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1. Statement of the problem.

Suppose that we deal with individuals living in some region.

The community of individuals of the region is splitted into
three classes: susceptible (S), infected (I), resistant (R).

Transitions of individuals between classes define model name:

S−→I−→R−→S.

Denote by U — an auxiliary class, that contains individuals of
other regions and died individuals.

PURPOSE: the comparison of conditions for the eradication of
the epidemic process within the stochastic and deterministic
models depending on the Basic reproduction numder R0.
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2. Model assumptions.

• Class S can be replenished by individulas from other regions:

U
f−→ S. (1)

• Each individual can die or migrate to other regions:

S
α−→ U, I

γ−→ U, R
σ−→ U. (2), (3), (4)

• Contact of susceptible and infected individuals leads to
infection of the sensitive individual:

S + I
β−→ 2 I. (5)

• The infected individual may recover resistance to infection.
Eventually the resistance losts and individual becomes
susceptible to infection:

I
FI=⇒ R, R

FR=⇒ S. (6), (7)

Here: f , α, γ, σ, β — positive constants, FI , FR — distribution functions that specify
the time of stay of an individual in the corresponding class.
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• Suppose, that FI and FR are exponential distribution
functions (λ = const > 0, µ = const > 0):

FI(a) = 1− e−λa, FR(a) = 1− e−µa, a ≥ 0. (8)

In this case, a deterministic model — the system of ordinary
differential equations,

stochastic model — a non-linear birth and death process.

• Suppose, that FI or FR differs from functions (8).

Then we have to take into account the history of the
development of epidemic process:

if we fix time t, then we must use information about the
process at previous time s ≤ t.
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Next, we will present our results for one partial case, namely:

FI(a) = 0, a ≤ ωI, FI(a) = 1, a > ωI, (9)

FR(a) = 0, a 6 ωR, FR(a) = 1, a > ωR, (10)

where ωI = const > 0, ωR = const > 0 — length of stay of
individuals in classes I and R.

• Deterministic model—the system of delay differential
equations.

• Stochastic model—Markov random process in a special state
space.
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3. Model in the form of delay differential equations.

Denote by x(t), y(t), z(t) the numbers of individuals of classes
S, I, R at time t (real variables). Model equations:

dx(t)/dt = f−αx(t)−βx(t)y(t)+r2βx(t−ωI−ωR)y(t−ωI−ωR),

dy(t)/dt = βx(t)y(t)− γy(t)− r1βx(t− ωI)y(t− ωI),

dz(t)/dt = r1βx(t− ωI)y(t− ωI)− σz(t)−

− r2βx(t− ωI − ωR)y(t− ωI − ωR),

t ≥ ωI + ωR, (11)

x(t) = x0(t), y(t) = y0(t), t ∈ [0;ωI + ωR], z(ωI + ωR) = z0,

(12)

x0(t) ≥ 0, y0(t) ≥ 0 — continuous functions, z0 = const > 0,

r1 = exp(−γωI), r2 = exp(−γωI − σωR).
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The initial data (12) may be specified by means of auxiliary
system of differential equations.
In this case the system (11), (12) has on the interval
[ωI+ωR;∞) the unique solution with nonnegative components.

Denote (the Basic reproduction numder)

R0 =
f β (1− r1)

αγ
. (13)

The system (11) for any values of parameters has a trivial
equilibrium

x∗1 =
f

α
> 0, y∗1 = 0, z∗1 = 0. (14)

If R0 < 1, then the system (11) has no more equilibriums
with nonnegative components, except (14), and (14) is
asymptotically stable.
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If R0 > 1, then the equilibrium (14) is not stable, and
the system (11) has one more equilibrium with positive
components:

x∗2 =
γ

β(1− r1)
> 0, y∗2 =

α
(
R0 − 1

)
β (1− r2)

> 0,

z∗2 =
(r1 − r2)β x∗2 y∗2

σ
> 0. (15)

We do not have general results regarding the stability or
instability of the equilibrium (15), except some partial cases.
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4. Stochastic SIRS model.

Let x(t), y(t), z(t) — random integer variables — the numbers
of individuals of classes S, I, R at time t. To distinguish
individuals of the classes I and R we will use two special sets:

ΩI(t) =
{
aI1 + ωI, . . . , aIk + ωI, . . . , aIy(t) + ωI

}
, (16)

ΩR(t) =
{
bR1 + ωR, . . . , bRj + ωR, . . . , bRz(t) + ωR

}
, (17)

aI1 < · · · < aIy(t) ≤ t, aIk + ωI > t, 1 ≤ k ≤ y(t),

bR1 < · · · < bRz(t) ≤ t, bRj + ωR > t, 1 ≤ j ≤ z(t).

In (16) the symbol aIk means time moment when the individual of class S entered
into class I; the symbol aIk +ωI means the time of possible transition of an individual
from class I to class R. In (17) the symbols bRj, bRj + ωR have the same meaning.

If y(t) = 0 or z(t) = 0, we put ΩI(t) = ∅ or ΩR(t) = ∅.
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To describe the dynamics of x(t), y(t), z(t), ΩI(t), ΩR(t)

we use the following approach.

Let t, x(t), y(t), z(t),ΩI(t),ΩR(t) are fixed. We accept:

τ = min{aI1 + ωI, bR1 + ωR, t+ ξ1, . . . , t+ ξ5},
x(τ ) = x(t) + ∆x, y(τ ) = y(t) + ∆y, z(τ ) = z(t) + ∆z,

ΩI(τ ) = ΩI(t)± {aIn}, ΩR(τ ) = ΩR(t)± {bRn}.

Symbol ± means replenishment of ΩI(t), ΩR(t) by new elements or an exception of
some elements from ΩI(t), ΩR(t).

