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Summary

• Intra-tumour heterogeneity, i.e., between-cell phenotypic variability within cancer
cell populations, is a condition of evolution towards drug resistance in tumours.

• Slow genetic mechanisms of ‘the great evolution’ that has designed multicellular
organisms, together with fast reverse evolution on smaller time windows, at the
scale of a human disease, may explain transient or established drug resistance.

• Plasticity in cancer cells, i.e., epigenetic propension to reversal to a stem-like,
de-differentiated status, and resulting adaptability of cancer cell populations,
makes them amenable to resist abrupt drug insult as extreme stress response.

• Reversible plasticity is captured by mathematical models that incorporate
between-cell heterogeneity by making use of continuous phenotypic variables.

• Such models have the advantage of being compatible with optimal control
methods for the theoretical design of optimised therapeutic protocols involving
combinations of cytotoxic and cytostatic (and possible epigenetic) treatments.



A possible evolutionary framework:
the atavistic hypothesis of cancer (1)

“Nothing in biology makes sense except in the light of evolution” (Th. Dobzhansky, 1973)

“Cancer: more archeoplasm than neoplasm” (Mark Vincent, Bioessays 2011)

Israel JTB 1996, Davies & Lineweaver Phys Biol 2011, Vincent Adv Canc Res 2011,

Lineweaver, Davies & Vincent Bioessays 2014, Chen et al. Nature Comm 2015



A possible evolutionary framework:
the atavistic hypothesis of cancer (2)
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(see Chisholm et al. 2016, BBA General Subjects DOI:10.1016/j.bbagen.2016.06.009)

• The genes that have appeared in the process of development to multicellularity
are precisely those that are altered in cancer (Domazet-Lošo & Tautz 2011,
Davies & Lineweaver 2011)

• Is there an order in evolution of multicellularity, from 1) proliferation+apoptosis
to 2) cell differentiation+division of work, and to 3) epigenetic control of
differentiation and proliferation? [Reverse phylogenetic order observed in AML]

• Reconstituting the phylogeny of an ancient ‘multicellularity toolkit’ should shed
light on the robustness or fragility of genes that have been altered in cancer

• Attacking cancer on proliferation is precisely attacking its robustness. It would
be better to attack its weaknesses (e.g. absence of adaptive immune response)



Why resistance in cancer, not in healthy, cell populations?

• According to the atavistic hypothesis, cancer is a ‘backward evolution’ from a
sophisticated form of multicellularity (us), in which epigenetic processes control
gene regulatory networks of transcription factors: differentiation factors, p53,
etc., that physiologically control the basis of cellular life, i.e., proliferation

• We bear in our genomes many attempts of species evolution since billions of
years; dead-end tracks (‘unused attractors’ in S. Huang and S. Kauffman’s
version of the Waddington landscape) have been silenced (e.g., by epigenetic
enzymes, resulting in evolutionary barriers in this landscape), but are still there

• In cancer, global regulations are lost, differentiation is out of control, so that
local proliferations without regulation overcome; sophisticated adaptive
epigenetic mechanisms are present, not controlling proliferation, but serving it
(by stochastic exoression of so-called cold genes? cf. Wu et al. PNAS 2015)

• Primitive forms of cooperation between specialised cells in a locally organised
multicellular collection (tumour), with plasticity between them, may be present,
exhibiting coherent intratumoral heterogeneity, and escaping external control

• The basic cancer cell is highly plastic and highly capable of adaptation to a
hostile environment, as were its ancestors in a remote past of our planet (poor
O2, acidic environment, high UV radiations,...) and likely presently even more



Evolution towards resistance assessed experimentally:
Reversible drug resistance of cancer cells in a Petri dish

• Motivation for math: to account for biological observations of a reversible
drug-resistant phenotype in cancer cell populations, Sharma et al., Cell 2010

• Underlying hypothesis: epigenetic modifications affect differently survival and
proliferation potentials in cancer cell populations exposed to high drug doses

