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1 Introduction

Olive knot, caused by Pseudomonas savastanoi pv. savastanoi (Psv), is

one of the most important diseases of olive crop, produces tumorous galls

or knots on stems and branches of olive trees, causing their death or loss

of vigour. Psv is usually found in olive tree phyllosphere as an epiphyte

and/or endophyte.

J. M. Quesada, R. Penyalver, J. Pérez-Panadés, C. I. Salcedo, E. A.

Carbonell, M. M. López, Dissemination of Pseudomonas savastanoi pv.

savastanoi populations and subsequent appearance of olive knot disease.

Plant Pathology 59: 262-269 (2010).

J. M. Quesada, R. Penyalver, M. M. López, Epidemiology and Control of

Plant Diseases Caused by Phytopathogenic Bacteria: The Case of Olive

Knot Disease Caused by Pseudomonas savastanoi pv. savastanoi, Plant

Pathology, Dr. Christian Joseph Cumagun (Ed.), ISBN:

978-953-51-0489-6, InTech (2012).
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Figure 1: Olive knot disease.
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Figure 2: Olive knot disease.
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Figure 3: Olive knot disease.
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Figure 4: Olive knot disease.
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Disease development depends on Psv interaction with other

microorganisms, usually epiphytic, but also in the knots. Microorganisms

in olive knots either depress Psv growth or produce an increase in knot

size.

G. Marchi, B. Mori, P. Pollacci, M. Mencuccini, G. Surico Systemic

spread of Pseudomonas savastanoi pv. savastanoi in olive explants. Plant

Pathology 58: 152-158 (2009).

G. Marchi, A. Sisto, A. Cimmino, A. Andolfi, M. G. Cipriani, A.

Evidente, G. Surico. Interaction between Pseudomonas savastanoi pv.

savastanoi and Pantoea agglomerans in olive knots. Plant Pathology 55:

614-624 (2006).
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Olive knot is difficult to control: the use of these antagonists as biological

control agents against Psv is a promising tool to reduce olive knot

incidence on olive crops, following European policy aiming at more

sustainable crop production systems (Directive 2009/128/EC) and

following the “Guidelines for integrated production of olives” published

by IOBC/WPRS

C. Malavolta, D. Perdikis, IOBC Technical Guidelines III. Guidelines for

Integrated Production of Olives. IOBC/WPRS Bulletin 77, 1-19 (2012).

We have started studying the endophytic fungal community associated to

Psv in the phyllosphere of Portuguese olive tree cultivars, and their

capacity to antagonize Psv under in vitro conditions.
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Figure 5: Epicoccum nigrum.



BIOMAT 2017 Moskva, Rossia, October 30th - November 4th, 2017 12

Antagonism testsed on solid media with agar overlays showed an

inhibition zone for the endophyte Epicoccum nigrum and its supernatant

was showed to reduced Psv growth/biomass around 96%, after 48 h of

incubation (unpublished data).

This ecological setting shows that in the context of the Olive tree all the

three types of mutual relationships, predator-prey, competition and

symbiosis simultaneously occur.

Aim: to better understand the effect of the resident fungus (E. nigrum) in

the Psv development.

Mathematical model accounting for the interactions olive

tree-Psv-E.nigrum.
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2 The model

Consider a single olive tree affected by the olive knot disease caused by

Psv. Assume the endophytic fungus Epicoccum nigrum present on the

olive tree with two effects: positive on the tree, and on the environment,

removing bacteria. The endophytic fungus also gains indirectly more

space on the plant and directly more food from the plant.

