Bangham C.R.M. Population dynamics of immune responses to persistent viruses. Science 173
1996, 272, 7479.
De Boer, Rob J., Perelson. Alan S. Target cell limited and immune control models of HIV infection: a 200
comparison, Journal of theoretical Biology 190 (1998) 201214.
Y. Tabit, K. Hattaf, N. Yousfi. Dynamics of an HIV pathogenesis model with CTL immune response and two
saturated rates. World Journal of Modelling and Simulation, 2014, 10(3): 215-223 .
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The model

The dynamics of HIV infection with CTL, antibody responses and

therapy that we consider is given by the following nonlinear system
of differential equations

dT (1-n)BVT
s - )
i 1tav 1 F"
dl_ (1—n)BVT
i pre vl CRat Ul 228
dv

= (L= NGI = pV — quW, (1)
dwW

= = gVW — AW

dt g 9

dz  dz

dt  1+al

With the initial conditions T(0) = T, /(0) = ly, V(0) = Vb,
Z(O) = Zo and W(O) = Wo.
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Positivity and Boundedness

The solutions of the problem (1) exist. Moreover, they are
bounded, nonnegative and verify:

i) Ti(t) < Ta(0) + 5

i) V(o) < Vo) + =2

i) W(t) <
g o (1—¢N§ (1—¢€)NS
W(O)+£ max(1;2-F)VOH=— =452 )
iv) Z(t) < Z(0) + g[max(l; P %)T(O) +1(0) + max(% 2) n

max(0:1— 9) [/]c],

where Ti(t) = T(t) + I(t) and 61 = min(d;J).
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Elements of the Proof

Proof (Elements)
o We have T; =s — dT — 8/ — plZ, thus

Ti(t) < Ta(0)e~%t + 53(1 _ it
1

e From V = (1 —€)NS§I — puV — qVW, we have

V(t) < V(0)e ™ +(1—¢ /\/5/ (=g
@ See
W+ hW = gVW = i((l—e)Nél (V+uV)>
e From Z = clz — bZ we have
1+ al

Z+bZ§cIZ:%[s—(T—l—dT)—(i—l—él)]
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Stability of the disease-free equilibrium

The basic reproduction number of the system is given by

R (1 —0)Nds
°T du(5+p)

(1-0)=@0-n)x(1-¢)
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Stability of the disease-free equilibrium

There is an infection-free equilibrium
Er = (,0,0,0,0)
f - d7 ) ) )

corresponding to the maximal level of healthy CD4+ T-cells.
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Stability of the disease-free equilibrium

@ The disease-free equilibrium, Egf, is locally asymptotically
stable for Ry < 1.

@ The disease-free equilibrium, Ef, is unstable for Ry > 1.
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Elements of the Proof

Proof (Elements) At the disease-free equilibrium, Ef, the
Jacobian matrix is given as follows:

—d p _w 0 0
1—
0 —(54p) LZWIE 4
Jg, = d (3)
0 (1—¢€)No — 1 0
0 O 0 —-h 0
0 0 0 0 —b

The characteristic polynomial of Jg, is

P (€) = (E+d)(E+D)(E+MIE+ (54 p+p)E+ (54 p)u(1— Ro)],

One of the eigenvalues is

‘= —(0+p+ )+ VO +p+p)? =48+ p)u(l — Ro)
2 Y

10/29



disease-free equilibrium

Stability of t
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FIgU re 1: Behavior of the infection during the time which correspond to the stability of the free-equilibrium
Ef. s =5, 8 = 0.000024, d = 0.02, § = 0.5, p = 0.001, N =500, » = 3, p = 0.01, a = 0.001, @ = 0.001,
c=0.03 b=02¢g=05g=10"" h=0.1,7n=0.4and € = 0.55.

11/29



Stabiliy of the infection steady states

The infection steady states:
E1 = (Tl, Il, Vl,0,0), where

s, a(l—¢€)Ns+ p

o= 2
! d a(l—e)Ns—l—,uRo]’
[ s M(RO - 1) ]
! 5'a(l —€)Ns+ uRy™
(1 —€)Ns(Rp — 1)
Vi =

a(l —e)Ns + uRy’
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Stabiliy of the infection steady states

E2 = (Tg, /2, VQ, W270), Where

o (p+6)(g + ah)s
> 7 d(p+0)(g+ah)+ (1L—n)Bsh’
Lo (1 —n)Bhs
27 d(p+0)(g+ah)+ (1L—n)Bsh’
Vo = ﬁa
g
W, — H[ (1—-0)Ndésgs 1,

g uld(p+9)(g + ah) + (1 —n)Bsh]
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Stabiliy of the infection steady states

E3 = (T3, 13, V3,0, Z3), where

ho— b
P —ab
. - (a(1 — €)NSp)I2 + (a(l — €)NsS + up)ls + ps
3T (1—€¢)No(ad + (1 —n)B)ls + pd ’
vy — (1— ;)N(Sl3?
7 = —(1—¢€)Nof[adp + d(ad + (1 — n)B)]hk

p((1 —€)Né(ad + (1 —n)B)ls + +pd)
(1 - 0)BNss — du(p +9))
p((1 —e)No(ad + (1 —n)B)l + ud)’

_|_
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Stabiliy of the infection steady states

and E4 = (T4, I4, V4, W4,Z4), where

Lo b
YT b’
V4 - ﬁ7
g
T, - (s + pla)(1+ aVa)
P od(+ava) +(1-m)BVe
1,(1—€)N6l,
Wy, = —(~—222% ),
4 q( Ve )
1 s dT4
Zy = —(+—-——-9).
4 P(/4 Iy )
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Stabiliy of the infection steady states