• Our model: 2 traits, x , stress survival potential (∼ resistance to apoptosis) and
y , proliferation potential (∼ cell division cycle enhancement), both reversible

• A PDE model and an agent-based (AB) model both account for the observed
behaviour of the cancer cell population exposed to the drug

See Chisholm et al. Cancer Research 2015



Sum-up of the Sharma et al. paper

• Population of PC9 (NSCLC) cells under high doses of drugs (e.g., gefitinib)
• 99.7% cells die, .3% survive in this maintained hostile drug environment: DTPs
• In the same hostile environment, 20% of DTPs resume proliferation: DTEPs
• Total drug resensitisation is obtained by drug withdrawal after 9 doubling times

for DTPs, and 30 to 90 doubling times, depending on the drug, for DTEPs
• Inhibition of epigenetic enzyme KDM5A blocks emergence of DTPs

(precisely: provokes rapid death of both DTPs and DTEPs, not affecting PC9s)
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(Sharma et al., Cell 2010)



2D continuous phenotype-structured PDE model
• Initial (PC9) cancer cell population structured by a 2D phenotype (x , y):

x ∈ [0, 1]: normalised expression level of survival potential phenotype, and
y ∈ [0, 1]: normalised expression level of proliferation potential phenotype
(both biologically relying on, e.g., levels of methylation in DNA and histones)

• Population density of cells n(x , y , t) with phenotypic expression (x , y) at time t
satisfies

∂n

∂t
(x , y , t) +

∂

∂y

(
v(x , c(t); v̄)n(x , y , t)

)
︸ ︷︷ ︸
Stress-induced adaptation
of the proliferation level

=

[
p(x , y , %(t))− d(x , c(t))

]
n(x , y , t)︸ ︷︷ ︸

Non local Lotka-Volterra selection

+ β∆n(x , y , t).︸ ︷︷ ︸
Non-genetic

phenotype instability

• %(t)=
∫ 1
0
∫ 1
0 n(x , y , t) dx dy , p(x , y , %(t))=(a1 + a2y + a3(1− x))(1− %(t)/K)

and d(x , c) = c(b1 + b2(1− x)) + b3
• The drift term w.r.t. proliferation potential y represents possible (if v 6= 0)

‘Lamarckian-like’, epigenetic and reversible, adaptation from PC9s to DTPs
• v(x , c(t); v̄) = −v̄ c(t)H(x∗ − x) where t 7→ c(t) is the drug infusion function
• No-flux boundary conditions

(Chisholm et al., Cancer Research 2015)



Agent-based model (ABM)
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(Chisholm et al., Cancer Research 2015)








AB model and IDE model recover phenotype dynamics
During drug treatment (here, PC9s and DTPs present initially)

T is the simulation end-time: 0 ≤ t ≤ T

(Chisholm et al., Cancer Research 2015)



AB model and IDE model recover phenotype dynamics
During drug exposure and after drug withdrawal: total recovery of drug sensitivity
(either high or low drug dose)

2 scenarios studied: (A) Initially no drug-tolerant cells (Lamarckian instruction)
(B) Initially a few drug-tolerant cells (Darwinian selection)

(a), (b) Only PC9s initially, adaptation on v 6= 0: ‘Lamarckian adaptive’ scenario (A)

(c), (d) PC9s and DTPs initially, no adaptation v = 0: ‘strict Darwinian’ scenario (B)

(Chisholm et al., Cancer Research 2015)



Use IDE model to address 3 questions

Q1. Is non-genetic instability (Laplacian term) crucial for the emergence of DTEPs?

Q2. What can we expect if the drug dose is low?

Q3. Could genetic mutations, i.e., an integral term involving a kernel with small
support, to replace both adapted drift (advection) and non-genetic instability
(diffusion), generate similar dynamics?