The populations (measurable by biomass - or extent of their surface):

• S: the healthy branches of the olive tree;

• I: the branches of the same olive tree that are infected by bacteria;

• B: the pathogenic bacterium Psv, infecting the olive branches;

• N : the endophytic fungus E. nigrum, that remove the Psv bacterium

B, and gets more space and also more nutrients from the plant; they

also exert a beneficial effect on the healthy parts of the plant, S.
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The model, in which all the parameters represent nonnegative quantities,

reads:

dS

dt
= s

(

1−
S + I

K

)

S − λSB + bNS (1)

dI

dt
= λSB − qIB − gI − s

S + I

K
I

dB

dt
= hqIB − aNB −mB − rB2

dN

dt
= ebNS + uaNB − nN − pN2.
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dS

dt
= s

(

1−
S + I

K

)

S − λSB + bNS

In the first equation the evolution of the tree healthy branches is modeled.

They reproduce following a logistic growth, with net biomass production

rate s and carrying capacity K and become infected at rate λ by the action

of the bacterium. We assume that there is well mixing of the bacteria in

all parts of the tree because they are transported by the wind and the rain.

In this way their interaction with the healthy parts of the tree is modeled

via a mass action term, this fact in epidemiological terms corresponding

to the homogeneous mixing λSB. The last term expresses the fact that

they get benefit at rate b from the endophytic fungi, with which they have

a beneficial relationship.
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dI

dt
= λSB − qIB − gI − s

S + I

K
I

The second equation for the infected branches shows firstly that they

become so when they are attacked by the bacterium, secondly they also

suffer the action of the bacteria B at rate q, then they experience an

additional, disease-related, mortality at rate g and finally are also subject

to intraspecific competition for space and nutrients from other healthy and

infected branches.
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dB

dt
= hqIB − aNB −mB − rB2

In the third equation we model the bacterium. It gets nutrients from the

infected branches, as already mentioned at rate q, with a conversion factor

h < 1. The second term indicates that they are killed by the E. nigrum at

rate a, the third one that their natural mortality rate is m. Bacteria can die

also by intraspecific competition at rate r.
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dN

dt
= ebNS + uaNB − nN − pN2.

The endophytic fungus is modeled in the fourth equation. They get benefit

from their relationship with the healthy branches, at rate b, scaled by a

factor e < 1, and also by killing the bacterium at rate a, because in this

way they get more space for growth, and indirectly also more nutrients.

Here u < 1 represents another conversion factor. In the last two terms we

model their removal from the ecosystem: Epicoccum nigrum naturally die

at rate n and experience also intraspecific competition at rate p.
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3 The ecosystem’s steady states

There are the origin E0 = (0, 0, 0, 0) and the healthy-tree only

equilibrium E1 = (K, 0, 0, 0), which are both always feasible.

The eigenvalues for E0 are −g < 0, −m < 0, −n < 0 and s > 0,

showing its unconditional instability.

The corresponding eigenvalues of E1 are −s < 0, −m < 0, −g − s < 0

and ebK − n, giving the following condition ensuring the stability of the

equilibrium:

ebK < n. (2)
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The equilibrium in which the endophytic fungi are absent:

E2 =

(

K −

(

1 +
λhqK

rs

)

I2 +
λmK

rs
, I2,

hq

r
I2 −

m

r
, 0

)

(3)

where I2 is the positive root of the quadratic equation:

U2I
2

2
+ V2I2 + Z2 = 0, V2 =

λKhq +mq

r
+ 2

λ2hqKm

r2s
− g − s, (4)

U2 = −
λ2h2q2K

r2s
−

hq2

r
< 0, Z2 = −

λKm

r
−

λ2m2K

r2s
< 0.

For a nonnegative root I2, by Descartes’ rule of signs, we need V2 > 0

and V 2

2
≥ 4U2Z2. For nonnegativity of B and S need the conditions:

hqI2 ≥
m

r
, K +

λmK

rs
>

(

1 +
λhqK

rs

)

I2

Thus feasibility conditions are then given by:

V2 > 0, V 2

2
≥ 4U2Z2,

m

hq
< I2 <

K(rs+ λm)

rs+ λhqK
. (5)
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The point with no infection, the tree is healthy and the phyllosphere

microorganisms thrive in it,

E3 =

(

K(bn− sp)

Keb2 − sp
, 0, 0,

s(n−Keb)

Keb2 − sp

)

.