In order to study the local stability of the points E;, Ep, E3 and
E,4, we first define the following numbers:

1—¢€)gNs — 1R 1
pw = L=eNs pw _ pw Hy = ——
0 b0 * (a(l—eNs+pRo) 0 1 17
o =
0 Dé/‘/
s = 146 Ro 7 1
D¢ =, Df =Df HE = ——
0 = ps 70 O (a(1 - €)Ns + puRo) + aus(Ro—1) ' ° 1 17
= T =
0 DoZ
and 5
HWZ _ Dg Ro
o = 2
h
DSA/(1+%)+RO(1+%)
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Stability of E;

Q@ I/f Ry < 1, then the point E; does not exist.

Q IfRy =1, then E; = Ef.
© If Ry > 1, then E; is locally asymptotically stable for Hg/v <1,
and HOZ < 1; however it is unstable for Hé/v > 1 or HOZ > 1.
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Elements of the Proof

Proof (Elements)

It easy to see that if Ry < 1, then the point E; does not exist and
if Ry = 1 the two points E; and Ef coincide. If Ry > 1, the
Jacobian matrix at Ej is given by

(I -n)Bwi (L—n)BT:

1+av; 7 C(1+aWn)? 0 0
(1—=n)pVy (1-—n)BTy
WP (5 S LA 0o —pl
Jg — 1+aWh ( ) (1+aVy)? Pl
! 0 (1—¢e)N§ — L —q\V1 0
0 0 0 gVi—h 0
Cll
0 0 0 1+ah

then, its characteristic equation is

Cll

3 2 _
1+a,1)(f + 318" + & + a3) =0,

(E+h—g)(§+ b~
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where

= (1 7])5\/1
d—f—(s L A -
o tetet 1+ a\/i ’

—n)BV. — O)NSBT

a3 = pd(5 + p) + po(l—n)BVs (1 —0)N6BT1d

1+aVg (14 aVp)2
hDYY (HY — 1
We haveng—h:O(H‘t/)V) and
— 0
/ bD§ (HE — 1
1 +C ;/1 —b= O(H;)Z). Checking the negativity by

Routh-Hurwitz Theorem.
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Stability of E;
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Flgu re 2: Behavior of the infection during the time which correspond to the stability of the

endemic-equilibrium point E;. s =5, 8 = 0.000024, d = 0.02, § = 0.5, p = 0.001, N = 1200, = 3, p = 0.01,
2=0.001, « = 0.001, c =0.03, b=0.2, g=0.5, g =101, h=0.1, 7= 0.1 and € = 0.2.

20/29



Stability of E;

Q If Hgv < 1, then the point E, does not exist.

Q /fHé/V =1 then E; = E;.

Q If HA/V > 1 then E;, is locally asymptotically stable for
HXV’Z < 1 and unstable for H(;/V’Z > 1.
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Stability of E;
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FIgU re 3: Behavior of the infection during the time which correspond to the stability of the
endemic-equilibrium Ep, s = 10, 8 = 0.000024, d = 0.02, 6 = 0.5, p = 0.001, N = 1200, = 3, p = 0.01,
a = 0.001, « = 0.001, ¢ = 0.03, b =0.2, g = 0.001, g = 10—, h = 0.01, m = 0.55 and € = 0.45.
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Stability of Ej

Q Ifa> % or H < 1, then the point E3 does not exist and
E; = E; when Hf = 1.

Q Ifa< %, HZ >1 and DY < (1— O‘Tb)DOZ , then Ej is locally
asymptotically stable.

b
O Ifa< %, HZ >1 and DYV > (1— %)DOZ, then Es is

unstable.
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Stability of Ej
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Flgu re 4. Behavior of the infection during the time which correspond to the stability of the

endemic-equilibrium E3, s = 15, 8 = 0.000024, d = 0.02, § = 0.5, p = 0.001, N = 1200, x = 3, p = 0.01,
2=0.001, « = 0.001, c =0.03, b=0.2, g =0.5, g =101 h=0.1, n = 0.02 and € = 0.07
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Stability of E,

Q Ifa> % or DYV < (1 - %b)DOZ or H(;/V’Z < 1, then the point

E, does not exist. Moreover E4, = E> when H(‘,/V 2 —1 and
E4 = E3 when D(;/V = DOZ

b
Q Ifa< %, DY > (1- %)DOZ and HY% > 1, then E, is
locally asymptotically stable.
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Stability of E,

Uninfected Cells
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Flgu re 5: Behavior of the infection during the time which correspond to the stability of the

endemic-equilibrium E4, s = 10, 8 = 0.000024, d = 0.02, 6 = 0.5, p = 0.001, N = 1200, = 3, p = 0.01,

2=10.001, a = 0.001, c = 0.03, b=0.2, g= 0.5, g =104 h=0.1, n = 0.05 and € = 0.2.
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Conclusion

@ The local stability of the disease-free equilibrium depends on
the basic reproduction number Ry.

@ The local stability of the infection steady states depends on
the basic reproduction number Ry, the CTL immune response
reproduction number DOZ and the antibody immune response
reproduction number DYV.

@ In the presence of therapy, an increases of the uninfected cells
is observed.

@ The results of this work confirm that the therapy may control
the viral replication and reduce the infection.
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