Consider c(·) = constant and two scenarios:
(i) (‘Darwinian’ scenario (B): the dogma) PC9s and few DTPs initially, no

adaptation (v = 0)

(ii) (‘Lamarckian’ scenario (A): the outlaw) Only PC9s initially, adaptation present
(v 6= 0)

To make a long story short, Q1. Always yes! Whatever the scenario

Q2. Low drug doses result in DTEPs, but no DTPs

Q3. Never! Whatever the scenario

(Chisholm et al. Cancer Research 2015)



Summary of simulation results on the Sharma et al. paper

• Both mathematical models (AB, IDE) reproduce the main experimental observations

• To see the transient appearance of the DTPs during high-dose drug therapy:

• If there are some DTPs present initially, model explanation requires only
• non-genetic instability
• selection

• If no DTPs are present initially, model explanation requires interplay between
• stress-induced adaptation
• non-genetic instability
• selection

• Therapeutic consequences? Not clear yet. Epigenetic drugs? Not many of them
exist (in particular no KDM5A inhibitor). Acting on epigenetics by modifying
metabolism? Combining cytotoxic (inducing drug resistance) drugs and cytostatic
drugs at low doses (in principle not inducing drug resistance)?

(Chisholm et al. Cancer Research 2015)



Phenotype-structured population dynamics

• Description of evolution of a population in time t and in relevant phenotype x

• ‘Structure variable’ x : trait chosen as bearing the biological variability at stake

• Variable : n(x , t) population density of individuals bearing trait x at time t

• (1) Evolution in numbers of individuals constituting the population

t 7→ ρ(t) =

∫ 1

0
n(x , t) dx (if, e.g., x ∈ [0, 1])

• (2) Asymptotics of distribution of the trait in the population

x 7→ limt→+∞
n(x , t)

ρ(t)

• Cancer cell populations: (1) tumour growth; (2) asymptotic distribution of trait

• Space is not necessarily a relevant structure variable when studying drug control



Phenotype-structured non-local Lotka-Volterra models

Prototype model, where n(t, x) stands for the density of cells of phenotype x ∈ [0, 1]:

∂n

∂t
(t, x) =

(
r(x)− d(x)ρ(t)

)
n(t, x),

with

ρ(t) :=

∫ 1

0
n(t, x) dx and n(0, x) = n0(x).

We assume reasonable (C1) hypotheses on r and d , and n0 ∈ L1([0, 1])

[More general settings for the growth rate R(x , ρ(t)), here
(
r(x)− d(x)ρ(t)

)
, have

been studied in Benoît Perthame’s book Transport equations in biology (2007)]

Questions: what is the asymptotic behaviour of

• the total population ρ?

• the phenotypes in the population (i.e. possible limits for n(t, ·) in M1(0, 1))?



Non-local Lotka-Volterra model: convergence

Convergence: Plot of t 7→ ρ(t)

Firstly, it can be shown that
ρ converges to ρ∞, the smallest value such that r(x)− d(x)ρ∞ ≤ 0 for all x in [0, 1].

(Idea of proof, see Camille Pouchol’s internship report: “Modelling interactions
between tumour cells and supporting adipocytes in breast cancer”, UPMC, September

2015, https: // hal. inria. fr/ hal-01252122 : show that
∫ +∞

0

∣∣∣∣dρdt
∣∣∣∣
−
dt < +∞

and – with additional hypotheses – that ρ is bounded; then convergence follows.)

https://hal.inria.fr/hal-01252122


Non-local Lotka-Volterra model: concentration
Concentration: Plot of x 7→ n(t, x) for different times t

Theorem
• ρ converges to ρ∞, the smallest value ρ such that r(x)− d(x)ρ ≤ 0 on [0, 1].
• n(t, ·) concentrates on the set

{
x ∈ [0, 1], r(x)− d(x)ρ∞ = 0

}
.

• Furthermore, if this set is reduced to a singleton x∞, then

n(t, ·) ⇀ ρ∞δx∞ in M1(0, 1).