It is feasible if either one of the following sets of conditions holds:

max

{

sp

n
,

√

sp

Ke

}

< b <
n

Ke
(6)

or

n

Ke
< b < min

{

sp

n
,

√

sp

Ke

}

. (7)
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Two of the eigenvalues of J(E3) are explicit: −g − sK−1S3 < 0,

−m− aN3 < 0. The remaining two eigenvalues are the roots of the

quadratic equation:

µ2
− tr(Q) + det(Q) = 0

with

−tr(Q) =
s

K
S3 + pN3 > 0, det(Q) =

s

K
pS3N3 − b2eS3N3.

Stability of E3 requires that det(Q) > 0, that is:

sp > Kb2e. (8)

Condition (6) is the opposite of (8), so that in this case E3 is feasible but

unstable.

If instead(7) holds, (8) is verified and E3 is stable.

Moreover, there is a transcritical bifurcation between E1 and E3, compare

the stability condition (2) of E1 with the feasibility condition (7) for E3.
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Finally, the coexistence equilibrium is found as follows:

E∗ =

(

sK − sI∗ − kλB∗ +KbN∗

s
, I∗, B∗,

hqI∗ − rB∗ −m

a

)

, (9)

and where I∗ solves a quadratic equation with known AB , AC and AI :

I∗
1
=

b∗r +m

hq
> 0, I∗

2
=

ABB
∗ +AC

AI

. (10)

But focusing only on I∗
1

, B∗ solves the quadratic with known coefficients

U1B
∗2 + V1B

∗ + Z1 = 0. (11)

The quadratic equation (11) has real roots if and only if V 2

1
− 4U1Z1 ≥ 0.

For just one positive value of B∗, need exactly one sign variation, ensured

by one of the alternative situations: U1V1 < 0 or V1Z1 < 0 or U1Z1 < 0.

If instead U1 and Z1 have the same sign and V1 the opposite one, both

roots of (11) are positive.
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In summary, feasibility of E∗:

sK +KbN∗ > sI∗ +KλB∗, hqI∗ > rB∗ +m, V 2

1
− 4U1Z1 ≥ 0. (12)

Stability for equilibrium with no endophytes E2 and for the coexistence

equilibrium E∗ is investigated numerically.
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4 Numerical simulations

The ecosystem (1) embeds a symbiotic subsystem for S and N . This

classical two-populations mathematical model can lead to unbounded,

ecologically unrealistic, growth, if its isoclines are suitably chosen. To

avoid this need assumptions on the ecosystem parameters.

The symbiotic subsystem isoclines

s−
s

K
S + bN = 0, ebS − n− pN = 0 (13)

intersect at the point
(

K(nb− sp)

Keb2 − sp
,

s

b

(

−1 +
nb− sp

Keb2 − sp

))

, (14)

feasible if the two sets of alternative feasibility conditions for E3 hold (6)

and (7).

Goal: want to control the spread of the disease in the olive tree.
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For the parameters a and m, we use the fixed values m = 0.183 (the time

unit is taken to be hours) and a = 0.021 (time unit hours) provided by our

laboratory experiments, yet unpublished.

The parameter b is not experimentally known and thus it is chosen to

satisfy the conditions (6) and (7).

To run the simulations, the intrinsic ode45 routine of Matlab2016a and

the bifurcation software XPPAUT are used. Set of parameters reference

values:

s = 4.24476, b = 0.2, q = 9.24772, g = 6.42079, (15)

h = 0.226653, m = 0.183, a = 0.021, e = 0.9,

n = 1.045, u = 0.214479, K = 50, r = 3.95804, p = 0.8

Initial conditions

S(0) = 7.0300, I(0) = 7.5415, B(0) = 5.4729, N(0) = 5.5348. (16)
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Scenarios obtained varying mainly the infection rate parameter λ.

Construct the one-parameter bifurcation diagrams for the four populations

S, I , B and N , Figs. 4 and 4. In view of the constraints (6) and (7), the

parameter b can lie only in the approximate range [0.023, 0.2747].