Elements aI1+ωI, bR1+ωR are the first one of the ΩI(t), ΩR(t).

Distributions of random variables

ξ1, . . . , ξ5, ∆x, ∆y, ∆z, aIn, bRn (18)

are set on the basis of transition probabilities during interval
(t, t+ h), h→ +0 (in accordance with the formulas (1)–(5)):
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P{(x(t), y(t), z(t))→ (x(t) + 1, y(t), z(t))} = f h+ o(h),

P{(x(t), y(t), z(t))→ (x(t)− 1, y(t), z(t))} = αx(t)h+ o(h),

P{(x(t), y(t), z(t))→ (x(t), y(t)− 1, z(t))} = γ y(t)h+ o(h),

P{(x(t), y(t), z(t))→ (x(t), y(t), z(t)− 1)} = σ z(t)h+ o(h),

P{(x(t), y(t), z(t))→ (x(t)− 1, y(t) + 1, z(t))} = β x(t) y(t)h+ o(h),

P{(x(t), y(t), z(t))→ (x(t), y(t), z(t))} = 1− q(x(t), y(t), z(t))h+ o(h),

q(x(t), y(t), z(t)) = q1(x(t), y(t), z(t)) + · · ·+ q5(x(t), y(t), z(t)),

q1(x(t), y(t), z(t)) = f ; q2(x(t), y(t), z(t)) = αx(t); q3(x(t), y(t), z(t)) = γ y(t);

q4(x(t), y(t), z(t)) = σ z(t); q5(x(t), y(t), z(t)) = β x(t) y(t).

For example, if x(t) 6= 0, ΩI(t) 6= ∅, ΩR(t) 6= ∅, then:

P{ξi < a} = 1− e−qi(x(t),y(t),z(t)) a, a ≥ 0, 1 ≤ i ≤ 5. (19)

The distribution laws of random variables ∆x, ∆y, ∆z and
aIn, bRn depend on variable τ .
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5. Results of numerical simulations.

The purpose of numerical simulation — studying the
eradication of the infection in the stochastic model at fixed
time T and fixed initial state F0.

We study this problem depending on basic reproduction
numder R0, defined by formula (13).

We used parameters and initial data:

f = 10000.0, α = 1.0, x(0) = 8000,

β = 0.002, γ = 2.0, y(0) = 1000,

ωR = 10ωI, σ = 1.0, z(0) = 1000,

The value of the parameter α = 1.0 is chosen such, that the
average lifespan of individuals of the class S equals 1/α = 1.0.

Parameter ωI takes different values.
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For the numerical simulation we used own computer program
Populations Modeler, developed since 2004 year.

To make estimations, we calculated and averaged n = 10000

realizations of the stochastic process.

• Let us introduce the probability of eradication of an
infectious process at time T = 20:

PD = P(y(T ) = 0 | F0).

For the above model parameters the estimation error of P̄D for
PD does not exceed 0.0131 at 99%–confidence level.

• For expectation E(y(T ) | F0) the estimation error

of ȳ(T ) does not exceed 5.56 at 99%–confidence level.
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The calculation results are shown in table

R0 ωI y∗2 P̄D
0.90 0.0958 – 1.0

1.00 0.1073 – 1.0

1.09 0.1177 90.1 0.96

1.15 0.1248 144.4 0.42

1.21 0.1319 194.9 0.12

1.30 0.1427 264.8 0.05

1.40 0.1548 335.9 0.0

1.50 0.1672 401.4 0.0

One can see, that in the cases 1 < R0 < 1.4 the probability of
eradication of the epidemic process PD > 0.

But, for deterministic model it is NOT impossible, that

y(t)→ 0, t→ +∞.
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Let us consider the calculation results in the case R0 = 1.21.

We have received ȳ(T ) = 172.3.

As a consequence, E(y(T ) | F0) < y∗2 = 194.9.

Nevertheless, E(y(T ) | F0) ≈ y∗2(1− PD),

and conditional expectation E(y(T ) | F0, y(T ) > 0) ≈ y∗2 !!!
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6. Conclusion.

Conditions of eradication of an infection in the case R0 > 1

are different in the framework of stochastic and deterministic
models. Main reasons:

1) the structure of the used models, as well as of continuity
and discontinuity models variables;

2) unstability of equilibrium (x∗1, y
∗
1, z

∗
1) = (f/α, 0, 0) in

deterministic model;

3) the presence of absorb statе — point y = 0 in stochastic
model;

4) a small number of individuals of class I.

Therefore, the results of the research of deterministic
models should be supplemented by the results of numerical
experiments with the stochastic models.
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Thank You For Attention !
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Supplement 1.

The stochastic SIRS-model allows such mode at which
y(t) = 0, z(t) = 0 almost surely for each fixed t > 0.

In this case the random process x(t) is the linear random death
process with immigration of particles, and

E(x(t) | F0) =
(
x(0)− f/α

)
e−α t + f/α, t > 0.
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To be able to perform numerical experiments it is important
to show that

E(w2(t) | F0) < +∞, t > 0,

where w(t) = x(t) + y(t) + z(t),

F0 = {x(t0), y(t0), z(t0),ΩI(t0),ΩR(t0)}.

We have proved that

E(w2(t) | F0) 6 w2(0) + (1 + 2w(0))ft+ (ft)2 < +∞, t ≥ 0.
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Supplement 2.

The program Populations Modeler uses:

• the Monte–Carlo technique;

• 128-bit congruent pseudorandom number generator;

• the big frog and small frog technique to select random
numbers subsequents for realizations;

• an effective memory model allowing to process about 106 –
107 individuals;

• 128-bit representation of time points to prevent rounding
errors;

• multi-thread and cluster computations.