[Proof: see Camille Pouchol’s internship report: “Modelling interactions between

tumour cells and supporting adipocytes in breast cancer”, UPMC, September 2015,

https://hal.inria.fr/hal-01252122]

https://hal.inria.fr/hal-01252122


Non-local Lotka-Volterra model with 2 drugs and one
(continuous scalar) resistance phenotype x
∂

∂t
nH(x , t) =

[
rH(x)

1 + kHu2(t)
− dH(x)IH(t)− u1(t)µH(x)

]
nH(x , t)

∂

∂t
nC (x , t) =

[
rC (x)

1 + kCu2(t)
− dC (x)IC (t)− u1(t)µC (x)

]
nC (x , t)

Environment: IH(t) = aHH .ρH(t) + aHC .ρC (t), IC (t) = aCH .ρH(t) + aCC .ρC (t),

with ρH(t) =
∫ 1
0 nH(x , t) dx , ρC (t) =

∫ 1
0 nC (x , t) dx , u1 cytotoxic, u2 cytostatic drugs.

Simultaneous combinations of the 2 drugs, with increasing equal constant doses

Healthy cells: preserved Cancer cells: eventually extinct

Proof of concept, or here “Pedestrian’s
optimisation” (Lorz et al. M2AN 2013)



Convergence and concentration in this two-population
setting, or: asymptotic behaviour with constant controls
[At the same time convergence and concentration, by using a Lyapunov functional]

Theorem
(Asymptotic behaviour theorem, no prior convergence assumed)
Assume that u1 and u2 are constant: u1 ≡ ū1, and u2 ≡ ū2. Then, for any positive
initial population of healthy and of tumour cells, (ρH(t), ρC (t)) converges to the
equilibrium point (ρ∞H , ρ∞C ), which can be exactly computed as follows.
Let a1 ≥ 0 and a2 ≥ 0 be the smallest nonnegative real numbers such that

rH(x)

1 + αH ū2
− ū1µH(x) ≤ dH(x)a1 and

rC (x)

1 + αC ū2
− ū1µC (x) ≤ dC (x)a2.

Then (ρ∞H , ρ∞C ) is the unique solution of the invertible (aHHaCC >> aCHaHC ) system

I∞H = aHHρ
∞
H + aHCρ

∞
C = a1,

I∞C = aCHρ
∞
H + aCCρ

∞
C = a2.

Let AH ⊂ [0, 1] (resp., AC ⊂ [0, 1]) be the set of all points x ∈ [0, 1] such that equality
hold in one of the inequalities above. Then the supports of the probability measures

νH(t) =
nH(t, x)

ρH(t)
dx and νC (t) =

nC (t, x)

ρC (t)
dx

converge respectively to AH and AC as t tends to +∞.



Optimal control problem, phenotype-structured IDE model
Environment: IH(t) = aHH .ρH(t) + aHC .ρC (t), IC (t) = aCH .ρH(t) + aCC .ρC (t),

with ρH(t) =
∫ 1
0 nH(x , t) dx , ρC (t) =

∫ 1
0 nC (x , t) dx .

IDE model with evolution in phenotype x due to effects of cytotoxic drug u1(t)

∂

∂t
nH(x , t) =

(
rH(x)

1 + αHu2(t)
− dH(x)IH(t)− u1(t)µH(x)

)
nH(x , t)

∂

∂t
nC (x , t) =

(
rC (x)

1 + αCu2(t)
− dC (x)IC (t)− u1(t)µC (x)

)
nC (x , t)

0 ≤ u1(t) ≤ umax
1 , 0 ≤ u2(t) ≤ umax

2

Find controls (u1, u2) minimising

CT (u1, u2) = ρC (T ) =

∫ 1

0
nC (x ,T ) dx

under the additional constraints

ρH(t)

ρH(t) + ρC (t)
≥ θHC , ρH(t) ≥ θH .ρH(0)