In the first diagram for the population S, one can see that for

0.5 . λ . 11.86 five equilibrium points are feasible: for 0.5 . λ . 4.83

one of the two coexistence equilibria is stable, given by the red line (b),

while the black lines (a), (c), (d) denote the unstable equilibria. The

same equilibrium points can be noted in the other bifurcation diagrams

for I , B and N , denoted with the same letters.
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Figure 6: Left: bifurcation diagram (λ, S). Right: bifurcation diagram

(λ, I). Parameter values: s = 4.24476, b = 0.2, q = 9.24772, g =

6.42079, h = 0.226653, m = 0.183, a = 0.021, e = 0.9, u = 0.214479,

n = 1.045, K = 50, r = 3.95804, p = 0.8. Initial conditions: S(0) =

7.0300, I(0) = 7.5415, B(0) = 5.4729, N(0) = 5.5348. HB: Hopf

bifurcation point. TCB: transcritical bifurcation point. SNB: saddle-node

bifurcation point. (a), (b), (c), (d): equilibrium points. (e): stable limit

cycle.
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In the second diagram of Fig. 4, for λ & 4.83, the population N collapses

to 0 and E2, the line (d), becomes stable after a transcritical bifurcation

(TCB), which occurs between (b) and (d) for λ ≅ 4.83. A saddle-node

bifurcation (SNB) occurring at λ ≅ 0.5 separates the stable coexistence

equilibrium (b) from the unstable one, denoted with (a). For values of λ

larger than 11.86, the three nonvanishing populations S, I and B in the

solution of the system (1) oscillate, due to the presence of a stable limit

cycle, whose maximum and minimum values are plotted by the line

named (e). The Hopf bifurcation from which the limit cycle originates

occurs for λ ≅ 11.9 (HB). At λ ≅ 11.86, another Hopf bifurcation leads

to the presence of an unstable limit cycle, surrounding the stable one. For

simplicity, here it is not represented into the bifurcation diagrams in order

not to clutter the figures.



BIOMAT 2017 Moskva, Rossia, October 30th - November 4th, 2017 30

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 5 10 15 20 25 30

lambda

B

(b)

SNB

TCB

HB

(e)

(d)

(a)

(c)
0

5

10

15

20

25

0 5 10 15 20 25 30

lambda

N

HB
(e)

SNB

TCB

(a)

(b)

(d)(c)

Figure 7: Left: bifurcation diagram (λ,B). Right: bifurcation diagram

(λ,N). Parameter values: s = 4.24476, b = 0.2, q = 9.24772, g =

6.42079, h = 0.226653, m = 0.183, a = 0.021, e = 0.9, u = 0.214479,

n = 1.045, K = 50, r = 3.95804, p = 0.8. Initial conditions: S(0) =

7.0300, I(0) = 7.5415, B(0) = 5.4729, N(0) = 5.5348. HB: Hopf

bifurcation point. TCB: transcritical bifurcation point. SNB: saddle-node

bifurcation point. (a), (b), (c), (d): equilibrium points. (e): stable limit

cycle.
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Fig. 4 shows the results for higher values of λ, namely for λ = 55. The

solutions for S, I and N according to continuous time are characterized

by high amplitude oscillations, approaching values dangerously close to

zero, while the N population rapidly decays and ultimately vanishes.
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Figure 8: Parameter values: λ = 55, s = 4.24476, b = 0.2, q = 9.24772,

g = 6.42079, h = 0.226653, m = 0.183, a = 0.021, e = 0.9, u =

0.214479, n = 1.045, K = 50, r = 3.95804, p = 0.8. Initial conditions:

S(0) = 7.0300, I(0) = 7.5415, B(0) = 5.4729, N(0) = 5.5348. Note

that the zero value is located at higher level than the frames’ bottom.
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In Fig. 4 the trajectories for λ = 0.2 are shown: we note that for values of

