
Mathematical Model of Cancer Therapy with Multiplicity of
Phenotypes and Mutation

Tatiana Yakushkina1 Alexander Bratus2,3 Igor Samokhin2

1National Research University Higher School of Economics, Moscow, Russia
2Faculty of Computational Mathematics and Cybernetics, Lomonosov Moscow State

University, Moscow, Russia
3Applied Mathematics1, Moscow State University of Railway Engineering, Moscow,

Russia

17th International Symposium on Mathematical and Computational Biology

Samokhin 2017 BIOMAT 1 / 14



Model Assumptions

Motivation:
What is an appropriate therapeutic strategy in cancer treatment, if we use the drug

which targets only the wild-type and genetically closest cells?

Key assumptions:

Mathematical model is based on the M. Eigen’s quasispecies theory

Population size is growing

The mutation-selection process is governed by the fitness landscape adaptation: the
maximization of the mean fitness value

The fitness landscape changes slower than systems dynamics, which allows
considering a steady state

The therapeutic drug eliminates the wild-type and its neighboring phenotypes from
the population with a decrease in the mean fitness so that the change of the
landscape can be understood as a reaction of the system balancing fitness value

There is a competition between different types in the population, and the wild-type
dominates in it

Each type is associated with its death rate, where the wild-type has the lowest one
in the absence of therapy.
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Open Quasispecies System: Problem Statement

The system of equations:

du

dt
= exp(−γS)Qmu − Du, Qm = QM, u = (u1, u2, . . . , un),

u(0) = u0 > 0, S =
n∑

i=1

ui (t), γ > 0
(1)

The growing population consists of n different genotypes, each one corresponds to a
binary genetic sequence with a fixed length

ui (t) denotes the number of i-th subpopulation (type)

Total population size: S(t) =
n∑

i=1

ui (t)

Mutation in the system: Q = ||qij ||i,j=1,n, where qij is the probability of replication
i → j .
If we introduce the probability of errorless replication p and Hamming distance dij ,
then

qij = p
l−dij (1− p)dij , 0 < p < 1,

Selection in the system: M = diag(m1,m2, . . . ,mn), where 0 ≤ m̌ ≤ mi ≤ m̂, —
replication rates

Death rates: D = diag(d1, d2, . . . , dn), 0 ≤ ď ≤ di ≤ d̂
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Analysis of Open System

Definition

Let us denote by f (t) the mean fitness of the system (1) at the time t:

f (t) =

n∑
i=1

ui (t)mi

n∑
i=1

diui (t)

=
(m, u(t))

(Du(t), I )
, I = (1, 1, . . . , 1) ∈ R

n

Theorem

The solution of the system (1) is a smooth nonnegative function. If ď < m̂, then

functions S(t) and f (t) are bounded for t ≥ 0.

Statement

If the matrices Qm − D and M − D are nonnegative and mi ≥ di , i = 1, n, then
functions ui (t) and S(t), i = 1, n monotonically increase for t ≥ 0.
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Steady-state Mean Fitness Variation

Let u denote a steady-state distribution of the system (1):

D
−1

Qmu = λu, λ = exp(γS), S =

n∑

i=1

ui

We use M = {(m1,m2, . . . ,mn) :
n∑

i=1

mi = M0} for the set of different fitness

landscapes with a finite sum M0 > 0.

The problem statement:
To maximize the mean fitness function f̄ in a steady-state over the set M.
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Steady-state Mean Fitness Variation

For the fitness value variation in a steady-state δf , we obtain:

δf = (δQmu, v), (2)

where δQm = {qijδmj} and v̄ is an adjoint vector of the corresponding eigenvalue
problem.

It has a linear form:
δf = (δm, c), c = diag(u)QT

v , (3)

where
n∑

j=1

δmj = 0, max(−εI ,−m) ≤ δm ≤ εI (4)
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Example: Numerical Simulations

Parameters:
n = 16, γ = 1, m0

1 = 10,m0
i = 0, p = 0.9, ε = 0.000625, After 16009 iteration there

fitness landscape changes: m5 = 10,mi = 0.
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Figure: 1) Fitness value f in a steady-state changing over the iteration number 2) The number of
the wild-type sub-population 3) The number of the other sub-populations
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System with Therapy

du1

dt
= exp(−γS)(Qmu)1 − d1(h)u1

dui

dt
= exp(−γS)(Qmu)i − di (h)ui − βiu1ui , i = 2, n

dh

dt
= U(t)− αh

ui (0) = u0
i , i = 1, n, h(0) = 0, S =

n∑
i=1

ui (t)

(5)

Where

(Qmu)i =

n∑

j=1

qijαjuj , i = 1, n

h(t) — the drug concentration function
U(t) — the control therapy function: 0 ≤ U(t) ≤ R

α — the dissipation coefficient

di (h) = d0
i + ki (h) = dj(h) = d0

j +
d0h

1 + µd1j
— the death rates βi — the competition

coefficient
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Therapeutic strategy

Applying the result obtained for the system, we derive the following strategy:

1 the first intensive therapy stage: U(t) = R for 0 ≤ t ≤ T , where we observe the
fitness landscape change

2 the relaxation stage: U(t) = 0, T ≤ t ≤ T1

3 the second intensive therapy stage: U(t) = r , 0 ≤ r ≤ R while maximizing the
steady-state mean fitness

Samokhin 2017 BIOMAT 9 / 14



Example 2: Numerical Simulations for Therapy

Parameters: n = 16, p = 0.9,
n∑

i=1

mi = 10, βi = 0.0001, ε = 0.000625,

T = 3000,T1 = 6000.
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Figure: 1) Fitness value f in a steady-state changing over tine 2) The number of sub-populations
1 and 9
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Example 2: Numerical Simulations for Therapy
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Figure: 1) The number of sub-populations 2) The amount of drug
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Example 3: Numerical Simulations for Therapy

Parameters:

n = 16, p = 0.9,
n∑

i=1

mi = 10, βi = 0.01, ε = 0.000625, T = 3000,T1 = 6000.
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Figure: 1) Fitness value f in a steady-state changing over tine 2) The number of the
sub-populations 1 and 9
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Figure: 1) The number of the sub-populations 2) The amount of drug
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Do you have any questions?
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