(the last constraint, with, e.g., θH = 0.6, to limit damage to healthy cells)



Optimal control problem: theoretical results

Theorem
(Optimal control theorem)
Under these conditions, the optimal trajectory in large time T > 0 consists of 2 parts:
• a long-time part, with constant controls on [0,T1], at the end of which

populations have almost concentrated in phenotype (for T1 large)

• a short-time part on [T1,T ] consisting of at most three arcs, for T − T1 small:

1. a boundary arc, along the constraint
ρH(t)

ρH(t) + ρC (t)
= θHC ,

2. a free arc (no constraint saturating) with controls u1 = umax
1 and

u2 = umax
2 ,

3. a boundary arc along the constraint ρH(t) ≥ θH .ρH(0) with u2 = umax
2 .

(Pouchol et al., arXiv (Dec. 2016) 1612.04698 or
https: // hal. archives-ouvertes. fr/ hal-01416594v1 )

https://hal.archives-ouvertes.fr/hal-01416594v1


Simulations illustrating this theorem
Simulations with T = 30
(optimisation using AMPL-IPOPT)

Simulation with T = 60
(optimisation using AMPL-IPOPT)

Note that this strategy lets the cancer cell population ρC grow initially to an

equilibrium level, while increasing the ratio
ρCS

ρC
of drug-sensitive cancer cells, before

delivering u1 = umax
1 ; only then is the cytotoxic efficacy maximal.



Comparison with “almost periodic” therapeutic strategies

We mimic actual clinical settings: as long as
ρH

ρH + ρC
> θHC , we follow the ‘drug

holiday’ strategy by choosing u1 = ū1 = 0, u2 = ū2 = 0.5. Then, as long as

ρH > θH .ρH(0), we use the maximal amount of drugs. As soon as ρH = θH .ρH(0),

back to the drug holiday strategy. Results (note stabilised ρC and increasing ρCS ):



Comparison with “almost periodic” therapeutic strategies
1) Mimicking the clinic; 2) the same with saturation of the constraint ρH = θH .ρH(0)

First (unsatisfying) periodic strategy: stabilisation of ρC only. Second strategy: same, but with added

arc following the constraint ρH = θH .ρH (0), with u2 = umax
2 , and control u1 obtained from the equality

dρH

dt
= 0 (saturation of the constraint) and back to the drug holiday strategy u1 = 0 as ρC starts

increasing again: we see that ρC can be brought arbitrarily close to 0 (eradication of the tumour?).



References
• Goldman, A, Kohandel, M, JC, Integrating Biological and Mathematical Models to Explain and

Overcome Drug Resistance in Cancer, 1: Biological Facts and Studies in Drug Resistance and
2: From Theoretical Biology to Mathematical Models. Curr. Stem Cell Rep., 3:253-268, 2017.• Pouchol, C, Trélat, E, Global asymptotic stability of coexistence steady-states in
integro-differential Lotka-Volterra systems modelling trait-structured populations. arXiv 2017.• Pouchol, C, Trélat, E, Lorz, A, JC, Asymptotic analysis and optimal control of an integro-
differential system modelling healthy and cancer cells exposed to chemotherapy. JMPA, 2017.• Chisholm, RH, Lorenzi, T., JC, Cell population heterogeneity and evolution towards drug
resistance in cancer: biological and mathematical assessment, theoretical treatment optimisation.
BBA General Subjects 1860:2627-45, 2016.• Lorenzi, T., Chisholm, RH, JC, Tracking the evolution of cancer cell populations through the
mathematical lens of phenotype-structured equations. Biology Direct 11:43, 2016.• Chisholm, RH, Lorenzi, T, Lorz, A, Larsen, AK, Almeida, L, Escargueil, A, JC, Emergence of
drug tolerance in cancer cell populations: an evolutionary outcome of selection, non-genetic
instability and stress-induced adaptation. Cancer Research, 75(6):930-939, 2015.• Lorenzi, T, Chisholm, RH, Desvillettes, L, Hughes, BD, Evolutionary dynamics of
phenotype-structured populations: from individual-level mechanisms to population-level
consequences. Zeitschr. angew. Math. Phys., 67:100, 2016• Chisholm, RH, Lorenzi, T, Lorz, A, Effects of an advection term in nonlocal Lotka-Volterra
equations. Comm. Math. Sciences, 14:1181-1188, 2016.• Lorenzi, T, Chisholm, RH, Desvillettes, L, Hughes, BD, Dissecting the dynamics of epigenetic
changes in phenotype-structured populations exposed to fluctuating environments. Journal of
Theoretical Biology, 386:166-176, 2015.• Lorz, A, Lorenzi, T, JC, Escargueil, A, Perthame, B, Effects of space structure and combination
therapies on phenotypic heterogeneity and drug resistance in solid tumors. Bull. Math. Biol.,
77(1):1-22, 2015.• Lorz, A, Lorenzi, T, Hochberg, ME, JC, Perthame, B, Populational adaptive evolution,
chemotherapeutic resistance and multiple anticancer therapies. ESAIM: Mathematical Modelling
and Numerical Analysis (M2AN), 47(02):377-399, 2013.