λ smaller than about 0.5 the system converges to the equilibrium point

E3. Consequently the disease is eradicated due to the low value of the

transmission rate. The healthy branches population thrives to very high

levels, higher than the carrying capacity, because of the beneficial effect

of the endophytic fungus.
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Figure 9: Parameter values: λ = 0.2, s = 4.24476, b = 0.2, q = 9.24772,

g = 6.42079, h = 0.226653, m = 0.183, a = 0.021, e = 0.9, u =

0.214479, n = 1.045, K = 50, r = 3.95804, p = 0.8. Initial conditions:

S(0) = 7.0300, I(0) = 7.5415, B(0) = 5.4729, N(0) = 5.5348. Note

that both infected branches and bacteria disappear, the zero value is indeed

located at higher level than the frames’ bottom.
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Equilibria sensitivity analysis to variations in two parameters: e.g. effects

due to climate changes inducing substantial changes in the ecosystem.

Firstly, Fig. 4 for the pair λ− g, where g is the additional disease-related

mortality rate of the infected part of the plant. Use same set of parameters

and IC’s of Figs. 4 and 4, but allow the ranges λ ∈ [0, 10] and g ∈ [0, 10].

The surfaces represent each population level at equilibrium.

For low λ and g higher than 6, I and B vanish, while S and N thrive at

rather high levels: here E3 is stable, the disease is thus eradicated.

This is sensible, the disease propagation rate is low and the rate at which

the infected part of the plant die is high, in turn damaging the bacteria in

the plant and removing the infected branches.

For low values of both g and λ instead we find coexistence and when

λ & 4.83, the population of the endophytic fungi, N , disappears, with the

ecosystem attaining the endophytic fungi-free equilibrium E2, but with

alarmingly small values of the healthy parts of the plant.
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Figure 10: Populations as functions of λ and g. Remaining parameter

values: s = 4.24476, b = 0.2, q = 9.24772, h = 0.226653, m = 0.183,

a = 0.021, e = 0.9, u = 0.214479, n = 1.045, K = 50, r = 3.95804,

p = 0.8. Initial conditions: S(0) = 7.0300, I(0) = 7.5415, B(0) =

5.4729, N(0) = 5.5348.
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Then, Fig. 4, consider the transmission rate and the rate at which the

antagonistic fungi produce a beneficial effect on the plant, i.e. λ− b, in

[0, 11]× [0.023, 0.2747]. For b, impose the feasibility for E3, namely (6)

and (7). E3 is attained when λ < 0.5, matching the analytical results and

also the results of the one-parameter bifurcation diagram in Figs. 4 and 4.

Bacteria and infected parts of the plant vanish, only healthy branches and

antagonistic fungi thrive. For low b the two species present in the system

assume low values, while for b > 0.25 they increase to biologically

considerable high values.

In Fig. 4 for 0.5 . λ . 4.83 the system converges to coexistence: N is

very close to zero. For λ & 4.83, instead E2 with no endophytic fungus

Epicoccum nigrum becomes stable. When λ ≈ 4.83 and b ≈ 0.2747 the

infected branches and bacteria populations I and B have a peak, while S

and N rapidly drop to values close to zero.
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Figure 11: Populations as functions of λ and b. Remaining parameter

values: s = 4.24476, q = 9.24772, g = 6.42079, h = 0.226653, m =

0.183, a = 0.021, e = 0.9, u = 0.214479, n = 1.045, K = 50, r =

3.95804, p = 0.8. Initial conditions: S = 7.0300, I = 7.5415, B =

5.4729, N = 5.5348.
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We finally consider the parameter pair λ− q, recalling that the latter

represents the mortality rate of the infected branches due to the attack of

the bacteria.

Keeping the previously chosen set of the parameters (15), for values of

λ > 11.9, the system converges to a stable limit cycle, in which however

the endophytic fungi population N vanishes. Fig. 4 shows the system

solutions as functions of time for λ = 20 > 11.9 and q = 5, q = 8,

q = 25.

Note that the change in the values of the disease-related mortality rate q

of the infected branches does not affect the feasibility and stability of the

equilibrium, but it rather influences the amplitude of the oscillations,

which decreases for higher values of q.
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Figure 12: Persistent limit cycles of the system. Top, left: q = 5. Top,

right: q = 8. Bottom: q = 25. Remaining parameters values: λ = 20, s =

4.24476, b = 0.2, g = 6.42079, h = 0.226653, m = 0.183, a = 0.021,

e = 0.9, u = 0.214479, n = 1.045, K = 50, r = 3.95804, p = 0.8.

Initial conditions: S = 7.0300, I = 7.5415, B = 5.4729, N = 5.5348.

Note that the solutions are plotted for time values in the range [320, 400].
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Fig. 4, shows the system behavior in terms of the variations of the

parameter q in the range [0, 20], together with the influence of the disease

transmission coefficient λ ∈ [0, 20].

For low values of the parameter q, independently of the value of λ, the

system settles to the disease-free equilibrium E3, with the presence of

only the healthy part of the plant and the antagonistic endophytic fungi.

In a region close to the origin the favorable equilibrium point E3 is stable.

For higher values of q and λ & 0.5, the system achieves coexistence at

steady values, with S and N showing a quick decrease toward zero.

Finally, larger values of λ and q lead the system to reach the equilibrium

point E2, with the presence of the disease and the infected branches,

together with the healthy branches, where the endophytic fungi disappear.

For even larger values of λ > 11.9, the ecosystem starts to oscillate. The

surfaces with the highest and lowest peaks in the limit cycles are shown

for the populations S, I and B while N disappears.
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Figure 13: Populations as functions of λ and q. Remaining parameter

values: s = 4.24476, g = 6.42079, h = 0.226653, m = 0.183, a =

0.021, e = 0.9, u = 0.214479, n = 1.045, K = 50, r = 3.95804, p =

0.8, b = 0.2. Initial conditions: S = 7.0300, I = 7.5415, B = 5.4729,

N = 5.5348.
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5 Conclusions

Proposed a model for fighting by natural means harmful bacteria

harboring in the olive trees.

The disease-free equilibrium E3 is biologically the most relevant one,

healthy branches and the endophytic fungi survive, while the infected

parts of the plant and the bacterium Psv disappear. The plant benefits

from the symbiotic action of the fungi, in that it thrives better, at higher

levels, as shown in Fig. 4. However, to achieve this, the parameter b must

satisfy the condition (7), to have E3 both feasible and stable, which is a

very narrow range of values for b. In other words, the benefit that the

endophytic fungi exert on the tree must be confined to a certain

appropriate range.
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The disease-and-endophytic fungi-free equilibrium point E1 is also good

for the plant, since it ensures anyway the survival of the healthy part of

the olive tree plant. Here, with no help from the endophytic fungi, the

branches attain just their own carrying capacity.

There are equilibria that must possibly be avoided, E2 and E∗ because

they still harbor the harmful bacteria, because at E2 the endemic

endophytic fungi-free equilibrium vanish, not good since they provide an

effective suppression mechanism for Psv bacteria’s growth.

A highly virulent disease, with large transmission coefficient, leads to

populations oscillations that are extremely close to vanishing levels, see

Fig. 4, that due to stochastic environmental fluctuations may lead to

ecosystem collapse i.e. to the tree’s death.
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An additional difficulty for obtaining a stable disease-free equilibrium is

the fact that the disease transmission rate λ must lie in a very small low

range. From Fig. 4, the additional disease-related mortality rate must also

be high, because infected branches are fast removed before bacteria can

replicate.

A final point is that also the disease-and-endophytic fungi-free

equilibrium point E1 is difficult to be achieved in practice: the stability

condition hinges on high values of the parameter n, the fungi mortality,

which is however known in general to be quite small.

The findings on the sensitivity analysis however indicate that a high

infected branch mortality g helps in controlling the disease. This can also

be achieved by human-related external means, like pruning of the leaves

and branches that appear to be disease-affected.