JC: https://who.rocq.inria.fr/Jean.Clairambault/



What about space? Considering both a (1D) resistance
phenotype and (1D) space in a tumour spheroid: equations

We assume that the evolution of functions n, s (nutrients), c1 and c2 in a 1D radially
symmetric tumour spheroid (r ∈ [0, 1]) is ruled by the following set of equations:

∂tn(t, r , x) =

[
p(x)

1 + µ2c2(t, r)
s(t, r)− d(x)%(t, r)− µ1(x)c1(t, r)

]
n(t, r , x), (1)

−σs∆s(t, r) +

[
γs +

∫ 1

0
p(x)n(t, r , x)dx

]
s(t, r) = 0, (2)

−σc∆c1(t, r) +

[
γc +

∫ 1

0
µ1(x)n(t, r , x)dx

]
c1(t, r) = 0, (3)

−σc∆c2(t, r) +

[
γc + µ2

∫ 1

0
n(t, r , x)dx

]
c2(t, r) = 0, (4)

with zero Neumann conditions at r = 0 coming from radial symmetry and Dirichlet
boundary conditions at r = 1

s(t, r = 1) = s1, ∂r s(t, r = 0) = 0, c1,2(t, r = 1) = C1,2(t), ∂r c1,2(t, r = 0) = 0. (5)

For each t, we also define ρ(t, r) =

∫ 1

0
n(t, r , x) dx (local density at radius r) and

ρT (t) =

∫ 1

0
ρ(t, r)r2 dr (global density).

(Lorz et al. BMB 2015)



Tumour spheroid: simulations with constant drug doses (1)

Evolution without drugs: towards sensitive phenotype (x → 0)



Tumour spheroid: simulations with constant drug doses (2)

Cytotostatic c2 has only small effects / Cytotoxic c1 clearly induces resistance
(Lorz et al. BMB 2015)



Tumour spheroid (3): constant or bang-bang control?
Therapeutic strategies c1/c2: Constant/Bang-bang vs. Bang-bang/Constant

(Lorz et al. BMB 2015)



Back to “Why is evolution important in cancer?”
Questions on multicellularity and cancer

• Cancer is a disease of multicellular organisms, that has been evidenced,
including in fossils, in the whole animal kingdom

• Cancer is the failure of maintenance of a coherent (=founded on stable cellular
differentiations) multicellularity, or else: encore :

• Cancer may be defined as ca loss of cohesion of tissues and organs of a same
organism following failures in differentiation

• Does there exist in the construction of multicellularity a qualitative succession of
new families of genes responsible for 1. proliferation and apoptosis 2.
differentiation (transcription factors?); 3. epigenetic control of differentiations ?
Phylogenetic scenarios of evolution of mutations in AML go in the opposite
direction with increasing malignancy (Hirsch et al. Nature Comm. 2016)

• Some gene mutations predispose subjects to well-identified organ cancers: do
these genes play a role in the anatomic constitution of multicellularity?

• Evolution proceeds by tinkering (François Jacob, ‘Evolution and tinkering’,
Science 1977), using every possible avaible material: what in such a succession
of tinkerings makes an organism viable but fragile?

• The genes that are altered in cancers are the same that serve multicellularity
design (Domazet-Lošo & Tautz 2010, Davies & Lineweaver 2011): can we
methodically collect these genes?



Questions (continued)
• What defines a same organism ? A ‘self’ that would be conserved during the

sequences of differentiations that lead to the ‘200 terminally differentiated cell
types’ in Man?

• What holds together, normally without conflict, the cell types (the interferon
pathways??), and what does the immune system recognises as non-self (foe
rather than friend) in a cancer cell?

• Is there a relationship of such coherence with the major histocompatibility
complex (MHC)? What is its primary function, if not to ensure organism
cohesion (of tissues), and how does such coherence (of signals) operate?

• Can we parallel evolution of species and evolution of their immune system?
Some enlightenment to collect genes active at multicellularity constitution?

• Loss of control of differentiations: do all cancers have in their evolution an
epigenetic origin or compulsory step?

• Some is known of mutations in genes that control epigenetics (e.g., DNMT3A,
TET2) in early leukaemogenesis, and of genes of cell metabolism (IDH1, IDH2)
in cancers (AML, glioblastoma): can we propose and exemplify a standard
scenario linking perturbations of metabolism / perturbations of epigenetic
control of differentiations / cancers?



Questions (continued)

• Energetic metabolism of the cell, intercellular communications and cancer:
appearance of gap junctions in multicellularity and perturbations physiological
gap junctions, that are essential to multicellularity, in solid tumours? (James
Trosko)

• Glycolytic vs. mitochondrial respiratory phenotypes: do cancer cells shift easily
from one to the other (in other words, does a tumour practice a form of
metabolic bet hedging?) Gravenmier et al. Bull. Math. Biol. 2017)

• What are the advantages and drawbacks of these 2 phenotypes? (efficiency of
the TCA [=Krebs] cycle vs. rapidity of anaerobic glycolysis) When did appear
the mitochondrial respiratory mchain a necessary condition for the establishment
of reliable intercellular communications?



Questions (continued)
• Phenotypic heterogeneity of cancer cell populations in a same tumour in the

case of stress response: result of primary massive de-differentiation?
• Bet hedging as a ‘tumour strategy’ to diversify its responses to deadly stress (as

high doses of cytotoxic drugs) in launching different response stress in different
cells? (ABC transporters, detoxication enzymes, blocking influx, DNA repair)

• Stress response through derepression of cold genes? Wu et al. PNAS 2015:
existence of very ancient genes, constituted in a remote past of our planet, able
to put at work des survival programs in a state of emergency, with bet hedging,
in a cancer cell population?

• “Maintenance of phenotypic heterogeneity within cell populations is an
evolutionarily conserved mechanism that underlies population survival upon
stressful exposures.” (Guler Cancer Cell 2017) Chromatin regulators as ‘cold
genes’ aiming at maintaining a subpopopulationof resistant cells in case of
extreme, life-threatening, stress?

• Role of transposable elements transposables in the maintenance of such
heterogeneity? “In the context of evolution, activation, and propagation of
transposable elements enables organisms to adapt to changing conditions by
generating genomic diversity (...), but can also result in reduced fitness.” (Guler
Cancer Cell 2017)

• What is more relevant for stress response of a cell population (adaptable, as in
the case of a tumour): maintain a subpopulation of all-stress resistant cells, or
maintain a subpopulation of cells expressing ‘cold genes’ and able to launch
different resistance mechanisms in different cells? (stochastically chosen?)
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